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Abstract

Let Z denote the set of integers. A digit set

De Z 1s basic for base B € Z if the set of poly-
. m m-1

nomials {dmg + dm-lB +...+d18+d0| d; € D} con
tains a unique representation for every n € Z. We
give necessary and sufficient conditions for D to
be basic for B. We exhibit efficient procedures
for verifying that D is basic for 8, and for com-
puting the representation of any n ¢ Z when a rep-
resentation exists. There exist D,B with D basic
for B where max {|d| ‘ d e D} > |B|, and more

generally, an infinite class of basic digit sets
is shown to exist for every base B with |B| > 3.
The natural extension to infinite precision radix
representation using basic digit sets is con-
sidered and a summary of results is presented.
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I. Introduction

The development of positional number systems
has a rich history. Knuth {2, pp. 162-180] pre-
sents a recent survey noting significant contri-

butions from established and amateur mathematicians.

Although bases such as 60 and 12 were used in an-
tiquity, most of the alternatives to standard dec-
imal representation are of rather recent vintage.
Knuth attributes to Pascal (ca.l600) the fact that
any positive number could serve as radix. Posi-
tional number systems with negative digits were
introduced in the early 1800s and the architec-
turally interesting pure balanced ternary system
first appeard in an article of Lalanne in 1840253,

The use of a negative base did not appear un-
til the 1950s when several authors independently
introduced the concept [2, p. 171]. Complement
representation also became much discussed in this
period as an alternative to sign magnitude in con-
sideration of arithmetic computer architecture.
The arithmetic of numbers represented in position-
al notation has a firm foundation derived from
the theory of polynomial arithmetic that readily
allows these extensions to negative bases and/or

negative digit values, complement representation,
and digit values in excess of the base%, Our pri-
mary concern in this paper 1s the characterization
and computation of those integral valued base and
digit set pairs that provide complete and unique
finite radix representation of the integers.

In section II we introduce the integer radix
representation system PI[S,DJ as the set of radix

polynomials in the integer valued base B with co-~

efficients from the finite set of allowed integer

digit values D, where O € D. Thus P ¢ PI[B,D] im-
o m m-1

plies P = dm[B] +dm_1[b] +...+d0, where di €D

for 0 < i ¢ m. It is stressed that P, [8,D]

is a set of polynomial expressions, not real num-
bers, to afforda proper treatment of redundant rep-
resentation. The digit set D is then defined to be
basic for base B if the members of PI[B’D] are,

through evaluation, in one-to-one correspondence
with the integers. For D to be a basic digit set
for base B we first show the necessity that D be
a complete residue system modulo IBl, and secondly
the necessity that D contain no non-zero multiples
of B-1. When D is basic for base B, it is noted
that the n-digit base B numbers with digits from D
then evaluate to a set of integers that must con-

. ] . n
stitute a basic digit set for base B, hence, by
the former statement, be free of non-zero multiples

of 8"-1. oOur major result is then the sufficiency
of the above conditions stated as a fundamental
characterization theorem: D is a basic digit set
for base B if and only if D is a complete residue
system modulo |B| with O € D where the n-digit base
B numbers with digits from D contain no non-zero

multiples of B"-1 for any n > 1.

For the base B and digit set D which is a com=-

plete residue system modulo |B[, we discuss in section

I1I a simple computational procedure for determin-
ing the radix polynomial P ¢ PI[B’D] of value i

when such a P exists. Furthermore, we show that
the degree of such a P can grow at most logarithm-
ically with i and linearly with the ratio of the
maximum digit magnitude to the base. A simple com—
putational procedure to confirm whether or not a
given digit set D is basic for base B relying on
the computation of representations for a small set
of integer values is presented, yielding the re-
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sult that the determination of whether or not the
digit set D is basic for base B can be accom-
plished in O(|g| + max{|d| | d e D}/|8|). The dig-
ital digraph is introduced to illustrate the com-
putational procedures of radix representation de-
termination and basic digit set confirmation.

Specific classes of basic digit sets are de-
scribed in IV. For the base £, if the digit set
D has no digit value with magnitude exceeding
lB]-l, then D is shown to be basic iff D is a com-
plete residue system with -1 and 1 in D for

B = {D|, or with ~1 or 1 in D for § = -|D|. Thus

there are 2/P173 sych basic digit sets for g > 3,

and 3 X 218[-3 such basic digit sets for B < -3.
Results of de Bruijnlon alternating digit binary
representation effectively established the exis-
tence of an infinite class of basic digit sets
for base 4 when the maximum digit magnitude is
allowed to be larger than the base . We de-
scribe an infinite class of basic digit sets for
every positive and negative base B for |81 > 3.

Then in section V we consider the infinite
precision radix representation system Pw[B,D] for

bases B and digit sets D where the radix poly-
nomial P is in P_[B,D] if and only if

_ m m-1 X i -1
Po=d [81+d ([B]" +...+d,[8]+dytd_ 8] +...,

d, €D for 41 < m,
i <

The details of radix representation of the reals
are beyond the scope of this paper, but several
results are summarized to indicate the type of re-
sults obtainable. In particular for the digit set
D which is basic for base B, let S be the set of
real numbers with redundant infinite precision
representations. Then:

(i) S is at least countable and can be
uncountable,

x € S can have more than two but at
most a finite number of representations
in P_[8,D],

S can contain no |f|-ary number, i.e.

(ii)

(iii)
no number x of the form x = iBj
intergers 1i,j.

for any

II. Radix Representation of the Integers

For a given integral base B, we seek those
sets D of integral valued digits for which standard
base 8 radix representation using digits from D
provides a unique representation for every integer.
A brief review of radix polynomial terminology
is helpfulA.

Let Z be the integers. A pelynomial over Z
in the indeterminant x is a formal expression
m~1

m
P(x)= +. e
(%) ax ta x T, +alx+ao,

a e Z for 0 <i<m,

6y}

where either (i) a # 0 and m is the degree of
P(x), or (ii) a, = 0 for all i > 0 and P(x) = 0 is

the zero polynomial which is taken to have degree
negative infinity. For radix representation, a
base B is a positive or negative integer with

B| > 2, and a digit set D€ Z is a finite set of
integers with 0 ¢ D. A base B integer radix poly-
nomial over D is then either the zero polynomial
or a polynomial in B over D of degree m >0, i.e.

. m n-1
P([8])=d [B] +d _ [B]" "+...+d [B]+d

(2)
d. eD for 0 <i<m d # 0.
i -7 = m

Notationally, the brackets are maintained about the
base in (2) to stress that the radix polynomial is
a formal expression even though the value of the base
may be expressly substituted. Hence, notationally,

4X[10]2+SX[10]+7#3X[10]2+15X[10]+7 denotes non-

identical radix polynomials,

4X102+5X10+7=3X102+15XlO+7 denotes equal

real values.

The integer radix representatdion system P_[B,D] is
the set of all base B integer radix polynomials
over the digit set D.
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Thus, for example, 4 x [10]° + 5x[10] + 9 is
a base 10 integer radix polynomial and is a member
of P {10,{0,1,2,3,4,5,6,7,8,9}], the standard
decimal integer radix representation system. The
base 3 integer radix polynomial [3]4—[3]3—[3]2+[3]+1
is a member of the balanced ternary integer radix
representation system PI[3,{—1,0,1}].

The evaluation operator E: PI[B,D] + Z maps radix

polynomials to their integer values.
the digit set D is

(1) complete for g if E:
(ii) non-redundant for 8 if E:
one-to-one to Z,
(ii1) basic for B if E: PI[B,D] + Z is a one~to-one
correspondence.

For a base B8,

PI[E,D] + Z is onto Z,
PI[B,D] + Z is

The digit set {-1,0,1} is complete but not basic

for base 2, and the standard digit set {0,1,2,...,B-1}
is non-redundant but not basic for base B > 2, since
no negative numbers are representable in the latter
system. The standard digit set {0,12,2,...,(8]-1}

for the negative base ]B < -2 and the digit set
{-1,0,1} for base 3 provida examples of the basic
digit set and base pairs that we seek to characterize.

A complete residue system modulo py is a set SeZ with

p = IS] > 2 where S contains exactly one integer
si € S with si = i mod p for each i, 0 < {i < u - 1.

Theorem 1: Let D be a basic digit set for the base
B. Then D is a complete residue system modulo the
absolute value, IBI, of the base.

Proof: Assume D is basic for 8. For 0 < i< |gl-1,

o m m-1
there exists dm[s] + dm_l[s] +.. .+ dl[B] +
do € PI[B,D] of value 1, hence do £ 1 mod [8], and ¥
D contains a complete residue modulo ,6[. Let h




d' = d" mod |8| for some d',d" ¢ D. Then j=
(d'-d")/8 is an integer, so there exists Pj € PI[B,D]

of value j. It follows that Pj x [B] + d" and 4

are both members of PI[B,D] of value d', and they
must be identical since D is basic for 8. So Pj =0,

d' = d", and D is a complete residue system modulo
lsl. |

Note that D = {-2,0,2} is a complete residue system
modulo 3 which is not basic for base 3, since
PI[3,{—2,0,2}] contains only even valued radix poly-

nomials. A weaker converse is obtained.
Lemma 2: Let 8 be a base and D a complete residue

System modulo |8] with 0 € D.
redundant digit set for base 8.

Then D is a non-

Proof: Assume the distinct radix polynomials
P,Q ¢ PI[S,D] have the same value. For

p= ] a8, o=

Z ai[B]l, where only a finite
i=0

i=0
number of di and a, are non-zero, and di’ai e D,

let k = min{i}di # ai}$ Then

) , o .
Z d gt = z a8,
i=k T i=k *

Multiplying by B-k and considering residues modulo

dk:ak

But dk # 3 dk’ a € D, which contradicts the

mod IBI .

assumption that D is a complete residue system mod-
ulo |8]. Thus D is a non-redundant digit set for
8.

The study of basic digit sets thus reduces to the
determination of those complete residue systems
which are complete digit sets. For the complete
residue system D modulo |D|, the residue of 1 in D
is denoted by Ili[lD and defined uniquely by

llil]D = 1+ k|D|
llillD € D.

For the base B and complete residue system D modulo
IS!, the base B chop function ¢: Z + Z is defined

for some k € Z,

(3

by

$(i) = (iJ iIiD)/B for 1 ¢ Z. (4)
The n-place base B chop function ¢": Z + Z is
given for n > 0 by

L = 1,

2™ (1) = o™ (1)) for n > 1. <)

The chop function is defined on the integers, but
its important implications for radix representation
are stated in the following lemma which 1s an

.

immediate consequence of the definitions (4), (5).

Lemma 3:

is a complete residue system modulo |8|.
m , m-1

dm[B] + dm_l[B] +...+ dl[8]+d0 ¢ P[{B,D] have

Then

Let B be a base and D a digit set which
Let

value 1.

m—k—l+.

k _ m-k
] (i)—de +d 8 ..+dk+18+dk for 0 < k < m,

m~1
(6)
™) = o.

The operation of the chop function is illustrated for

the balanced ternary number 1 101111, =s518.

3
29 (s18) = s18 =518=110111 1
ol (518) = (518-(-1))/3 =173 =11 01 1 I3
02 (518) = (173-(-1)/3 = S8 =1101 1
o3 (518) = (58-1)/3 = 19=110 1
o (s18) = (19-1)/3 = 6=11 o,
2> (518) = (6-0)/3 = 2=1 I3
0% (518) = (2-(-1)/3 = 1= 1
*7 (518) = (1-1)/3 - 0
Lemma 4: Let 8 be a base and D a complete residue

system modulo |B| with O € D. Then for any i ¢ 2

either there is a minimum m such that ¢n(i) =0

for n 2 m or there are minimal t,p € Z such that
ot (1) = o P(1) # 0.
Proof: For [i| > max{|d| " d € D}, it follows frem

(4) that |e(1)]|<|i].

@O(i), ¢l(i), ¢2(i),... thus has at most a finite
number of distinct values in its terms, and the

The sequence of integers

lemma follows. '

For the base B and complete residue system D modulo
IB[ with O ¢ D, the base B degree of i in D for any
i € Z is denoted by deg(i) where

deg(i)=-o if i=0,

if 140 and ¢"(1) = 0 (7)
for some m,

deg(i)=min{n|®n+l(i)=0}

deg(i)=e otherwise.

Furthermore ¢ cycles for i with period p if i # O

and p = min{nlén(i) =i, > 1}. If ¢ cycles for i

with period p for some i,p € Z, then & is cyclic,
otherwise ¢ is acyclic.




Example 1:

a) 8 =-3, D= {-1,0,91}, i = -12

¢l(-l2) = $(-12) = (~12-0)/-3 = 4
®2(—12) = ¢(4) = (4-91)/-3 = 29
®3(—12) = $(29) = (29-(~1))/-3 = -10
2%(-12) = 3(-10) = (~10-(=1))/-3 = 3
97(=12) = 8(3) = (3-0)/-3 = -1
2%(-12) = #(-1) = (-1-(~1))/=3 = 0

Thus deg{(~12) = 5, and the radix poly-
: 5 3

nomial ~[-3]”=[~3]"~[-317+91[~3] of

'?I[‘3,{—l,0,9l}] has value ~12.

b} 8 =3, D= {-1,0,91}, i = -5

o1 (=5) = o(=5) = (~5-91)/3 = -32

@2(—5) = $(-32) = (-32-91)/3 = =41

¢3(—5) = ¢ (-41) = (-41-91)/3 = -44

@4(“5) = ¢ (-44) = (-44-91)/3 = -45

@5(~5) = $(~-45) = (-45-0)/3 = -15
6

‘ ® (=5} = ¢(-15) = (-15-0)/3 = -5

Thus ¢ cycles for -5 with period 6.

Theorem 5: For the base 8, let the digit set D
be a complete residue system modulo IBT, and let
ieZ,1+# 0. Then either
(i) deg(i)=n and
. n,, n n-1, . n-1
i=|lo" @ [[ e o™t ] e
1., i, \
e | D+j|1[|D, (8
or
(i1) there are minimal t,p such that ¢t(i) =
0P (1)40, and with j=et(i),
) -1 - - -
-3 8P-1)= {[oP (g || 6P l+1 2?25 || 8772
1., l .
|| e 111, ©)

Let i e 2, i 0, so from (4)
i=0(i) g+ ﬂ i]|D

o]

Proof:

Applying the same formula to (i) yields
. 2,

¢(1) = 2°(1) B + Il@(i)le
so that by substitution

co 22 l! . } )

i=9"(1) g~ +|{|¢ (1)“]D g + d 1|lD,
and continuing with substitutions of ¢k(i) =
k+1 k,,
ey |,

i=®n+l(i)8n+l+ll®n(i)IIDBn+.."+|'¢1(i)llD8 +1|i|k

for any n > 0. (10)

Thus if deg(i) = n, ¢n+l(i) = 0 and equation (8) for
i is established. If deg(i) # n for any finite n,
then by Lemma 4 there exist minimal t,p such that

¢t(i) = ®t+p(i) # 0. Letting j = @t(i), application
of (10) to j yields
. = -1 1,, l ,
J=6p(3)8p+l|®p (JﬂIDBP +...+|‘¢ (J)I DB+[IJIID,
and since ¢p(j) = j, equation (9) follows. '

From Theorems 1 and 5 and Lemmas 2 and 3 we obtain
the following.

Corollary 5.1: D is a basic digit set for the base
B iff D is a complete residue system modulo ]BI with
0 € D such that deg(i) is finie for all non-zero
ieZ, i.e. iff ¢ is acyclic.

When ¢ cycles for i with period p, then (9) may be
applied to each term ¢k(i), 0 <k < p-l, of the cycle,
and the following is obtained.

Corollary 5.2: For the base g, let the digit set D
be a complete residue system modulo |B|' Suppose

3 cycles for i ¢ Z, i # 0 with period p:. Then

p-l p-1
-1 w1
k=0 k=0

Qk(i)llD/(B—l). (11)

For the base B, note that if D is a complete residue
system modulo IBI with k(B-1) € D for k # 0, then

¢ cycles for -k with period 1, and D is not a basic
digit set for base B. This yields a second funda-
mental condition for the digit set D to be basic for
base B.
Theorem 6: Let D be a basic digit set for base 8.
Then D contains no digit of value k(8-1) for any
k # 0.

For the digit set D, base B8, and n > 1, let the

n-place digit set p" be given by

n_.._ n-1 n-2 )
D={ifi=d .8 Mg Thtd B,

dj e D for 0 < j < n-1}.
If D is a basic digit set for base B, then by con-
sidering blocks of n term length in a radix poly-
nomial P e P [8,D], it is evident that D" is a basic

(12)

digit set for base g" for every n > 1. Then the

simple necessary conditions of Theorem 1 and Theorem
6 must apply to every member Dn,Bn for n > 1 of this
family of basic digit set and base pairs. Our prin-

cipal result is that these conditions are also suf-
ficient to verify that D is basic for B.

Theorem 7 (Characterization Theorem for Basic

Digit Sets):

D is a basic digit set for base B iff D is a com-
plete residue system modulo |g8] with O ¢ D where the
n~place digit set D" given by (12) contains no non-

zero multiple of Bn-l for any n > 1.
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Proof: 1If D is a basic digit set for base 8, then

D" 1s basic for base B" for every n > 1 and the con-
ditions follow from Theorem 1 and Theorem 6.

Conversely, for the base B, suppose D is a complete
residue system modulo IB[ with 0 € D where D" con-

tains no non-zero multiple of Bn-l for any n > 1.
Then by Theorem 5, ¢ cannot cycle for any 1 # 0, and
by Corollary 5.1, D is then basic for base 3.'

ITI. Complexity of Basic Digit Set Verification

and Radix Conversion

The theoretical characterization of basic digit
sets given by Theorem 7 does not yield an efficient
computational procedure for comfirming that a given
digit set D is basic for base B. We now show that
basic digit set verification can be reduced to de-
termining that ¢ does not cycle for i for a particu-
lar small interval of values of 1i.

Lemma 8: For the base B, let the digit set D be a
complete residue system modulo |B|. Let dmin =
min{d|d € D} and dax = max{d|d ¢ D}. Then ¢ can
cycle for 1 only for values of 1 in the

interval
-4 -d .
W 5 i< B0 1£ 8 = |p|,
(13)
(11) _dmi;B—dmax <i< _dmaxz_dmin 1£ 8 = -|p|.
B -1 g7-1

Proof: Consider the positive base case, g = |D|.
For 1 > -dmin/(Bwl),

i-d
8(1) < min _ i+(B-1)i _ i,
- B 8
and for i > _dmax/(s_l)’
261) > 1_dmax _dmax_(s_l)dmax - . .
- g - (B-1)8 g-1 °

Similarly i < —dmax/(B—l) implies (i) > i, and
i< —dmin/(B—l) implies ¢(i) < —dmin/(B—l). These
inequalities imply that ¢ can cycle for i only if
-d_/(B-1) < i < -d_, /(B-1) for B = |D|, which

max ~ 7 - “min
verifies the positive base condition (13) (i) of the
lemma.

Now consider the negative base case, B = _IDI.

¢ is acyclic 1ff D is basic for B = —[Dl iff the 2-

2
place digit set D2 given by (12) is basic for 87,
for which the positive base condition applies. Since
2
min{d|d € 0} =4 gt and max{d|d ¢ D} =
max  min
d B+d , condition (ii) follows from condition (i)
min max :

2
applied to the digit set D2 for base B™.

Lemma 8 1s sharp in that if B = |D| and dmax =
k(B=1) and/or if dmin = j(f-1), then ¢ cycles for

-qmax/(s—l) and/or _dmin/(B‘l)’ regpectively, For
8 = -In|, if Ao = "y = —k(8+1;, then ¢ cycles
for both -k d = - =

o o and k, and if dmax B7-1, dmin 0, then

¢ cycles for -B and -1.

From lemma 8 it is possible to construct an ef-
ficient procedure to determine if D 1s basic for 8.

Corollary B8.1: For the base B, let the digit set D
be a complete residue system modulo |8|. Then D

may be determined to be basic for B or mot in at most
(max{d|d € D} -min{d|d € D})/(|8]-1) applications

of ¢.

Proof: Recursively select an unevaluated i in the
interval specified by (13)(i) for B = [D] or (13)(ii)

for B = —|D| and evaluate ¢k(i), k=1,2,...,, until

Qk(i) yields zero, a repeat value @k(i) = @J(i) for
j < k determining a cycle, or a value known to lead
to zero. This procedure methodically either deter-
mines a cycle or proves ¢ to be acyclic by evalu-
ating ¢ at most at every non-zero value of i in the
interval specified by (13)(i) or (13)(ii). Since
both intervals have (max{d|d ¢ D} -min{d|d e D})/
(|8|~l) non-zero integral values, the corollary is

obtained. ’

An appropriate structure for illustrating the com~
putation of radix representation and basic digit set
verification is a labeled directed graph. For a base
B and digit set D which is a complete residue system
modulo |B|, the digital digraph is the directed graph
with the integers as vertices where thére is a di-
rected edge from i to ¢(i) with label"i”D for every
i#0.

Example 2:

a) For B =3, D= {0,1,-7}, Figure la shows a
portion of the digital digraph. The members
of the interval (13)(i) are noted, as are the
members of the subinterval (19) which is
shown by Lemma 13 of the next section to con-
tain at least one member of any cycle of ¢.
The fact that all vertices within the (13) (i)
bound are connected to vertex 0 confirms that
D is basic for 3.

b) For 8 =5 and D = {0,1,-23,43,-1}, Figure 1b
shows the portion of the digital digraph con-
taining all vertices of the interval -10,-9,
ooy D indicatedb{l3){i). Note that the mem-
bers -2,-1,...,5 indicated by (18) intersect
all cycles for 9.




13 (1)

|

b) B=5,D= {0,1,-23,43,-1}

Figure 1: Portions of the digital digraph for a) 8 = 3, D = {0,1,-7}, and
b) B=5,D= {0,1,-23,43,-1}, illustrating the important inter-
vals characterized by formulas (13) (1), (18) and (19).




The digital digraph has indegree |B| and out-
degree unity for every non-zero vertex i. The set
of vertices at distance no greater than n from ver-
tex O constitute the n-place digit set D" as defined
by (12). Thus D2 = {0,1,-7,3,4,-4,-21,-20,-28} for
D = {0,1,-7} as seen in Figure la. Finally, the
radix representation of i in positional notation is
derived from the digital digraph by concatenating
the edge labels on the path from i to 0 in right to
left order, e.g. -9, = 1077003 =1 x 377 x 3¥9x3

from Figure la, and 2, = 1,0,535 =1 x 5%-23 from

2

Figure 1b.

Radix conversion is the process of determining
Pi € PI[B,D] of value i when such a Pi exists. If

the digit set D is a complete residue system modulo
8|, it is sufficient by Theorem 5 to apply ¢ re-

cursively deg(i) + 1 times to determine

Pi € PI[B,D]. The following bound on deg(i) in

terms 6f B and D applies to all finite deg(i), and

thus implicitly bounds the complexity of determin-

ing if Pi exists.

Lemma 9: For the base 8, let the digit set D be a
complete residue system modulo ]B]. If 1 # 0 and
deg(i) is finite, then with A& = max{|d] , d € D},

log|i log A .y logii 2. A
——Jikm - —-iir—r - ——ii’ +
Tog B' Tog |8 1< deg(l)jlog-§+ TET:T +1. (14)

Proof: For i # 0 with |B|™ ! < |1] < |g|®, re-

cursive application of (4) yields

lo™ (1) |<a/]8l+] 6™ L (1) | /8]

(Ll SO Y s T E P T

<A /(]8|-1)+1.

It followsfrom (4) that |®(i)! <|j-1 whenever
{3l > a/(|8|-1) and |8(3)| < A /(|8]-1) whenever

[3] < af(|8]-1), so then ]¢k(i)[ <A /(|8{-1) for
all k >m + 1. Thus the sequence @l(i),¢2(i),...,

k,. .

¢ (i),... must either reach zero or a repeat value
for k <m+ 1+ 24/(|8]-1), so assuming deg(i)

is finite,

. logli 24
deg (i) < log:‘*'s—” + m_l + 1.

For |i] < 4, (14) holds, so assume 1] >4 and
choose n maximum so that

111 >a (8™t + [8]%2 + ...+ 1).
Then from (4),

loci)| >a (|8]™2 + 83 + ... + 1),

o™ L()l> a.

Hence deg(¢n_l(i)) > 1, so deg(i) > n. Furthermore

since [i] < |8in+1'A , it follows that

n+1> (log|i|—logAN/log|B|, completing the lemma. l

Corollary 9:1: For the base B, let D be a digit set
which is a complete residue system modulo Bﬁ, and
let i ¢ 2, i # 0. Then after at most |[log|i|/log|gl+
2A /(lB[—l) + ZJ iterative applications of ¢ to i
either the unique Pi € P&[B,D] of value 1 is deter=-

mined or the non-existence of anyP € PI[B,D] of wvalue

i is confirmed.

Proof: The result is immediate from Theorem 5 and
Lemma 9. |

Thus the determination of the particular radix poly-
nomial for representing i € Z can be accomplished

s . A log(i
with complexity O(T—T- + ——g+—+9, where
B log|B
A = max{|d] i d € D}.

IV. Classes of Basic Digit Sets

There are no basic digit sets for 8 = 2.
D = {0,1} and D = {0,-1} are the only basic digit
sets for B = -2. A digit set D is termed normal
for base B if max{|d| | d € D} < {B|-1. The normal
basic digit sets are readily characterized.

Lemma 10: For the base B, let the normal digit set
D be a complete residue system modulo |B|. Then D
is basic for B iff
(1) {-1,1}eD for 8=|D],
(16)

(ii) -l e Dor'l e D (or both) for g=-|D|.

Proof: For any normal digit set D for base B8, it

is sufficient by Lemma 8 simply to verify that there
exist Pi e P.[B,D] of value i for i = -1,0,1. For

8 = |D|, Thedrem 6 requires g-1 ¢ D, ~B+l ¢ D, so
condition (i) is necessary and sufficient. For

g = -|D|, note that if neither -1 mor 1 were in D,
then ¢(-1) = 1, &(1) = -1, and ¢ cycles for -1 and
1. If either -1 ¢ D, 1 ¢ D, or {-1,1} €D, then

¢ does not cycle for either -1 or 1, verifying (iilm

If the digit set D is normal for base B, then
there are only two possible digit values for each
non-zero residue in choosing D to be a complete
residue system modulo |8|, and the following is
immediate.

Corollary 10.1: For |g] > 3, there are 2|BI_3

normal basic digit sets for the positive base

B >3, and 3 X 2IB|_3 normal basic digit sets for
the negative base B < -3.

Results of de Bruijn on binary based 'good
pairs" effectively establish that there are in-
finite classes of basic digit sets for base 4 when
the digit values are allowed to be larger than the
base The following theorem characterizes an
infinite class of basic digit sets for any base
B > 3.
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Theorem 11: For any n > 1,8 > 3, the digit set

D(8,n) = {0,1,2,...,8-3, B2, (~B"+8-1)} an

is basic for base B.

Proof: Every positive integer i < Bn -1 is the value
of a standard base B radix polynomial

m-1

m
Pi = dm[B] +d [8] +...+dl[B] + d0

m-1
where 0 < d, < 8-1 for O < j <m, and deg(Pi)=m§n—l.
Replacing each term dk[B]k above for which dk=6—l by

1 x [B]k+n + (-p™p-1) x [B]k, we derive a radix
polynomial P; having all digit values in D(8,n)

where deg(Pf)i m+ n < 2n-1 and P* also has value i

i
for all 1 < i < g% - 1. From Lemma 8 it follows that

D(8,n) is basic for g for any B > 3 and any n > 1.

For any negative base R < -3 and standard digit
set D[Sl = {0,1,...,|Bl—l}, it is readily verified

that there is a standard negative base radix poly-
nomial Pi € P[B,D|8I] of value i with deg(f&)ka—l

whenever —2|B|2k_lfif2|8|2k_2 for k > 1. Letting

D* = {0,1,2,...,]8/-3,]8]-2, (-|8|%*-|8|-1)}, then
—2|Bl2k:l <ic< 2!B|2k_2, proceeding as

for any i,

in the proof of Theorem 11 a radix polynomial
P; € P[B,D*¥] of value i is then shown to exist, which

by Lemma 8, proves the following.

Theorem 12: For any B <=3, k > 1, the digit set

2
D* = {0,1,2,...,|g|-3,]8|-2, (-] 8] *+|8]-1))
is basic for base 8.

For the base B and digit set D, the interval
specified by (13) must contain all integers for
which ¢ is cyclic. If D contains no non-zero multi-
ples of B-1, then any cycle for $ must have period
at least two. This observation may be exploited to
vield a subinterval which must contain at least one
element for which ¢ cycles whenever § is cyclic.

Lemma 13: Let the digit set D be a complete residue
system modulo B = |D| > 3 without non-zero multiples

of B -1. Let t, = max{d|d ¢ D}, t, = max{d|[d e D,d#tl},
and d . = min{d|d € D}. Then D is basic for 8 iff

there exists Pj € PI[B,D] of value j for all

1 t2 i
(—— Ly < s - min
G tE) I (18
Proof: Suppose ¢ cycles for i with period p. From
Theorem 5,

_i(Bp-l)=||®p-l(i)IIDBP_1+||¢p-2(i)ILDBP—Z

+...+|]¢1(i)|lDB+lli||D-

If I|¢k(i)|[D = tl for 0 <k < p-1, then
-1(8%-1) = £ (8%-1)/(B-1) and ¢

iple of B8-1, a contradiction.

1 is a non-zero mult-

Hence p > 2 and
” Qk(i)llD <ty for some k. Then ¢ cycles for

i = ®k+l(i) and

-3 (8P-1)ze, 8% hee, (8P 24P R L4 1y

<ty (BP-1)/(B-1) + (&-t,) (8P71-1)/(8-1)

so then
t t, -t t t
-3 <__Z+_l*_£=_L__+_2_’
B-1 B(B-1) B(B-1) B

and by Lemma 8, the proof is complete. '

In like manner one obtains the result of Lemma
13 with the interval specified by (18) replaced by

max 51 2 )
- j < =G+ ), (19
-1 ST G TR
where s, and s, are the smallest and second smallest

elements of D, respectively, and qux=max{d[d € D}.

The determination that D is basic for B >3
can be accomplished by showing that there exists
P, ¢ PI[B’D] of value i for all i in the interval

i

specified by (18) or (19). Lemma 13 is of greatest
assistance when the interval specified by (18) or
(19) is a subset of D and D contains no non-zero
multiple of 8-1, for then D is immediately confirmed
to be basic for B = [D].

Example 3:

For base 7, the digit set D = {0,1,9,52,-10,-2,-1}
is a complete residue system modulo 7. Lemma 8
would require computing ¢ for {-8,-7,-6,-5,-4,-3,
-2,-1,0,1} to determine that D is basic for 7.

By Lemma 13, (18) yields {-2,-1,0,1} D, and

since D has no non-zero multiple of 6, D is

basic for 7.

Lemma 13 may be utilized to derive numerous classes

of basic digit sets. The following corollary is

stated without proof to indicate the nature of the con-
struction. A proof can be fashioned similar to the
methodology of the proof of Theorem 11.

Corollary 13.1: Let D be a basic digit set for base
B > 4 with A= max{[d| | d € D}, where j ¢ D for all
j such that |j| <1+ A/(B-1). TFor a fixed d' ¢ D,

a' # 0, d' # -1 mod(B-1), and any k > 3, let Sk be

the diﬁit set formed from D by replacing d' with
d' + B°. Then Sk is basic for B for all k > 3.

Example 4:

Let D = {0,1,2,3,14,25,26,-3,-2,-1} and 8 = 10.
Then 1+A /(B-1) = 1 + 26/(10-1) =

3 g-. So from Corollary 13.1, {o,1,2,3,14,00ﬁ15%
26 +~3,-2,~1} is basic for base 10 for anyk23.




An interesting class of digit sets for base 3
are those of the form D,.= {0,1,-6k~1}. From (19)
it is observed that Dk is basic for base 3 iff there
exists Pi € PI[B,D] of value 1 for 0 <1<k

Table 1 shows those Dk which are basic and those ¢

that are cyclic for O <k < 14, and no clearly

identifiable pattern for basic Dk in terms of k
is observable. Note that k = 0,1,4, and 13 yield

Dk which are basic for 3 by theorem 11.

K D, Basic for 3 Cycle for
Lo} (0,1,-1) Yes
I 1 0,1,-7} Yes
2 | {0,1,-13) No 2 —>5 6 —>2
31 {0,1,-19) No 2 >7 ~—»2
4 {0,1,-25} Yes
5 | {0,1,-31) Yes
6 £0,1,-37} Yes
7 (0,1,-43) No 5 =16 —» 5
8 | {0,1,-49) No 217 222 =7 =2
9 {0,1,-55} No 2 =219 ~»6 22
10 {0,1,-61} No 2 =221 =»7 2
11 {0,1,-67} No 8 -5 25 -»8
12 (0,1,-73} fes
13 0 1,-79} fes
14 | (0,1,-85) Yes ]
Tabel 1: Digit Sets Dk = {0,1,~6k-1} for
k = 0,1,2,..., 14, showing those D, that

k

are basic for 3 and a cycle for ¢ when Dk

is not basic.

V. Some Results on Radix Representation of the Reals

For the base B and digit set D, a finite preci-
sion base B radix polynomial over D is either the
zero polynomial or an extended polynomial expression
over Z in the constant 8§,

m m-1
P([B]) = d [8]" + dm_l[Bl + o

+d,081%, (20

where dj e DcZ for - < £ < i <m< >, and dm #0,

dQ # 0. The radix representation system P[B,D] is

the set of all such finite precision base 8 radix
polynomials over D. An infinite precision base B ra-
dix polynomial over D is given by the extended poly-
nomial expression

P([B]) = d_[R]™+d
m m:

m-1 ) -1
BT 4. .kdrd_ (B8] T+

m, and di # 0 for m and in-

! (21)

where di e DC€Z for i <

finitely many indices i < m. The infinite precision
radix representation system P_[B8,D] is the set of
all finite and infinite precision radix polynomials
over D,

The details of radix representation of the
reals are beyond the scope of this paper. Our further
research has shown many properties for such systems,

and the following summary relevant to definitions (20)

and (21) indicate some of our major results.

When D is a bisic digit set for base B8,

the integer radix representation system
PI[B,D] is complete and non-redundant for

(a)
the integers Z,

(b)

the finite precision radix representation
system P[8,D] is complete and non-redundant

for the |B|-ary numbers A|3| = {i|8|j i,j e z2},

(c)

the infinite precision radix representation
system ﬁ’[B,D] is complete for the reals and

redundant for a set S of reals disjoint from
A'Bl, where S is at least countable and in

some cases uncountable, and where each member
of § may be the value of strictly more than

two but never more than
[? max{ |d| ’ de D}/(’B"1{J + 1 members of
P [8,D].
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