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The problem of high-speed multiplication is
considered from the viewpoint of summand generation
and summand summation. The goal is to obtain at
least a 2's-complement, 32-hit floating-point (sign
plus 24-bit fraction) multiplication in 10 to 20 ns
using ECL LSI packages. Summand generation is
implemented by mxm-bit multipliers. The optimum
values for m are 9, 13, 17, or 21. Summand summa-
tion is implemented by a row of (p,2) column-
summing counters. The (3,2), (5,2), and (7,2)
counters are optimum choices. These counters comn~
press p inputs into two outputs plus nonpropagating
carry bits, where these bits are added to the next
higher-order stage with at most two full adder
delays.

Introduction

In the design of high-performance computers,
methods for high-spaed multiplication are a con-
tinuous research effort. 1In recent literature,
the theory and implementation of various methods
have received considerable attention.!=" There
remains, however,
This gap exists prinarily because for high-speed
multiplication, the total number of IC chips used
(and hence wiring) must be reduced. The effect of
wiring on computer arithmetic speed is illustrated
by the observation that in present high-performance
computers, logic signals spend more than half the
time propagating through wires connecting the IC
chips. Thus, using faster circuits could at most
double the arithmetic speed.

There are two basic problems in high-speed
multiplication: summand generation and summand
summation. The summand summation problem of adding
P n-bit numbers using adders with p inputs and
4 outputs, called (p,q) counters, was concsidered
by Singh and Waxman,! and Ho and Chen.? Reference
1 describes a technique of partitioning these p
numbers columnwise, such that each column partiticn
contains r bits of each of the p numbers, where
r is an integer 210g2(p—1), in which the final

sum can be obtained in r + 1 addition cycles. In
Ref. 2, (p,q) counters, such as the (7,3) counter,
were considered for compressing p summands into
9 summands by adding each column independently.
In Ref. 3, Agrawal and Reddy extended the Dadda
scheme to make use of commercially available 4-bit
full adders. The addition of p rows requires
logzp adding stages. In Ref. 4, Stenzel, et al.

considered the multiplication problem of (1) using
mxm~bit multipliers for summand generation, and
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(2) using (p,q) counters for summand summation.
They have constructed a 24x24-bit multiplier by
using 4x4-bit multiplers, a (5,5,4) counter, and
(2,2,2,3,5) counters. Using standard STTL logic,
this multipler contains 90 ICs and operates at
about 200 ns. In the above four schemes, several
adding stages are required to reduce q to 2, which
in conclusion is not conducive to high-speed mul-
tiplication.

In this paper, the problem of designing an
n-bit floating-point (sign plus n-1 bits fraction)
2's~complement multiplier operating in the 10 to
20 ns range is considered. A high-speed multiplier
of this type will find application in high-
performance computers such as the Phoenix system.®
The n-bit multiplicand (or multiplier) is parti-
tioned into % bytes of length (m - 1) for the
least significant (2 - 1) bytes, and length b for
the most significant byte, where b < m. For sum-

mand (partial product) generation, 22 mxm-bit mul-
tipliers are used. The optimum values for m are

9, 13, 17, and 21. The resultant 22
are then summed by one row of (p,2) counters to
generate a partial-sum (PS) and a partial-carry
(PC). The maximum value of p 1is related to % by
p = 142(2 -~ 1). The optimum choices for (p,2)
counters are (3,2), (5,2), and (7,2). This multi-
plication process is illustrated in Fig. 1 (and a
(7,2) counter is shown in Fig. 2).

summands

In column summation using (p,2) counters, each
counter compresses a column containing p bits by
adding the column independently into C bits of
carry and q = 2 bits of PS and PC. The ¢ bits
of carry are then added into the next higher order
column with a maximum delay of two full adder
stages. The final product is obrained by adding
PS and PC in a standard carry-propagate adder
(CPA) with fast carry look-ahead.

Currently, mxm-bit multipliers are not avail-
able in the ECL technology, but multipliers with
values of m equal to 8, 12, 16, and 24 are avail-~
able in the STTL technology from two commercial
sources.®7 For floating~point arithmetic, the
above values of m are not optimum. A survey of
the floating-point data format of several commer-
cial computers is shown in Table 1. From this
table, it can be seen that optimum values for m
are 9, 13, 17, and 21, and that the signed-
magnitude representation is more favorable. As
an example for m = 13 as opposed to a naive choice

of m= 12, the summand generation for Z = Xy
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Figure 1. High-speed multiplication. Figure 2. (7,2) counter.
Table 1. Floating--point format of several computers
Single precision@ Double precision@ Number
Ty .
ype S EXP F SD s EXP F Sp | representation
Eclipse S$/130 1 7 24 6-7 1 7 56 16
PDP-11/73 1 8 24 6~7 1 8 56 16 Signed-mag.
(VAX11/730)
AP-120B Il 10 27 7-8 2's~compl.
PDP-10 1 8 27 7-8 2's-compl.
IBM system/360 1 7 24 6-7 1 7 56 16 Signed-mag.
and 370
ILLIAC IV 1 7 24 6-7 1 15 48 14 Signed-mag.
Burrough BSP 1 11 36 10-11 1 11 72 21-22 Signed-mag.
CDC 6600 1 11 48 14 1's-compl.
CDC STAR 1 8 23 6-7 1 16 47 13-14 2's~compl.
Cray 1 1 15 48 14
Intel's up 1 8 23+ 6-7 1 11 52+ 15 Signed-mag.
as = sign, EXP = exponent, F = fraction, SD = significant digits.

where both X and Y are sign plus 24-bit fractions,
regardless of the type of representation, the num-
ber of 12x12 multipliers required is nine whereas
the number of 13x13 multipliers required is only
four. 1In Table 1, Intel's proposed standard format
is for microprocessors, and the fractional part has
a hidden bit.®
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mxm—-Bit Multiplier

-In terms of logic, 2's-complement multiplica-
tion is more complex than signed magnitude multi-
plication because the sign of the 2's-complement
number is a value bit embedded in the number. But
for a general-purpose multiplier chip, it is




probably advantageous to manufacture 2's-complement,
instead of signed-megnitude, mxm-bit multipliers.
Currently, there are several algorithms for 2's-
complement multiplications. Three of these are

(1) Robertson's first method,? (2) modified Booth's
method,?> 19 and (3) Baugh and Wooley method.!l The
modified Booth's method is probably the most popu-
lar one, and the mxm-bit multiplier can be imple-
mented by using this method. Since this method is
well-known, it will be reviewed only briefly here.
In this method, the n-bit multiplier Y is
recoded to a redundant number of higher radix,
usually radix 4 or 5, without changing the natural
value of Y. TFor both algorithms, the number of
recoded multiples is (n + 1)/2 if n is odd and
n/2 if n is even. It should be pointed out that
if the natural value of n 1is odd, the result of
radix-5 recoding is always one too high. This is
because radix-5 recoding cannor produce the +1 or
-1 multiples. For this reason, radix-4 recoding

is generally more popular.

Summand Generation

The first step in high-speed multiplication
to generate the summands. The second step is
add the summands all at once to produce PC and

Finally, the product Z 1is obtained as

is
to
PS.
XY = (PC + PS) (1)
Let the multiplicand X and the multiplier ¥
each have u bits, a sign bit plus n - 1 bits of
fraction, with negative values of X and Y repre-
sented in 2's-complement form. In order to use the
mxm-bit multipliers for summand generation, it is
necessary to partition X and Y into £ bytes as

Ky 1Xpo%y g oo X X, and LPTRR 790 SHRTPTNS 5 S8

respectively. The (2 - 1) bytes of Xk and Yk’

k 2-2,2-3,...,1,0, are chosen to have a byte
length of (m - 1) bits. When an mxm-bit multipler
is used to obtain the product of any two of these
bytes, the multipler input sign bits can be wired
with positive signs so that the resultant product
sign is always positive, and thus can be ignored.
If the length of Xk and Yk are (m - 1), then the

length of the byte X is b where b £ m. For

2-1
these two choices of byte length, the value of X
and Y can be written as

-1 -2
. (m-1)i _ (m-1) (2-1) (m-1)k
X-Zoxiz =%, |2 +x2
=

(2)
k=0
= (m-1) ( — )
_ m-1)1i _ »(m=1)(2-1) (m-1)k (3
v=30v.2 = Ypr? +2o%2
i=0 k=0
where
b-1 ,
02X 1 v Yy =52 -1 (4)
and
m-1 -
02 X,Y 52 -1 (5)
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for k = £-2,2-3,...,1,0. From Eqs. (2) and (3),
the product 2z is
Z = 23 + Zy + z1 + /‘O (6)
where
2(m~1) (2-1)
= X 7
By = Xy Vg 2 2
S 1) CbeD)
m-1) (k+2-
=Y . 8
Zy =Yy 2, X 2 (8
k=0
< (m=1) (k+2-1)
) m~1 -
Z1 = Xﬂ—l Yk 2 (9)
k=0
-2 2-2 2 (me1)k
3 -
= 10
ZO y Z XiYJ 2 ’ (10
=0 j=0
The number of summands in Eq. (6) is 22, For
high-speed multiplication, & < 4 should be the
limit. This limits the number of summands to a
maximum of 16.
The term Z3 has only one summand. This sum-
mand has [1 + 2(b - 1)] bits, a sign bit plus
2(b - 1) value bits where b < m. The terms Z2
and Z; each have (£ - 1) summands. Each summand
consists of [1 + (b - 1) + (m - 1)] bits, a sign
bit plus [(b - 1) + (m - 1)] value bits. When
these summands are added with the 23 summand ,
their sign bits must be extended in order to pro-
2
duce the correct result. The term ZO has (2-1)

summands. These summands have no sign because
their sign bits are always positive. Therefore,
extension of these sign bits is not required when
these summands are added to Zq; this will greatly

simplify the summand summation, as described later.
From the above discussion, the total number of

summands contained in Zl’ ZZ’ and Z3 is

1+ 2(% - 1), and all of them contained a sign

bit. When these summands are added all at once by
(p,2) counters, the maximum value of p 1is there-
fore p=1+4 2(2 - 1).

(p,2) Counter

Before proceeding into the discussion of sum-
mand summation, the design of the (p,2) column
adder, called a (p,2) counter, is introduced first.
In a traditional (p,q) counter, p input bits of
equal weight are added to produce q output bits
where q = 1 + (integer part of logzp), and the

positional weight of the q bits are powers of 2.
In the (p,2) counter, p input bits of equal weight
are added to produce C bits of interstage carry
and two output bits of partial sum (PS) and partial
carry (PC). The C bits of carry are then added
to the next higher-order stage with a delay of at
most two full adders. Since the (p,2) counter has




only two outputs, the summation of p n-bit sum-
mands can be performed by n + 1 (p,2) counters
followed by a standard carry-propagate adder (CPA)
with fast carry look~ahead.

The optimum values of p, as described in the
next section, are 3, 5, and 7. The (3,2) counter
is simply a full adder (FA). The logic diagrams
of the (7,2) and the (5,2) counters are shown in
Figs. 2 and 3, respectively.
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Figure 3. (5,2) counter.

Summand Summation

The summand generation logic uses 22 mxm-bit

multipliers to generate ¢° summands. These sum-
mands are skewed with respect to each group because
of their positional weight differences. At any
column, there are at most p =1 + 2(% - 1) sum—
mands to be added. The summation of these sumnands
can be performed by using (p,2) counters to add
each column independently and account for inter-
stage carry bits. To illustrate this technique,
consider the multiplication of X and Y, where X
and Y are sign plus 24-bit fractions. If 13x13-
bit multipliers are used, X and Y can be parti-
tioned into two parts as follows:

(s 23 22 21 -——13 12) (11 10 9 —1 0)

X;, Y, Xg ¥y

The product Z = XY has four summands, and is

7 =%y, 2%

171 + (XY

12
+ XlYO) 2 + XOYO (11)

1

This multiplication and summand summation using
(3,2) counters are shown in Fig. 4. The small x
used in Fig. 4 is a means of depicting the multi-
plication process and will be used throughout this
discussion.
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Figure 4. Multiplication using 13x13 multipliers.

If 9x9-bit multipliers are used, X and Y can
be partitioned into three parts as 9, 8, and 8
bits. The product Z is
32

Z =Xy, 2

24
5%y + (Xle + X2Yl)2

+ (XY, + X

16
oy T XYy + X2

4—XY)28+XY

XYy = XYy 0o

(12)

This multiplication and summand summation using
(5,2) and (3,2) counters are shown in Fig. 5.
Similarly, the multiplication of two sizn-plus-56-
bit fractions using 17x17 and 9x9 multipliers has
16 summands. The 57 bits of X and Y are parti-
tioned into four parts as 9, 16, 16, and 16 bits.
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Figure 5. Multiplication using 9x9 multipliers.




This multiplication can also be summed in a similar
manner by using (7,2), (5,2), and (3,2) counters.
From the illustration in these figures, it can be
seen that column summation requires (p,2) counters
for values of »p equal to 3,5, and 7, and higher
values of p are not required.

Conclusion
A high-speed 2's-complement multiplication

scheme has been described in this paper. The goal
is to obtain at least a 32-bit floating-point (sign

plus 24-bit fraction) multiplication in 10 to 20 ns
using ECL LSI packages. The n-bit multiplicand
(or multiplier) is partitioned into % bytes of

length (m - 1) for the least significant (& - 1)
bytes, and length b for the most significant

byte, where b < m. The multiplication uses 12

mxm-bit multipliers for summand generation and a
row of (p,2) counters for summand summation. With
respect to present computer floating-point formats,
the optimum values for m are 9, 13, 17, and 21.
For these values of m, the optimum values for P
are 3, 5, and 7, and higher wvalues of P are not
required. The maximum value of p 1is related to
2by p=1+2(2 - 1), With pPresent technology,
several (p,2) counters can be packaged into one
ECL LSI chip.

For maximum throughput, the multiplication
process can be pipelined into three sections as
shown in Fig. 1. In this case, the mxm-bit multi-
plier and the (p,2) counter should have a register
at their outputs for staging purposes. Although
these multipliers and (p,2) counters currently are
not available as ECL LSI packages, they can be
manufactured if there exists a requirement. At
this writing, Fairchild plans to introduce a (9,2)
counter in an ECL &SI package called the F100182
with a delay of about 10 ns. TIf the multiplication
is pipelined, then a 10-20 ns multiplication spead
can be obtained.

In Fig. 4, there is no carry propagation in
the row of (3,2) counters, while in Fig. S5, there
is a carry propagation in the row of (5,2) counters.
In Fig. 5, it is also possible to use (3,2)
counters instead of (5,2) counters. If this is
done, then an additional row of (3,2) counters is
needed for bit positions 16 to s. This is unde-
sirable because the objective here is to minimize
the number of chips used.
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