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ABSTRACT

This paper exarnines and characterizes four elemen-
tal hardware computational design alternatives (CDA's)
and presents a structured approach to computational sec-
tion design which incorporates a rigorous, theoretic founda-
tion. The DIRECT CDA incorporates a single micropro-
cessor (uP) and memory. The AU CDA contains a P,
memory, and arithmetic unit. A P, memory, and calcu-
lator chip comprise the CALC CDA. Finally, several
uP's and memories in a Master/Slave arrangement imple-
ment the multiple- P muP CDA. A common set of attri-
butes--precision, speed and cost--facilitates comparison.
Using these attributes, Multiattribute Utility Theory
assesses a numeric quantity, the utility, to represent each
CDA's relative usefulness. Thus, design involves selecting
the CDA with the greatest utility.

1. Introduction

Technologiral advances made within the electronics
industry during the early and mid 1970 stimulated the
rapid development and broad acceptance of micropro-
cessor-based systems. Today, these systems span a wide
range of applications with considerable variation in com-
putational requirements. The purpose of this paper is
to investigate and characterize a set of important compu-
tational design alternatives (CDA's) couched within a
structured approach to design which incorporates a firm,
theoretic foundation and which illustrate the use of this
theory in characterizing CDA's.

A generalized yP-based system may consist of
several sections, e.q., data conversion, data communi-
cation, operator interaction, computation, etc., each
with specific and unique responsibilities. In such a system
each section communicates with the others over a common
system bus. The "computation" section functions to
accomplish some distinct set of arithmetic calculations
required for the particular application. Because of techno-
logical progress, various combinations of hardware and
software may implement the needed computation. Thus,
a computational design alternative (CDA) represents:
the specific combination of hardware and software re-
quired to accomplish a particular computation.

All "computational” sections of a P-based system
can be decomposed into four "elemental” CDA's, each
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with their own distinct combination of hardware and soft-
ware to accomplish computations. First, the DIRECT
CDA consists of only a UP and memory connected via
the system bus as shown in Figure la. Since the memory
contains arithmetic (add, subtract, multiply, and divide)
and logical subroutines, the DIRECT CDA performs all
computations in software. Next, the second CDA employs
a 1P, memory, and an arithmetic unit (AU) (see Fig. 1b),
all joined by the system bus. The AU CDA differs from
the DIRECT CDA in how it achieves multiplies and di-
vides. For the AU CDA it writes the two operands (num-
bers) into AU buffers, starts the multiply or divide opera-
tion, and simply reads back the result. But the AU CDA,
like the DIRECT CDA, performs adds, subtracts and
logical instructions totally in software. The third CDA
incorporates a calculator chip to accomplish arithmetic
computations as depicted in Figure 1c. Here, the CALC
CDA consists of a uP, memory, and the calculator chip,
all linked by the system bus. Within the memory its pro-
gram must simulate depressing the keys as with a hand
held calculator; it must also read back the results and
decode them when the requested function finishes.

The final elemental CDA applies the concept of
simultaneous, or parallel, execution: it executes sections
of the problem simultaneously, then adds the partial

results together for the completed answerl-a. Because

of this concept the multiple-microprocessor (muP) CDA
involves several uP's and memories in a Master-Slave
arrangement as illustrated in Figure 1d. Each Slave memory
contains a replica of the DIRECT CDA memory, arithmetic
subroutines, and performs all computations in software
(like the DIRECT CDA). The Master's memory holds

an "overhead" program responsible for routing data and
preliminary results from Slave to Slave, and for forming
the completed results. This memory may contain arith-
metic subroutines to handle such tasks as testing for
convergence and calculating indicies.

The above muP CDA Master/Slave arrangement
does not necessarily produce optimal results; an archi-
tecture designed for a unique problem, or class of prob-
lems, can potentially decrease execution-time and reduce
costs. But the proposed m ;P CDA does present a simple,
general-purpose architecture that solves many problems
well and, additionally, lends itself to straightforward
analysis,

For each elemental CDA a unique mixture of hard-
ware and software accomplish computations. Thus, the




2. CDA Attributes
Comparison of a group of objects occurs through
evaluation of a common subset of characteristics, or
properties. Moreover, the selected subset of attributes
must reflect the important features and qualities of
each member. When comparing a set of CDA's, several
attributes satisfy these requirements: precision, execu-
tion-time, cost, power dissipation, circuit complexity,
programming language, circuit reliability, packaging
demands, maintenance schedule, etc. Too few attri-
butes results in incomplete examination of the objects
while too many attributes may cause unnecessary confu-
sion. For the above list, all but the first three attri-
butes depend strongly on the remainder of the P-based
(a) system and, thus, fail to depict attributes indigenous
© to the CDA's. But precision, execution-time, and cost
represent convenient and illustrative attributes for
demonstrating the principal characteristics of CDA's.
And Table [ summarizes typical device attributes used
throughout this paper.
2.1 Precision
Two common number representations, fixed-point
uF Memory Arithmetic and floating-point, both identify discrete values on the
Unit real-number line. For the fixed-point format an implied
binary-point lies between two specific bits in the word,
and with floating-point numbers the binary-point varies
(this requires storage of the position). In the research
reported here, all numbers conform to the fixed-point
format. Thus, precision involves the guantity of 8-bit
®) memory words used to form a particular number; e.qg.,
p=1 for single-precision, p=2 for double precision, etc.
Since the uP's perform two's complement arithmetic,
all numbers correspond to multiple-precision, fixed-
point, two's complement quantities.
2.2 Execution Times
Execution-time represents the number of seconds
needed to complete a specific computation. Since addi-
‘ tion/subtraction and multiplication/division both corres-
pond to complementary arithmetic and digital logic
functions, the execution-time of an addition roughly
SYSTEM BUS equals a subtraction and a multiplication roughly equals
- a division. These assumptions greatly facilitate analysis
) ©) of execution-times. Thus, if the number of adds and
f multiplies can approximate the execution-time of an
. Master application program, then these values multiplied by
| — the time to perform an add and multiply sum to give
u Memory the exution-time. Symbolically, let
A. = number of adds

properties of each CDA vary considerably. So judicious
combinations of the four CDA's (DIRECT, AU, CALC,
and muP) will realize the computation section of a uP-
based system.
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- Memory In Equation 1 the specific CDA architecture dictates
— the expressions for a and M while the algorithm of the
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Slavet application program configures constants Ai and Mi'

(d) Multiple-precision arithmetic operates on each word
of the number individually to produce the final result;
Figure 1. Block diagram of the (a) DIRECT, (b) AU, e.g., consider the multiple-precision add flowchart in
(c) CALC, and (d) mpP computational Figure 2a. Here, corresponding words of the two operands
design alternatives. add to produce the partial sum and the carry ripples
through from word to word. Since each pass through

268

e s




Table I. Representative characteristics
of computational devices

a) uP's b) Solid-state memories

1-8k bits/chip
1 usec. assess-time
$0.01/bit cost

8-bit word length
8 usec. cycle~time
$10.00 cost

¢) Calculator and d) Arithmetic units
support chips
multiple-precision
word-length

50 msec. execution-time
$200.00 cost

3-bit word length

100 nsec. execution-time
$5100.00 cost

the loop involves about 10 instructions, then for

t, = cycle-time (8 usec.)
p = precision, and
a, = lOpt;O. (2)

Also, the AU and muP CDA's employ identical add algo-
rithms, so
a, = lOptO, and (3)
a4 = lOptO. (4)
But with the CALC CDA each operand requires decoding
and encoding from binary to BCD formats, and each
arithmetic operation demands "digit intry" (simulation
of key depresses) and "function" time (see Fig. 2b and
2c). Decoding/encoding tasks and the answer reads oceur
in secs., but when compared to the digit entry and
function delays (msecs.) they contribute no significant
time to the add, or multiply, execution-times. To deter-
mine the approximate number of digits sent to the calcu-
lator chip each twao's complement number roughly ranges

in magnitude 128p-l, and on the average the number

decoded falls in the middle, ZBD_I'. For 1<p<4 these
numbers contain around 2p decimal digits; e.g., if p=1

and 28p—2:26:6a, then the 1 P sends 2 decimal digits

td the calculator chip. With these ideas the execution-

time of a multiple-precision add instruction for the CALC

CDA becomes
t, = digit entry time (40 msecs.)

e
t, = "add" function time (90 msecs.), and
ay = 2(2p+l)|:e +t. (5}

Equations 2 through 5 yield estimates for the multiple-
precision add times of all CDA's and Figure 3 illustrates
these values for various precisions. In this figure the
most noticeable observation concerns the difference
in add times: nearly 3 orders of magnitude.

For a p-precision, two's complement, fixed-point
binary number multiplied by another, the result yields
a Zp-precision product. Since both the DIRECT and
muP CDA'S do not contain hardware multiply instruc-

tions they may use the "add-and-shift" algorithm5 to
determine C = A*B (see Fig. 4). On the average, this
algorithm executes 4p, p-precision shifts. Using Equation
2 for an estimate of the add time and assuming that
each shift requires p cycle-time

my = 4p(20p to) + 8p(pt0) (6)

= 88p tO.
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And since the muP CDA uses the same software,
2
my, = 88p tor N

With the AU CDA the problem changes dramatigally
due to its 8-bit by 8-bit hardmultiply. If.the P needs
two 1/0 instructions to write the parameters into the
AU, one to wait for the multiply to finish, and two to
read the 16-bit product, then one single-precision multi-
ply requires (StO) time. But for multiple-precision num-

bers the task becomes much more difficult; consider
the notation:

ENTER

: L P=0, L=-8P, PP=(a) 1

J

LSB(B)=1?

Zp-precision
addicion.

multiple-
precision
shifts,

Figure 4. Multiple-precision multiply flowchart for
DIRECT CDA.
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Figure 3. Multiple-precision addition time for

various CDA's.

Thus, multiple-precision multiplies for the AU CDA
involves pz, single-precision multiplies (partial products)
and p2, 2p-precision adds (see Fig. 5); combining,
m, = p»Z(StCI) + p2(20pt0) (8)
= S‘pz(l + 4p)to.

L IA=0, IB=0, L1lx-P, L2=-P, P=0, PP=Q ]
Single-~
PP=(A+1A)*(B+IB) _— preicion
multiply.
Shifc PP I |
/
2p-precision
L P=P+PP — — ’
addition.
I IA=IA+1l, IB=1B+1 —,
NO
L1 = 07
YES
Ll=-p, IA=0, IB=IB+l, L2=L2+1 ‘l

Figure 5. Multiple-precision multiply flowchart for
AU CDA. =




For the CALC CDA the analysis of Equation 5 directly
applies to finding the multiple-precision multiply time;
only the "multiply" function replaces the "add" function
time; i.e.,

t, = digit entry time (40 msec.)
tm = "multiply” function time (120 msec.), and
ms = 2(2p + l)te +to- (9)

So Equations 6 through 9 give estimates for the
multiple-precision multiply times of all CDA's, and
Figure 6 illustrates these values for various precisions.
From this Figure the most striking feature pertains to
the difference in multiply times of the CALC CDA com-
pared to the others: roughly 2 orders of magnitude.
Also, the change in execution-time with precision, or
slope, varies with each CDA. The AlJ CDA rises the
fastest, then the DIRECT, and the CALC CDA contains

the slowest increase. This observation causes the DIRECT's

multiply time to become faster than the AU's for p 3.
Now, once the constants Ai and Mi have been found for

an application, Equation 1 with Table II can give an
estimate of the execution-time for each CDA.

The flowcharts for various multiple-precision add
and multiply instructions provide only the basic outline.
Among the functions added to an implemented algorithm
include initialization, zero and sign checks, overflow/
underflow detection, ete. But these extra duties do
not contribute significantly to the overall execution-
time, nor do they represent more than second and third-
order terms in the execution-times (Equations 2-9).
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Figure 6. Multiple-precision multiply time for
various CDA's.

Table II. Add and Multiply execution-times
for various CDA's.

i a; m,
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2.3. Costs

The monetary expense incurred with each CDA
could include several components, many of which depend
on the remainder of the p P-based system, so this develop-
ment focuses on the semiconductor parts cost. For all
CDA's two principal terms add to give the total cost,
one corresponds to an elemental (or basic) CDA cost
and the other to an application dependent cost:

Cei = elemental CDA cost

Cai = application cost, and -

C. = C.+C_;1<i<yy (10)
i ei ai’ " — ~

= total cost (in $'s).
First, the elemental cost term Cei relates to the basic

expense of procuring a CDA and its mathematical sub-
routine's memory. And three main factors comprise Cei’

IOi = 1/O device cost

Ri = mathematical subroutine's cost
CPUi = UP cost, and

Cei = IOi + Ri + CPUi; 1<ic<a4, (11)

Second, the application cost term Cai pertains only to

the added expense of the application memory. This
involves two terms, one for program memory and one
for data storage:

w, = cost per word ($0.08)

Pi = program memory

Di = data memory, and

Cyi = wo(Pi + pDi); 1<ic<4, 12)

Because term Cei in Equation 10 does not depend on
the application it can be determined now, yet term Cai

must be deferred until an application program is defined.
Hence, the three terms IOi, Ri’ and CPUi in Equation

3.11 need evaluation for each CDA.
For the DIRECT CDA the I/O devices and P costs
involve simple estimates; since no I/0 devices reside

on the bus IOl = $0.00 and, today, an estimate for CPUl

= $10.00. But estimating Rl involves much more analy-

sis and approximation. From Figure 2a, the multiple-
precision add flowchart, if each step involves about 1
word of memory, then 30 words corresponds to a reason-
able estimate of ‘the number of words for the instruction.
Similarly, the multiply instruction illustrated in Figure

4 uses the add instruction so the number of words roughly
equal 20. A summation of these values yields 50 words
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and doubling this to account for the subtract and divide
subroutines results in 100 words. So 100 words at a cost
of wo:$0.08 per word gives R.l=100w0:$8.00.

With the AU CDA the expense of the AU changes
IOZ; today, a reasonable estimate of IOZ:$100‘00' Still,

CF’U2 remains the same as CF’Ul, or CPU2=$10.00.
Following the procedure which determined Rl’ the add

instruction contributes 30 words while the AU multiply
instruction (see Fig. 5) attaches an additional 45 words.
Together, they sum to 75 werds which when doubled
for the subtract and divide subroutines give 150 words;
this sets R2:150w0=$12.00.

Next, the CALC CDA, like the AU CDA, embodies
an expensive 1/0O device (the calculator chip) and a con-
temporary estimate for this term assigns IO}=$200.DD.

Yet the CPU estirate continues at CPU3=$10.DO. With

this CDA the exact same flowchart, see Figure 2b and
2c¢, can accomplish all arithmetic subroutines because
only the function code (a parameter) need change from
instruction to instruction; e.g., from add to multiply.
These figures suggest that about 50 words can retain
the program, and RB:SOWO:M.OU.

Analysis of the last CDA, the muP alternative,
for the Ce[‘ term parallels the DIRECT CDA except

in quantity. Since the muP CDA replicates the DIRECT
CDA hardware and software, and if it engages S Slaves,
then 104=$0.00, RQ:SRl, and CPU4=(S +1) CPUl. The

CPU, term multiplies CPU, by (S + 1) because the
Master u P creates an additional term.
Thus, Table III delineates the estimates for IOi,

Ri’ CF’Ui, and Cei for all CDA's, 1<i <4, based on 1978

device costs. From this table the elemental cost of

the muP CDA grows rapidly as the number of Slaves
increases. It surpasses the AU CDA by S=6 and the CALC
CDA by S=12. Also, the contribution of Ri to Cei for

the AlJ and CALC CDA's (and the muP CDA for small
S) is insignificant because of the expensive IO.l term.

Table III. Estimates of Cei for
various CDA's.

i 10, R, CPU, C .
i i i ei
1 - $8.00 $10.00 $18.00
2 $100.00 $12.00 $10.00 $122.00
3 $200.00 $4.00 $10.00 $214.00
4 - $(8)9.00 $(8+1)10.00 $(5)19.00
+10.00

3. Application of Multiattribute Utility Theory

Von Neumann and Morgenstem6 have developed
a decision mechanism, termed Multiattribute Utility
Theory (MUT), that can be applied directly to selecting
the "best" CDA for a particular application. MUT
assigns a numeric quantity, the utility, to each CDA.
This scaler quantity indicates a given CDA's usefulness
with respect to the other alternatives. Because the.
attributes satisfy t'e eight Axioms of MUT plus utility

and preferential independence definitions,7_10 the

decision mechanism reduces to an additive utility function:
i.e.,

3
u(x) = ¥ kiui(xi) = utility, a3
i=1
where_
x = (xl, X0 x3) = consequence,
X = precision, Xy = execution-time, Xg = cost,
ui(xi) = marginal utility function,
and

ki = scaling constant, where =T ki =1.
i=1

Here, marginal utility functions convert specific attri-
butes of a dimension to a numeric quantity that represents
its usefulness. So the utility of a CDA involves a weighted
sum of their marginal utilities, and the "best" CDA con-
sists of the alternative with the greatest numeric utility.
By analyzing three examples, the investigation
clarified the techniques used to evaluate attributes,
and its elucidated use of the additive utility function.

L . 11 - .12
These applications--linear regression,” ~ matrix inversion,

and fast-fourier transform 13 computations--exemplified
the overall procedure and, moreover, led to conclusions
that characterized each. CDA. Specific details are given

elsewhel‘e10 with only a summary of the results given
below.

For the matrix inversion example, a typical conse-
quence set included the following marginal utitities:
DIRECT = (66, 99, 100), AU = (00, 100, 51), CALC =
(100, 00, 00), and muP = (33, 99, 91). With the weight
vector k = (0.3, 0.3, 0.3), Equation 13 formed the utility
of each CDA as the average of its marginal utilities;

i.e., DIRECT =80, AU = 45, CALC = 33, and muP = 67.
Since the DIRECT CDA posessed the largest utility,

it represented the "best" CDA in the above consequence
set. As the values in the weight vector changed, the
utility of CDA's with strong marginal utilities that corres-
pond to emphasized k dimensions increased, while the
others decreased, and the "best" CDA varied accordingly.
So determining the weight vector k involves important
evaluation. Similarly, the other examples strengthened
these results.

In characterizing the CDA's, the three applications
reflected the fundamental features of Tables Il and IIl.
Specifically, the CALLC CDA always exhibited the slowest

execution-time because of its inherent speeds. For the
DIRECT and muP CDA's, which both perform adds and
multiplies in software, the m P's speed invariably sur-
passed the DIRECT CDA due to its simultaneous, or
parallel, execution. But this increase varied significantly
from example to example, and it primarily depended

on the degree of "parallelism" found in the specific example
and the severity of the Master's overhead. As precision
increased, the computation times and rates of change
varied with each CDA. The CALC's rate changes the
least, then the DIRECT CDA, and the AlU's increased

the most. Since the CALC CDA always finds the answer
to a fixed number of digits, greater precision only requires
additional digit entries and this contributes little to

the execution-time. So as precision increased the DIRECT
and muP CDA's computation times become faster than
the AU CDA. For larger problem dimensions, all CDA
costs increased because of additional data (not program)
memory demands. Consequently, the muP CDA's cost
grew dramatically due to repeated hardware and software.




Precision changes did not alter costs significantly since
the memory requirements of the problem dimensions
dominate those of added precision.

4. Conclusion

As with any research, the investigation reported
here points toward several areas of additional study.

For example, rather than characterize CDA's through
three specific applications, perhaps a generalized algo-
rithm would induce broader conclusions. If integer N
measures the size or dimension of a generalized algo-
rithm, then the time complexity, T(N), expresses the
number of seconds required to complete the task. Simi-
larly, the space complexity of the algorithm, S(N), denotes
the number of rmemcry words needed to execute the
task (this quantity relates closely to the attribute cost).
So for fixed execution interval and memory size, such
expressions could give limits to the problem dimensions
for an entire class of problems.

Besides extending this research project to match
technological growth, the fundamental concepts of MUT
could be used to investigate and characterize various
muP systems in detail. With enhanced throughput, im-
proved reliability, increased system response, and modular
expansion capabilities, the m uP arrangement deserves
much attention. Still a number of problems exist which
need careful research before implementation progress
can occur. But MUT paves the path since it can facilitate
analysis of both hardware and software.

Alsn, since the methodology described in this paper
does not assume any specific hardwaredevices or software
algorithms, it could aid a parametric study of either
these two topics. Such investigations may lead to optimal
design strategies for i P-based systems which consider
both hardware and software tradeoffs.

Using the results of this research, designers of
microprocessor-based systems will be able to synthesize
advanced systems with improved performance. Addition-
ally, by judicious use of these characteristics they will
be able to open new application areas previously deemed
unrealistic to solve with computer-based systems. Second,
these results will benefit LSI chip designers by influencing
what properties they will embody in the next generation
of devices. Since some features assist computations
while others detract, these new LSI devices will contain
the desirable characteristics and minimize the action
of the undesirable ones. Third, the results of this study
will assist developers of ,P-based systems by providing
them with the methodology to investigate and character-
ize future systems ag technology advances. Because
the theoretic development begins at the axiom level,
they may easily modify the methodology to fit their
particular goals.
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