A FEASIBILITY ANALYSIS OF BINARY FIXED-SLASH AND
FLOATING-SLASH NUMBER SYSTEMS

David W. Matula
Peter Kornerup

Computer Science Department
Computer Science Department

Abstract

Design and analysis of finite precision ratio-
nal number systems based on fixed-slash and float-
ing-slash representation is pursued. Natural for-
mats for binary fixed-slash and binary floating-
slash number representation in computer words are
described. Compatibility with standard integer
representation is obtained.
sentation is shown to be minimal. Arithmetic regis-
ter requirements are considered. Worst case and
average case rounding errors are determined, and the
concept of adaptive variable precision in the
rounding is developed.

Key Words and Phrases:

Rational arithmetic, Finite precision, Fixed-
slash numbers, Flcating-slash numbers, Binary nu-
meric word format, Redundancy, Range of number
system, Integer compatibility, Adjacent fractions,
Farey fractions, Mediant roundings, Worst case and
average case rounding error, Adaptive variable pre-
cision.

CR Categories:
5.11, 6.32, 3.15

I. Introduction and Summary

The purpose of this and a companion paper [1]
is to explore the feasibility and merit of computer
number systems composed of limited precision frac-
tions. Two specific systems originally proposed in
[2,3] which we shall investigate are characterized
as follows:

(i) Fixed-slash: numerator and denominator
size are independently bounded, e.g. N
numerator and N denominator bits per
word,

(i1) Floating-slash: the total number of
digits in numerator and denominator is
bounded, e.g. nl numerator bits, n,

denominator bits,nl+n2 < N, and a slash

position field per word.

The merits of these proposed finite precision frac-
tion number systems will be assessed by addressing
the following questions:

(1) Naturalness: How natural are the repre-
sentable numbers of these fraction number

CH1412-6/78/0000-0029$00.75 {c) 1978 IEEE

Redundancy in the repre-

29

Southern Methodist University Dallas, Texas
Aarhus University Aarhus, Denmark

systems? Are they sufficiently natural
to suggest canonical implementations on
computers made by different manufacturers
that would enhance portability of numeric
software in these systems?

(2) Cost-Effectiveness: How cost-effective is
arithmetic unit design to realize the al-
gorithms for standard arithmetic operations
in these fraction number systems?

(3) Accuracy: How numerically accurate is sci-
entific computation hosted in these frac-
tion number systems?

In section II we address question (1) and de-

scribe natural computer word formats for binary fixed-

and floating-slash number systems. The obvious re-
dundancy due to representation of reducible as well
as irreducible fractions is shown to cost less than
one bit per machine word, and the normalization of
floating~slash is shown to cost at most another bit
per machine word. These storage efficiency costs are
clearly negligible for standard number representa-
tions employing at least 32 bits. The fraction for-
mats proposed are designed to be a natural extension
of standard integer formats, allowing for the possi~
bility that these fraction number systems might re-
place and extend standard integer arithmetic units,
and possibly obviate the need for floating-point
hardware on many machines. Range/accuracy tradeoffs
are considered, and extended range floating-slash
systems comparable in range/accuracy specifications
to floating-point systems are shown to be readily
obtainable.

Natural advantages of fraction number systems
over fixed- and floating-point systems include:

(1) the ability to exactly represent all
"simple" fractions (e.g. 1/3, 3/13, etc.),

(ii) the ability to generate exact intermediate
results of the standard arithmetic oper-
ations, including division, in suitable
"double length" registers before rounding,

the existence within the system of exact
multiplicative inverses for the members
of each such number system,

(1ii)

(iv) the independence of base in the character-
ization of fixed-slash (a feature of
significant importance in investigations

of the foundations of these number systems).

Question (2) on the cost-effectiveness of im-
plementing approximate arithmetic in these limited

precision fraction number systems reduces immediately
to the design of an accurate and efficient rounding
procedure. Feasibility of rounding for fixed-slash
is described in detail in our companion paper {11,
where the natural and theoretically desirable "me -
diant rounding" [3] is shown to be achievable at a
cost comparable to a standard binmary division in-
struction. Although more expensive than (the var-
iety of) roundings employed in floating-point, the
cost is certainly not prohibitive. Additional re-
search [5] has shown comparable results for float-
ing~slash number systems.

Section III of this paper addresses the pre-
ceding question (3). The concept of adjacent ratio-
nals is utilized to extend the theory of Farey frac-
tions to provide a foundation for both floating- and
fixed-slash arithmetic. The natural "mediant round~-
ing" is defined. For a fixed-slash system composed
of N numerator and N denominator bits, we show that
although the variable gap size between successive
representable fractions yields accuracy varying be-
tween N bits and 2N bits, the rounding error for a
number uniform on [0,1] is sufficiently limited to
allow an average accuracy of approximately (2N-Lg}N)
bits:

For scientific computations the control of rel-
ative error throughout the number range is of more
critical concern. The relative gap size for an N
bit floating-slash fraction system sinilarly varies
in relative accuracy between N/2 and N bits.

Rather than apologize for the variable preci-
sion feature and only utilize the conservative N/2
bit worst case bound, we suggest that this natural
variable precision feature may represent a signifi-
cant positive contribution to control of error ac-
cumulation in finite-precision computation for the
following reason. The larger 'rounding errors' are
associated with roundings to simpler fractioms.
Thus the simpler fractions represent a subsystem of
smaller precision, or conversely, the fractions with
larger numerators and denominators represent a
higher precision background approximation space for
extended computations whose input and output can be
suitably described by simpler fractions. We are thus
led to conjecture that this natural adaptive var-
jable precision feature may be a very desirable
error control property allowing recovery of true in-
termediate or final results after an extensive ac-
cumulation of more moderate rounding errors. This
is particularly plausible for special classes of
problems such as rational matrix computatioms.

In summary, we assert that this and the com-
panion paper [1] show the feasibility of implementa-
tion of binary fixed- and floating-slash arithmetic
at a cost comparable in storage efficiency to that
of equivalent fixed- and floating-point systems, and
in execution time efficiency roughly 3 to 5 times
the cost of comparable floating-point systems.

This is not prohibitive for most numeric computa-
tions in view of currently attainable basic machine

cycle times.

More comprehensive investigations of the foun- 3
dations of finite precision fraction number sustems :
are currently in preparation [4,5]. The desirable
properties of fraction representation and the po-
tential benefits of adaptive variable precision in
conjunction with the existence of microprogramable
numeric architecture for implementation suggests to
us that research in fraction systems will become
quite vigorous.

IT. Limited Precision Fractioms:

Normalization, Range and Redundancy

Fractions are quite simply represented as (nu-]
merator, denominator) integer pairs. A computer 3
representation of a fraction must provide both com-
pact efficient storage along with rapid accessibility
to numerator and denominator portions. Furthermore,
the set of representable fractions allowed by a par-
ticular computer word format (implicitly determining
the precision limitation) must provide a set of repre-
sentable real values that serve to control and min-
imize error accumulation for closed numeric compu-
tations in the system. In this paper we shall spe-
cifically investigate binary fixed-slash and binary
floating-slash' number representation in computer
words and arithmetic units.

Let the binary fixed-slash system denote the
set of fractions KX given by 1

rX=kx (28)={ (p, @) }0<| p| <2M-1,0¢q<2"-1} for W21, (1)

Sign-magnitude binary representation of the set KX
in a 2N+2 bit machine word is conveniently described
in Figure 1.

2N+2 Bits
— .
/—
—
+ N~bit N-bit
= Numerator Denominator

—_
sign bit free "check' bit

Figure 1. Binary Fixed-Slash Representation.

Note that the numerator and denominator can be right
shifted in parallel until at least one of the low
order bits is zero, this operation corresponds to
canceling any factors of two in the greatest common
divisor. The representation of Figure 1 is then
termed normalized if at least one of the low order
bits of the numerator and denominator is unity, and
more strongly, is termed reduced if the greatest
common divisor of the numerator and denominator is
unity.

The following important results are immediate
from the definitioms.

Observation 1. [Exact Inverses]: For every frac-

tion (p,q) € KX, the additive inverse (-p,q) and
multiplicative inverse (q,p) are both in KX and are

normalized and reduced if the original fraction
was normalized and reduced, respectively.

Comment: Note that the inverse operations are
readily implemented by (1) complementing the sign
bit and by (2) swapping the N bit numerator and
denominator fields, respectively.

Observation 2. [Integer Compatibility]: The lead-
ing N+1 bits (half-word) of the reduced binary
fixed-slash representation of a fraction is the
standard integer representation if and only if the
right most N bits contain the denominator value
unity.

Comment: This justifies the binary fixed-slash
representation as a convenient extension of binary
integer representation where the integrality test
is trivial for a reduced fraction. If it is not
known whether or not the fraction is reduced, then
application of well known binary ged methods (dis-
cussed in our companion paper [1]) provides an ef-
ficient reduction.

Observation 3. [Independence of Base]: The set,
KX, of numeric values represented is not influ-
enced by the fact that binary radix representation
is utilized to represent the numerator and denomin-
ator.

Comment: This means that the range limit (largest
integer) in fixed-slash also implicitly determines
all gaps between representable values, allowing
for analysis of the finite precision structure in
a more natural (base independent) manner.

Redundancy occurs in fixed-slash systems since
reducible as well as irreducible fractions can be
represented. The loss in representation efficiency
is negligible, as the following classical number
theoretic result of Cesiro shows (see [6] p. 314
for a proof).

Theorem 1: Let In be the number of finite valued
irreducible fractions gy where 0<p<q<n-1. Then

lim In 6
e 7o ;§'= .6079... . (2)

In binary representation of a class of objects
by fixed length N-bit code words it is appropriate
to measure redundancy and undefined code words in
terms of bit loss defined as follows:

bits in) # distinct objects)
- lo 5

Bit loss = (code words represented

Taking irreducible fractions as the distinct ob-
jects we obtain the following:

Corollary 1.1: The binary fixed-slash representa-
tion of Figure 1 for sufficiently large N has a
bit loss of approximately 1l-log (6/n2)=l.718...
bits, of which one bit is the ffee (check) bit and
0.718... bits are lost due to redundancy.

31

Although Theorem 1 and Corollary 1.1 are valid
only in the limit for large N, actual computation of

the ratio I /n2 for n=2N (e.g. N=2,3,4 below) sug-
gests that this limiting value is approached rapidly
and is suitable for typical word sizes (e.g.
8<N<120).

I

—% =3—2== .5625,

8

I

—1—6=%= .5625,
16

I

32 _ 816 . 401 ...
322 1024

That the 1.718... bits lost in fixed-slash is
negligible is apparent in that the .718... bits
lost to redundancy is less than the loss of the
leading bit in normalized floating-point which is
traditionally ignored. Of course it is not nec-—
essary to have the free (check) bit in Figure 1
since a 2N+1 bit word would be ample for the repre-
sentation, but there are compelling architectural
Teasons to employ the representation of Figure 1.

(1) Machine words with an even number of
bits are standard, and avoiding an
imbalance between the number of nu-
merator bits and denominator bits
means the inverse operation will never
overflow,

(i1) extraction of numerator or denominator
and appending the sign yields a standard
half-word integer in both cases,

(iii) the results of standard fraction arith-
metic for (p,q), (r,s) ¢ KX are given by

P, X _ psHgr R _X _ psgr
q s qs ’ qg s gs ’
(3)
P,Xr_pr P.X _Pps
q s gqs’ qT s qr

It is evident from (3) that the maximum numerator
magnitude of any arithmetic operation requires 2N+1
bits and the maximum denominator magnitude requires
2N bits. With the provision for a sign, a 2N+2 bit
word length is then necessary for the numerator re-
sult as well as being adequate for the denominator
result. Thus the presence of the free bit in the
binary fixed-slash word representation of Figure 1
assures that all standard arithmetic operations give
exact results representable in two words without
overflow.

Fixed-slash representation has significant pos~
itive features for data scaled to fall in the unit
interval [0,1], and clearly also provides a natural
and desirable extension of integer arithmetic over
the region [1,2N—1}. Thus fixed-slash arithmetic
is proposed as an attractive hardware/firmware real-
ization and extension of arithmetic of type INTEGER,

or more generally, of the scaled integer type FIXED-
POINT as currently employed in programming languages.
The evolution of user expectations for arithmetic of
type REAL implicitly contain two other requirements
for which fixed-slash is quite deficient. First,

a much more substantial range for representation of
values of type REAL is required than that provided
by fixed-slash representation, and secondly, the
gaps between representable values must serve to
preserve the growth of relative error in extended
computations of REAL type. These latter two goals
lead us quite naturally to the concept of floating-
slash [2,3] number systems.

Let the binary flcating-slash system denote the
set of fractions KL given for any N>2 by

KL=KL (N)={ (0,q) |1<q<2""1-1}
)
u{ (P,Q)I |P|7‘0;Qil> L1C|g2|p |J+Llog2qJ§N"2}'

The specification of KL is intended to include those
fractions having the number of bits in the numerator
plus the number of bits in the denominator sum to

at most N. Note that the denominator must always
have a leading bit of unity (for all finite frac-
tions), and this fixed bit may implicitly be
"attached" to the slash, gaining a bit of repre-
sentation in binary floating-slash. A computer

word format for the set KL will then also have to
include a field of [log,(N-1)] bits to specify the
implicit slash position“between the concatenated
numerator and denominator bit sequences as well as

a sign bit.

(N-1)-bit fraction field
~.
r”—’———_4,——//////A\\ -\\-

|
I
+ rlogz(N—l n'" non-leading ! n’bit
—|bit slash bits of ! numerator
ositd denominator { 1§n'EN—1
P on a'"=N-n"-1)
’;ﬁgh Cvalud 1
bit of n" .
B —

implicit slash position and
implicit leading denominator "1" bit

Figure 2: Binary Floating-Slash Representation

As in the fixed-slash case we say the representa-
tion is normalized if at least one of the low order
bits of the numerator and denominator is unity, and
is reduced if the gcd is unity (the low-order de-
nominator bit will be the implicit bit if the frac-
tion is an integer in reduced form).

The following important consequences should be
noted:

Observation 1. [Exact Inverses]: For every frac-
tion (p,q) £ KL the additive inverse (-p,q) is in
KL, and for every non-zero fraction (p,q) € KL, the

32

multiplicative inverse (q,p) is in KL.

Comment: Computation of the additive inverse sim-
ply requires complementing the sign bit. Compu-
tation of the multiplicative inverse requires a
search for the leading numerator bit position.

Observation 2. [Integer Compatibility]: If the
slash position field contains the value zero, then
the whole N-1 bit fraction field contains an in-
tegral valued numerator with implicit denominator
unity. Thus binary floating-slash representation
of reduced fractions is identical to standard sign-
magnitude binary integer representation for all

incegers i with |1|§2N-l—l.

Comment: It is this desired integer compatibility
property that dictates our choice for denominator

left adjusted and numerator right adjusted fields

in the fraction. The implicit denominator leading
bit is significant here also.

Observation 3. [Numerator and Denominator Fetching]:

The floating-slash representation of Figure 2 allows
efficient numerator and/or denominator fetching by
masking (rather than sequential shifting).

Comment: Further considerations lead us to suggest
the architectural desirability that the denomin-
ator bits be in reverse order, e.g. lowest order bit
left adjusted.

Binary floating-slash representation can result
in some unallowed bit patterns thus generating a
slight bit loss in storage utilization. We now
show that this bit loss is negligible.

Theorem 2: Let |KL(N)|denote the number of frac-
tions, reducible or irreducible, in KL(N). Then

kL] = o - %‘)-2N +1 for N > 2. (5

Proof: Every fraction of KL(N) is in precisely one
Pi’ 0 < i < N-1, where

Po=((0,0 142" 11,

Pi={(p,q)l21_1§|pl:Zl-l,l§q§2N-1_l} for 1<i<N-1.

Then |Pi|=2x21'1x(zN‘1-1)=2N-21, so for N » 2,
N-1 N N-1 i
I oIpl=-1)2" -] 2
i=1 1=1
= (N—2)2N+2,

and since |P°| = %(ZN) - 1, equation(5) is verified.

Corollary 2.1: The bit loss in representing members

of the binary floating-slash system KL(N) by the
format of Figure 2 is less than 1 bit.

i

Proof: The format of Figure 2 utilizes N+[log2(N—l)]
bits and represents the members of KL(N), so

Bit 1oss=N+riogz(N—1i] - log, ((N - %92N+1)

friogz(N—151 - logz(N - %)

A

1+log2(N—2) - logz(N - %) < 1.

Binary floating-slash representation also is re=~
dundant due to representation of reducible as well
as irreducible fractions, but further considerations
{4,5] show the resultant bit loss is of the order

-1032(6/12)= .718... bits as in fixed-slash. Thus

the total bit loss in binary floating-slash repre~
sentation is approximately between .7 and 1.7 bits,
which 1s comparable (and often superior) to the bit
lost in normalized binary floating-point represen-
tation that is traditionally ignored.

Binary floating-slash representation is more
involved than fixed-slash and some examples will
aid the development. Convenience of architectural
design suggests the desirability that the sign and
slash position field fit together in a particular
machine "byte', and that log,(N-1) be either equal
to or just slightly less than an integer (to min-
imize bit loss). 1In the fcllowing examples, the

limiting value _log2(6/n2) is employed to account

for the bit loss due to redundancy, e.g. to account
for the reducible fractions, in determining the to-
tal bit loss of each system.

Example I. [31 bit binary floating-slash]. Assume
a 6 bit byte and a 36 bit (6 byte) word.

Fraction field: 30 bits (5 bytes), which is suf-
ficient to represent 31 bit bi-
nary flcating-slash numbers be-
cause of the implicit leading
denominator bit.

Sign/slash field: 6 bits (1 byte). 1 bit for sign
and 5 bits tc represent the slash
position value n'", where 0<n'<29
are the allowed values for n".

Bit loss: 0.835.. bits.

—3%—~,230—1]: [10”9,109
2771

1.

Numeric magnitude range: [

Consider the intrepretation of the following float-
ing-slash number.

00110 | 100011] 000000] 000000 000101| 100011
A= D\e I
sign n''=6 1 ‘JI
is + o VT

(6+1)-bit 24 bit numerator

denominator

33

numerator = 101100011,2 = 355,

denominator = 1110001'2 = 113,
= 355 ;
fraction = 13 3.1415929... .

Note that the contents of the slash position field
is the number 6, indicating the left most 6 bits of
the fraction field are the successive low order bits
of the denominator. Reversing these six bits and
adding the implicit leading bit yields the denomin-

ator 11100012 = 113, and the remaining 24 bit nu-

merator field is seen to contain the numerator
101100011, = 355. The resulting value 355

113
3.1415929... is one of the better "convergents' to
m = 3,1415926..., agreelng to seven decimal places
although the numerator and denominator together em-
ploy only 16 bits.
Example II. [121 bit binary floating-slash]. Assume
an 8 bit byte and a 128 bit 6 byte) word.
Fraction fileld: 120 bits (5 bytes), which is suf-
ficient to represent 121 bit bi-
nary floating-slash numbers be-
cause of the implicit leading
denominator bit.
Sign/slash field: 8 bits (1 byte). 1 bit for sign
and 7 bits to represent the slash
position value n", where 0<n'<119
are the allowed values for n'.

36

Bit loss: 0.817... bits.
Numerical magnitude range: [—~l—- ,2120—112[10_36,10‘
,120_,

Example III. [41 bit binary floating-slash]: Assume

an 8 bit byte and a 48 bit (6 byte) word.

Fraction field: 40 bits (5 bytes), which is suf-
ficient to represent 41 bit bi-
nary floating-slash numbers.

Sign/slash field: 8 bits (1 byte). 1 bit for sign

and 7 bits to represent the slash
position value n", where 0<n''<39
are the allowed values for n'.

Bit loss: 2.414... bits.
-12
Numeric magnitude range: [—Z%——,Zao-l] = [10 ,1012].
2 -1

Comment: This example has a bit loss of 7—log240 =

1.6781 bits in the slash position specification
field. The unnecessary extra slash field bit is a
ccnsequence of the desire to allow smaller word size
than that of Example II while maintaining the 8 bit
byte boundary between the sign/slash field and the
fraction field.

Example IV. ({7 digit hexadecimal floating-slash].
This hexadecimal example is technically outside the

1

scope of the formulation of our binary floating-
slash systems. It does not employ an implicit
leading bit except at the extremes of numeric range,
where either the numerator or denominator is assumed
to be unity. This example is included since it
gives a particularly compact representation for an
architecture that is currently widely in use.

Assume an 8 bit byte and a 32 bit word, where
a byte is assumed to hold two hexadecimal digits.

Fraction field: 28 bits (7 hex digits).
4 bits. 1 bit for sign, and 3

bits to represent the slash po-
sition value n'", 0sn"<7.

Sign/slash field:

7 8 -8
Numeric magnitude range: [——%“",16 ~1}= [107,10]

-1

The fraction %%% of Example 1 would here have the

eight hexadecimal digit encoding 21700163, where
then denominator = 71.L6 = 11100012 = 113, and nu-
merator = 16316 = 1011000112 = 355,
have taken the denominator to have its hexadecimal
digits left adjusted, low order digits to the left,

Note: We

Quite often the specificatlons for floating-
point type RFAL require exponent ranges larger than

[10_300,10300] with only moderate precision, such as

32 to 64 bits. To achieve greater range we may ex~—
tend the N-bit binary floating-slash system de-
scribed in Figure 2 by allowing the slash position
field to hold values greater than (N-1) and less
than zero, with the following interpretation:

n"> N-1: the numerator is implicitly unity
- and the denominator is the scaled

rt
integer 1.X X 2" where X is the
N~1 bit binary fraction taken from
the fraction field (reversing bit
order),
n'" < ~1: the denominator is implicitly unity
- and the numerator is the scaled in-

S, B
teger 1.X x 2N Zn where X is the

N-1 bit binary fraction taken from
the fraction field.
Comments: (1) The interpretation in both cases is
that the numerator (denominator) is
an integer of magnitude at least

2N_l, with the N leading bits com-

posed of an implicit leading unit bit
followed by the N-1 bits from the
fraction field in left-to-right
(right-to-left) order with an im-
plicit denominator (numerator) of
unity.

(2) The extended range N-bit binary
floating-slash system as described
represents precisely the same num-
bers as the standard N~bit binary
floating-slash system over the range

2,211, with values in [2Y,]

3 3
2Ny

identical to those obtained in an N bit "radix frac-

- . . N
tion" floating~point system in the region [2, =],
and with values in [O, —%-] the inverses of the just
described floating-poin% numbers from [ZN, »] (assum-
ing a symmetric range constraint).
Example V. [49 bit extended range binary floating-slash].

Assume an 8 bit byte and a 64 bit (8 byte) word.

48 bits (8 bytes), which is suf-
ficient to represent 49 bit bi-
nary floating-slash numbers.

Fraction field:

Sign/slash field: 16 bits (2 bytes). 1 bit for sign
and 15 bits to represent the slash

position value n", where

—(214—N+l)§n”§214—l are the allowed
values for n'".
14

2

Numerical magnitude range: =| 2]

1
iz
52

-4932 4932

=[10 ’ 10]

For extended range binary floating-slash the
bit loss over the standard floating-slash range is
the 0.701 bits due to the reducible fractions repre-
sented, and in the extended range the bit loss is
comparable to that in a floating-point system
(actually better due to the implicit leading bit in
floating-slash). Thus we state:

Conclusion: Binary floating-slash and extended range
binary floating-slash representation entails a loss

of stordge efficiency limited to approximately one bit
of the word size for any word size.

The results of addition, subtraction, multi-
plication and division of binary floating~slash num-
bers are all finite precision fractions whose maxi-
munm lengths influence the arithmetic register require-
ments.

Theorem 3: For any N > 2,

(i) the result of a multiplication or (non-
zero) division of any two fractions of
KL(N) is a fraction in KL(2N), and

(11) the result of an addition or subtraction
of any two fractions of KL(N) is a frac-
tion of KL(3N-2).

Proof: 1If either fraction has value zero, the re-

sult is immediate, and the results for negative frac-
tions follow from the results for positive fractions,
SO We may assume

(P,q),(r,s) e KLQN), p,q,r,s > 1.

Using the defining equation (4),

Llogzqu+Llog2qu

< l_logzp_j + l_logzx.‘_] + Llog;ij +Llogzs_| +2

<N-2,

so (pr,qs) e K(2N), and similarly (ps,qr) e K(2N),
so (i) follows. To prove (ii) it is sufficient to
show that (pst+qr,qs) e KL(3N-2), and we consider two
cases.

Case 1. Assume lfq,s§2N—2nl, and we may then further
assume qr>ps. Utilizing (4)

Llog2 (ps+qr)_J +LZLog2qs_J
< +3Llog2rJ+Llogsz+2Llogqu
< +3N-5.
Thus in this case (pstqr,qs) e KL(3N-3).

Case 2. Assume q>s, and 2Nm2<q<2N_l—l. In this

N—lr+2N—l_r_l<2N—lr

case p=1, so pstqr<q(r+l)<2
and
L}ogz(ps+qr1J+Llog2qu
< N—1+Llog2pJ+Llog2qJ+L;og2§J+l
<3N-4.

fp9§ in this case (pstqr,qs) e KL(3N-2), proving
ii).

As an application of Theorem 3 ncte that an arith-
metic operation performed on two 41 bit binary
floating-slash numbers as represented in the 6 byte
(48 bit) word in Example III will always yield a
result exactly representable as a 121 bit binary
floating-slash number in the 16 byte (128 bit) word
of Example I.

In designing a floating-slash arithmetic unit
it is desirable to first generate the exact arith~
metic result in intermediate registers and then
perform the rounding. It is evident from Theorem 3
and the discussion of rounding in our companion
paper [1] that the arithmetic unit requirements for
N—bit floating-slash arithmetic require only N-bit
integer multiply and 2ZN-bit integer addition and
subtraction to effect both the four standard arith-
metic operations (+, -, X, %) and the rounding needed
to map the result back to an approximate N-bit
floating-slash number. Note that the arithmetic
unit requirements for extended range binary floating-
slash are considerably more involved and will not be
discussed here.

35

III. Rounding and Adaptive Precision

If the irreducible fractions of a fixed-slash
or floating-slash number system are arranged in in-
creasing order, the size of the gaps between suc-
cessive fractions is quite variable. Building on
the classical theory of Farey fractions [7,Ch. 2] and
continued fractions {7,Ch. 10], an extensive theory
is developed [4,5] that provides considerable in-
sight into limited precisiocn fraction number systems
specifically and finite precision arithmetic gener-
ally. Only a brief survey of this theory sufficient
to indicate the rounding behavior in fixed- and
floating-slash systems will be presented here.

The fractions E, E'ate termed adjacent if
|qr—ps| = 1, and the interval between the quotients
of the adjacent fractions g-and §3 is the gap be-

_P.4gr - ps, the ad-
. S q qs
jacent fractions gy i’have a gapsize of %E and

tween B—and L, Sincer
q s =

are in a sense "optimally close' distinct fractions
relative to their precision, that is,relative to the
size of their denominators. The fraction

§ is simpler than the fractiom g—if]rlj[pl, s < q,

where at least one of these inequalities is strict.
The following results on adjacent fractions should
be noted.

Lemma 4: If E3 % are adjacent fractions, then both

§~and 5 are irreducible.

Proof: The g.c.d.(p,q) and g.c.d.(r,s) both divide

Tar-ps|=L.|
Lemma 5: If:%, i are adjacent fractions other than

the pair %—,j%, then one of them is simpler than the
other.
Proof: If p = r the result is immediate. For p # r

we may assume T > P+l1> 1, If also q > s + 1, then
qr - ps >p+s+1, sop=s8*= 0, and ¢ = r = 1.

Otherwise q < s, so then g—is simpler than % . l

r
Lemma 6: Assume the quotient ﬁ-is in the gap (%,-g)
between the adjacent fractions g-and g—. Then

t>pt+tr,uzg + s,

Proof: We may assume PcEcX | fThen
e q u s
qr_ - ps _ ur - ts . gt - up ,
qs us qu
1.. > .]' + 1 -y

gs =~ us qu
so u > q+s. Since by inverting the fractions,

%< £<%, the above then yields t > p + r. |

[ad

Lemma 7: For E-adjacent to i—and ﬁ-adjacent t0f%3 the

gaps (§3 E) and (&, %) are either nested or dis-

joint (except for end points).

Proof: If not then it may be assumed that

0«2 <«<X<«Y Then by Lemma 6 t >p + 1, u>gq+s,
-¢ u s W - -

and alsor >t +v, s >u+w, so thenp=v =20,

q=w=20, a contradiction.

These adjacency lemmas thus state that adjacent frac-
tions are irreducible, comparable in the "simpler
than" ordering, and simpler than any fraction fall-
ing in the gap between them, and furthermore, that
two pairs of adjacent fractions have either nested

or disjoint gaps . Lemma 6 states that no fraction

simpler than ﬁ—%}i—lies in the gap between the ad-
jacent fractions E-and E—. In general the fraction

g—;}i—is termed the mediant of the fractions E and

§ and is defined for any pair of fractions. For the

case of adjacent fractions, the mediant has many
properties.

Theorem 8: The mediant E_i_§ of the adjacent

q +

fractions g—< satisfies:

0|

(1) TIrreducibility: 5—342 is irreducible,
(ii) Quotient ordering: Boptr <L s
q q+ s s
(iii) Precision ordering: 2 ang £~or both
‘ ptr '
simpler than T +s’
. . ptr. . P r
(iv) Adjacency: ¥ s is adjacent to q and)
(v) Simplicity: B <X <X igprjes BEEL 44
q u S q+ s
simpler than or identical to L3 .
u
Proof: Property (iii) is immediate. Note then that

prr _p_pqtrq-pg-ps, 1 > 0
q+s q (q + s)q (q + 8)q ’

establishing both that P.ptr and that R ana
q9 q+ts q

Ptr ; r_ptr
g+ s are adjacent. Also < q ¥ s =
rq + rs - ps ~ rs 1 ptr _=x
= > -~
s(q * 8) 5@ 7 5) 0, so that pg < -

and they are likewise adjacent fractions. This
proves (iv) and (ii), and property (v) then follows
from Lemma 6. Property (i) follows from property
(v), completing the theorem.

The notion of mediant 1s seen to be funda-
mental in that every finite non-zero irreducible
fraction, P , is the mediant of a unique pair of ad-

q
jacent fractions, the parents of {} Furthermore,

the proof of the following theorem indicates a
canonical procedure for determining the parents

and all "ancestors' of gn

Theorem 9: Every finite non-zero irrreducible frac-
tion is the mediant of precisely one pair of ad-

jacent fractioms.

It is sufficient to consider %—< g—< i,

where £ is irreducible. Form the sequence Fi(§) as

follows for i = 0,1,2,..., N(p,q).

Proof:

i

P
Fo®

It

=lo =|o

-

.
[l Lol =)
-

P
Fl(q)

ol

1 3

P ; urs P
and Fi(q)’ i > 2, is formed recursively from Fi—l(q)

by inserting the mediant in the gap of Fi_l(gj that

contains the quotient of %u If the mediant inserted

to form Fi(EJ is Ey the process terminates with

N(p,q) = i, otherwise it continues. Note from
Theorem 8(iv) that each F_ is a sequence of consec-—
utive adjacent fractions,lso before termination g

always falls in a unique gap between adjacent frac-
tions. By Theorem 8(iii) this procedure must termin-
ate after N(p,q) < max {p,q} insertions, determining

a pair E—, ﬁ-for which g»is the mediant. It then

follows from Lemma 7 and Theorem 8 that this pair of
adjacent fractions, E—,ﬁ; is unique. l

These results allow us to prove an important
alternative characterization of adjacent fractionms.

Theorem 10: Let;s < £~be irreducible fractions.

Then if no fraction simpler than at least one of

gd §~ lies in the open interval (g, i), they are

adjacent.

Proof: Assume 2 i’irreducible with no fraction

q
simpler than at least one of R) L in the interval

1" n
(g‘, —:-). Let 5—,, be the larger parent, % < P—,, , of

-1

X r r
<= O f -
8 =)

B r!
s and_gT the smaller parent,

The parents are simpler fractions and cannot fall

in the open interval (Ey é) by assumption, so

]
P r r s
7+ » Now P g-are adjacent and

"
%, ﬁw are adjacent by Theorem 8(iv), and both in-

So one of

equalities cannot be strict by Lemma 7.

%, § is a parent of the other, proving the theorem.|

1. P2 Py
A Farey chain —= < —= < ,,, < -— is an Increas-

9 92 95
ing sequence of consecutive adjacent fractions, i.e.
qipi+l_qi+1pi=1 for 1<i<n-1. The gaps of the Farey

chain are the gaps between consecutive fractions of
the chain. The following are immediate from Theorem
10and the definitioms.

Corollary 10.1: The monotonically iIncreasing se-
quence of irreducible fractions of KX(2N) from a
Farey chain for every N > 1.

Corollary 10.2: The monotonically increasing se-
quence of irreducible fractions of KL(N) form a
Farey chain for every N > 2.
P P P
For the Farey chain L. —2-<..‘ < —2, it is
1 q2 1,

evident that the maximum and minimum gapsizes are
given by the maximum and minimum of

1

{___
94947

, l<i<n-1}. 1If 9—< P X, i'are consecu-
== l-~-2q s =1

tive adjacent fractions of the Farey chain for
N . ptr
KX(2N), then gq+s>2" since pws § KX(2N). From these

observations the following is immediate.

Lemma 11: For the interval [0,1], the size of the
intervals between successive representable values

of KX(2N) obtains a maximum of lA?N_l) and a mini-
mum of l/[(ZN—l)(ZN—Z)].

From Lemma 11 we conclude that the precision
of the binary fixed~slash system KX(2N) varies
approximately from what we normally term N-bits te
2N-bits over the interval [0,1], or loosely from
single to double precision. To measure the "average
precision' it is desirable to specify the natural
rounding for limited precision rational systems.

P; Py P

Let K denote the Farey chain —= < —= <+¢+c —

a4 d, P

b T
and let [—, —] denote the closed interval of real

1 “n
P1 Pu
numbers between —— and E—. Then mediant rounding
1 n

p1 pn
is the mapping ®{—, —] > K defined by
9 q,
P. .
—3) =3 for 1l<i<n,
94 i T
and for l<i<n-1,

o(

-
p P pytp
3 1f L <x< %ﬁi ,
9y 93 93744
p p,tp p
o(x) = { 141 L. i+qi+1 iqe 22T 6)
%1+ 93794411 9441
P, P pP.tp
the simpler of —13 —iil-for X = _E:Tlil .
\ 93" 441 9379441

Now we show that although the gapsizesin KX(2N)
vary so that the accuracy essentially varies from N
to 2N bits, the average rounding error on [0,1] is
of the order £nN bits, and thus is acceptably
close to the full 2N bit precision level. First
note:

Lemma 12: Let 9:[0,1] > KX(2N). For 0<x<1, let

d(x) = E-where %~1s irreducible. Then

[x - e(x)]| < L

- N

q2

Proof: Note that the mediant of the adjacent frac-
tions R, E of the Farey chain for KX(2N) has
q+si£ﬂ, and the result follows. I
Theorem 13: Let ¢:[0,1] - KX(2N) denote mediant
rounding of the interval [0,1] into the fixed-slash
system KX(2N). For the random variable X chosen

uniforuﬁon [0,1}, the expectation of |X—¢(X)]
satisfies:

E(|X-0 ()]) < ;%ﬁ-+ g%%é.)

Proof: For X chosen uniformly on [0,1], let
P(X) = %. Note from Lemma 12 that the interval
rounding to B-by mediant rounding extends no more

than l/qZN on either side of §3 80
Prob{®(X) = E} < 2/q2",

and the average rounding error rounding to % is no

greater than (1/2) x (1/q2N).

Therefore
1 1 1
E(|X-0(X))< = + 5= _ =
- 22N ZZN l§p<q§2N 1 q2
% irreducible
SO q-1
=5 TN) woy @
1<q<2
1 NEn2
< —— 4+ . |
- 22N 22N

Similar results on the maximum, minimum and
average relative rounding error in floating-slash
systems using a log uniform distribution for average
case analysis can be obtained [4]. The significance

37

i
of Lemma 12 is that the greater rounding deviations
[x—¢(x)| are associated with roundings to simpler

fractions 23 that is, where q is a smaller integer.

The resulting variable single to double precision
feature is intriquing and is investigated in [4].

{1}

[2]

(3]

(4]

[51

{61

[7]

References

Kornerup, P. and Matula, D. W., A Feasibility
Analysis of Fixed-Slash Rational Arithmetic,
This proceedings, 1978.

Matula, D. W., "Number Theoretic Foundations of
Finite Precision Arithmetic," in
Applications of Number Theory to Numerical
Analysis, W. Zarenba, ed., Academic Press,
New York, 1972, 479-489,.

Matula, D. W., "Fixed-Slash and Floating-Slash
Rational Arithmetic," Proceedings of the
3rd IEEE Symposium on Computer Arithmetic,
Dallas, 1975, pp. 90-91.

Matula, D. W. and Kornerup, P, "Finite Pre-
cision Rational Arithmetic, Part 1: The
Number Systems,' in preparation.

Kornerup, P and Matula, D. W., "Finite Pre-
cision Rational Arithmetic, Part II: The
Arithmetic," in preparation.

Knuth, D. E., "The Art of Computer Programming,"
Vol. 2/Seminumerical Algorithms, Addison-
Wesley 1969.

Hardy, G. H. and Wright, E. M., "An Intro-
duction to the Theory of Numbers," Clarendon
Press, Oxford 1954.

