SOME EXPERIMENTS USING INTERVAL ARITHMETIC

Eric K. Reuter John P. Jeter

J. Wayne Andersonr Bruce D. Shriver

Computer Science Department
University of Southwegggrn Louisiana

. . Lafavette, LA
This paper reviews past experiences andadagcusses

future work in the area of interval arithmetic at

the University of Southwestern Louisiana(USL). Two
versions of interval arithmetic were developed and
Implemented at USL(*). An interval data type dec-
1arat19n and the necessary mathematical functions

for this data type were added to Fortran via the
preprocessor Augment(4,5). In the first version, the
endp91pts of the intervals were represented as single
percision floating point numbers. In the other ver-
sion, the endpoints were represented to 56 decimal

digits. Production engineering programs were run as
benchmarks (8).The accumulation or computational and

algorithmic error could be observed as a widening

of the intervals. The benchmarks were also run in
normal single and double rrecision arithmetic. In
some instances, the result obtained from a single

or double precision calculation was not bounded by
the corresponding interval result indicating some
problem with the algorithm. The widening of an in-
terval does not necessarily indicate a data sensiti-
vity nor error in an algorithm. However, these
large intervals can be used as indicator of no pro-
blems. As could be expected, the 56-decimal digit
precision interval gave better results in terms of
smaller intervals due to the increased amount of
precision., The obvious problem with this version is
that the amount of overhead required for its execu-
tion is high.

1.0 Introduction

The floating point number system used on contem-
porary computers is an approximation to the real
number system. In interval arithmetic, a non-
representable real number is approximated by an
interval consisting of machine representable end-
points which bound the number. Intervals will be
regarded as bounds on an exact but unknown real
number. This means that if the interval (a,b) is
a computer approximation to the exact result x then
a<x<b. To obtain the "best" machine representation
of the interval, a must be the greatest lower bound
for x and b must be the least upper bound for x. In
this way the interval {(a,b) will be the smallest
computer representable interval that contains x.

In order to obtain the smallest computer repre-
sentable interval for the resylt of arithmetic
operations on intervals, directed roundings on the
computer arithmetic operations must be defined. If
x is a real number and M1 and M2 are two consecutive
machine representable numbers such that M1<kM? and
if r is a rounding function, then r is downward
directed if r(x)=M1 and r is upward directed if

CH1412-6/78/0000-0075500.75 (c) 1978 IEEE 75

r{x)=M2. M1 and M2 will be the machine represen-
table numbers that are respectively the greatest
lower bound and the least upper bound for the real
number x. If x is a machine representable number,
then r{x) = x.

In general, the result of a finite precision
arithmetic operation does not always produce a
machine representable number. In other words, a
op b, where a and b are machine representable
numbers and op is, in general, one of the machine
arithmetic operations, may not be a machine repre-
sentable number and must be rounded.

Since the exponent range of floating point
numbers is bounded, exponent overflow and underflow
may occur during an arithmetic operation. If
underflow occurs, then the true result is between
zero and the smallest positive or negative
representable number. In the case of underflow,
.a directed rounding may give a valid bound.

In the case of overflow, if
rounding away from zero is wanted, then there is
no machine representable number which can be used
as a correct bound. This is known as an infinijty
fault.

1,1 _Interval Valued Functions

A real-valued function, f, which is defined and
continuous on an interval (a,b) can be extended to
an interval-valued function, F, of an interval
variable, (a,b) by defining

F(fa,b] = [c,d] such that f(x) is contained
in [c,d] for every x in [a,b]
where ¢ and d are machine representable numbers.

When f is evaluated at a point x using a machine
representable approximation to x, a computer ap-
proximation to f results. This computer approxima-
tion F([a,b]),is defined as an interval that con-
tains f(x). If f is monotonie increasing on [a,b],
F(l{a,b]) = [rd(f(a)),ru(f(b))] where rd is such
that rd(f(a))<f(a) and ru is such that ru(f(b))>
f(b). TIdeally, we would Tike rd(f(a)) to be the
Targest machine representable number such that
rd(f(a)§<?(a) (i.e., a greatest lower bound) and
ru(f(b)) to be the smallest machine representable
number such that ru(f(b)) >f(b) (i.e. a least
upper bound). Similarly, Tf f is monotonic de-
creasing on [a,b], then F({a,bl) = [rd(f(b)),
ru(f(a))]. o :

If f isénot monotonic on [a,b], then the interval
[a,b] can be divided into disjoint subintervals;
la,b], i =1,2,3,...,n; where each a. and b. are
machine representable numbers and f 1s monolonic
on each subinterval. Further, U [a,b] contains

all machine representable numbers in the interval
[a,b] and f is monotonic on each subinterval. It
can be shown in this case that F([a,b]) = U F([ai,
b.1).
lA]gorithms for performing the machine arithmetic
operations with directed roundings can be found in
Yohe (9). These operations are used to compute
the endpoints of the resultant interval for a
particular arithmetic operation performed on two
intervals. A downward directed rounding is perfor-
med on the left endpoint and an upward directed
rounding is performed on the right endpoint. For
example, interval addition is defined as follows:
[a,b] + [c,d] = [rd(a®c), ru(béd)]

where 8 is the machine addition operation and rd
is a downward directed rounding and ru is an up-
ward directed rounding.

It may not be possible to obtain the best bounds
for the result of the computer approximation to the
function f. An example would be a machine calcu-
lation of the sine which is known to be accurate
to only 7 digits out of 9.

2.0 The Implementation of the MRC hterval Arith-
Jnetic Package for the Muttics System

The interval arithmetic package and the input/
output routines for interval numbers which have
been implemented on the Multics system follow the
design of an interval arithmetic package implemented
on the UNIVAC 1108 computer located at the
Mathematics Research Center, MRC, of the University
of Wisconsin (2,6,10). A description of the im-
plementation of the MRC interval arithmetic
package on the Multics system is given in Appendix
A. This appendix is quite lengthy but contains in-
formation related to the implementation of mathe-
matical software rarely found in the literature.
3.0 Bepchmarks

Several production programs were obtained from
the Army Corps of Engineers, Waterways Experiment
Station, Vicksburgh, Mississippi, to be run as
benchmarks. These programs consisted of four linear
equation solvers, a matrix inversion routine, a
fast fourier transform routine, a slope stability
program and a stress program.

The accumulation of computational and algorithmic
error can be seen as a growth in the width of in-
tervals. Wide intervals are not necessarily a sign
of data sensitivity or algorithmic error. When a
program is run using interval data types, a natural
tendency is for intervals to grow wider. However,
small intervals are an indication of no problems
and wide intervals serve as indicators of possible
trouble spots.

puring the testing of the initial interval im-
plementation, there were many instances where the
intervals became quite large. It was difficult to
determine during analysis whether this widening
was a problem with the algorithm, an unavoidable
result from interval arithmetic, or due to the
lack of precision of the representation of the end-
points. 56 decimal digit interval was implemented
to help resolve this problem.

3.1 Llinear Eguation Solvers

Four linear equation solvers were included in the
benchmarks supplied by the Army Corps of Engineers.
Included was a Gaussian Elimination program. It
was first tested on a simple 4 by 4 linear system.
Using the standard interval package, the magnitude

of the resulting intervals were from 10**-4 to
10**-2. A1l routines were also run in regular
single and double precision. The results obtained
by using standard interval insured the correctness
of the results only to the thirdor fourth decimal
place. In all instances the intervals bounded the
results produced in single and double precision.

The same test case was executed using the 56 decimal
digit interval package. In this case the width of

the intervals varied from 10**-51 to 10**-50. This
extra precision obtained from using extended preci-
sion interval was obtained at the cost_of an increase
in_cpu time used. The standard interval run required
only .44 seconds of processor time while the extended
interval required 12.64 seconds. More will be said a-

abRut the cost of interval and extended interval later.
second test case, this time a 7 by 7 Tinear system,

was also tried. The standard interval version did not
produce any results as the intervals grew too large.
However, the extended interval version was able to com- ‘
pute results. The width of the intervals produced varied

from 10*%*-45 to 10**-43. .
There were three other equation solvers. The

second equation solver, BANSOL, solved banded
systems of equations using Gaussain elimination with
no pivoting. The matrix of coefficients is assumed
to be symmetrical and only the upper triangular
banded matrix of coefficients is stored. The SESOL
program solved a banded system of linear equations
using the LU decomposition technique. Operations
with zero elements are not performed. The matrix
of coefficients is symmetrical and only the upper
triangular banded matrix of coefficients is stored.
The fourth equation solver was a spline program.
It solved a system of linear equations using an
interative technique to calculate the moments of
a set of data points in order to fit a cubic
spline to those data points. 1In all three cases
the results were similar to those above and are
discussed in detail in (Private communications
with B. Boyt and N. Radhakrishman Army Corps of
Engineers, Waterways Experimental Station).
2.2 . Matrix Inversion

The matrix inversion program finds the inverse of a
squared matrix.The first test case was a Hilbert
matrix of order 4. The interval results from the
standard interval run were quite wide, from 10**-3
to 0.26. The extended intervals were from 10**-50
to 10**-47. When an attempt was made to invert a
Hilbert matrix of order 10, standard interval could
not find a solution and the single precision results
were erroneous. The extended precision intervals
widths ranged from 10**-36 to 10**-28 and again
indicated that the double precision results were
good to only 8 or 9 digits of precision.

The fast fourier transform (FFT) program supplied
by the Army Corps of Engineers proved to be a quite
stable algorithm. A difficulty in its implementa-
tion in double precision and interval should be
mentioned. A FFT program produces complex arith-
metic results. Fortran does not normally support
double precision complex arithmetic and, therefore,
it had to be simulated. The same type of simulation
had to be done for interval. This slowed the ex-
ecution of the algorithm considerably. In all test
cases, all arithmetics produced good results. The

single precision intervals had a width of on the
order of 10**-6 and the extended intervals, 10**-53,

3.4 Slope Stability Program

An appTication program, SLOPE, was also sent us by
the Army Corps of Engineers. Testing using this
program consisted of varying a set of three inputs
{cohesion, unit weight, and phi) for the program
plus or minus ten percent. This resulted in 81
runs for each type of arithmetic.

Two problems arose when implementing the slope
program in interval arithmetic. The first resulted
from the way in which the interval package evaluates
the test value in an arithmetic IF statement.

When an arithmetic IF statement is encountered with
an interval test value, the interval is converted

to real, i.e., the midpoint is taken. In one of the
subroutines a particular branch was to be taken

only if the test value is positive. Certain in-
tervals were passing along this branch whose midpoint
was indeed positive but whose left endpoint was
negative. The interval was subsequently used as

a divisor and, since the interval contained zero, a
zero divide error occured. The solution to this
problem was to recode using a logical IF which is
evaluted in a different manner and avoids this
problem.

The second problem was more difficult to pin down.
During testing using standard interval, some of the
runs contained intervals which were "blowing up",
that is, the width of the intervals were becoming
unacceptably large. After a considerable analysis
effort, a correlation was uncovered between the large
intervals and the -10% value for unit weight. By
starting with the initial value for unit weight and
decreasing its value in increments of .25%, the
initial value at which the intervals blew up could
be pinpointed. This occured at about -2.25% of the
initial value. As long as unit weight did not go
below this value, acceptable results were obtained.
After further effort, the problem was traced to a
single statement, "T3 = FS1 - FSL". As unit wwight
decreased below -2.25% of its original value, values
of FSL and FSL became closer and closer together.
This subtraction resulted in stripping off the sig-
nificant digits. T3 was subsequently used as a
divisor compounding the effect.

During the procedure of tracking down the error
source, a side benefit was reaped which is indica-
tive of the type of recoding of algorithms sometimes
necessary to get satisfactory results from limited
precision interval arithmetic. Several computations
could be combined and an interval consistently of
less than optimal width could be factored out pro-
ducing a more accurate algorithm. The set of runs
was repeated using the extended interval package.
Most of the data sensitivity noted above disappeared.
No interval widths exceeded 10%*-4,

3.5 Testing Summary

The 56 decimal digit interval package did prove
useful in many cases. Often the standard interval
either produced no solution or solutions with ex-
tremely wide intervals. Some massaging of the code
supplied by the Army Corp of Engineers was required

to execute it satisfactorily using interval arithmetic.

The primary cost of the use of extended precision
interval arithmetic was in terms of central processing
time consumed and increased paging activity. On a
system like Multics, both of these figures can be
perturbed by the Toad on the system. The figures

in Table 3.1 for the FFT routine indicates a general

77

This data was gathered from runs made during
a contiguous time interval during a period of low
system utilization.

trend.

PAGE FAULTS CPU TIME(Seconds)

single precision 23 0.3623

double precision 36 0.6678

standard interval 39 14.4994

56 decimal interval 3195 466.8781
Table 3.1

FFT subroutine Overhead
4.0 Conclusions and Future Work

Interval arithmetic can, at times, be extremely
useful. For instance, it can be used to indicate
the 1imits of precision of an algorithm for a
given set of data. From the testing it was shown
that much better bounds on the precision were
obtained using the extended interval package.
This was, of course, not unexpected. 56 decimal
digits carry more precision than 27 binary dig1ts
(equivalent to approximately 8 decimal digits) and
there is no conversion error on input and output
for the 56 decimal interval package. The price
paid was in terms of runtime efficiency. Standard
precision interval resulted in approximately,
at most, an order of magnitude increase in execution
time over that of single or double precision
arithmetic. 56 decimal interval arithmetic re-
sulted in a further increase of more than one to
more than two orders of magnitude. It should be
noted here that the 56 digit version was based
upon the 59 decimal digit hardware arithmetic unit
of the Honeywell H68/80 processor. Extended
precision arithmetic using software simulated
basic operations could be expected to take much
Tonger.

One obvious application of extended interval
arithmetic would be to validate existing programs.
Any data sensitivity discovered could be included
in a description of the algorithm and directions on
its use. Although extended precision interval
arithmetic is expensive, its cost must be balanced
against possible consequences of using invalid
results. An organization 1ike the Corps of Eningeers
might weigh a defective dam or the cost of moving
100,000 tons of dirt against the cost of a few
hours of computer time.

A more effective technique would be to first test
the algorithm using standard precision interval
arithmetic. Its relatively small decrease in run
time efficiency indicates that its use is more than
Justified as an economical means of identifying
possible trouble areas in an algorithm for the data
under consideration. The more expensive extended
interval package could be applied to just those
cases where possible trouble areashave been
identified.

Interval arithmetic can be used to determine the
precision of the arithmetic required to guarantee
a given precision in the results of an algorithm.
In some of the benchmarks executed in 56 decimal
digit interval arithmetic, the results were good
only to 40 or so:digits. This represents a con-
siderable loss of precision. It also points out
why arbitrarily picking a given precision for
arithmetic does not guarantee results in which
absolute confidence can be placed. How great an
increase in precision is obtianed, if any, by going
from a machine with 32 bit words to one with 60

bit words? i

In general, whether using interval or regular
arithmetic, the greater the precision the longer
the run time required for a given algorithm,

Having variable precision interval arithmetic
would allow the validation of algorithms for

which standard precision interval arithmetic is
insufficient without having to go all the way to
56 decimal digit precision. -There will also be
instances where it might be desirable or necessary
to go beyond 56 decimal digits of precision. In
any case, the overhead associated with execution in
interval arithmetic will only be as great as re-
quired for the necessary precision. A variable
precision interval arithmetic package is currently
under development at US.

The execution speed of interval arithmetic can
be increased in several ways. One would be to
decrease the number of levels of interpretation
required in the current implementation. The optimum
solution would be to have a hardware or firmware
module which could execute variable precision
interval arithmetic. Many existing minicomputer
systems have undefined opcodes for just such re-
quirements. As a side effect, an arithmetic unit
that can execute variable precision interval
arithmetic can also execute traditional variable
precision floating point arithmetic. This means
that interval arithmetic, of the necessary precision,
could be used to determine the required arithmetic
precision required for the results of the algorithm.
The aldorithm, then, could be executed using only
the required precision. :

ion of the MRC Interval
P £ the Multics System
In the Multics implementation, the endpoints of
the intervals are represented as a pair of floating
point numbers stored in consecutive storage locations.
The Multics single precision floating point format
uses a 36 bit word which consists of an 8-bit 2's
complement exponent, with the high order bit the
sign bit, followed by a 28-bit normalized 2's com-
plement fraction, with the high order bit the sign
bit. ,

The subroutines of the MRC interval package can be
divided into eight categories. These categories are
arithmetic operations, exponentiation operations,
conversion functions, comparison, basic external
functions, supporting functions,. input/output routines
and miscellaneous. A1l of the routines in each
category ‘except the input/output category were
written in Fortran, Several of the .Fortran sub-
routines .call routines that are written in PL/1.

The PL/1 routines correspond for the most part to
the assembler routines that were written for the
UNIVAC 1108 version of the interval package and are
written specifically for the Multics .implementation.
Most of the input/output routines were written in
PL/T.- '

The routines which perform the four basic arith-
metic operations of addition, subtraction, multi-
plication, and division on interval numbers are
machine dependent. Since we want the best computer
approximation to the results of. computer arithmetic
operations on intervals, directed roundings on the
computer arithmetic operations must be performed.
The floating point hardware on the system does not
perform directed roundings. Therefore the four

basic single precision floating point computer
arithmetic operations of addition, subtraction,
multiplication, and division had to be simulated in
order to provide the correct roundings. A descrip-
tion of the routines that simulated the floating
point computer arithmetic operations and provided
the proper directed roundings and a description of
the routines that perform the basic computer arith-
metic operations on intervals follows. These rou-
times perform the "best possible arithmetic" com-
puter operations with directed roundings as descri-
bed by Yohe (9). A1l the routines are written in
PL/1 for the Multics system.

- g - <

Included in the . interval package are the interval

counterparts of the Multics basic external functions

atan2. exe, alog, alogl0, sin, cos, tan, asin,
acos, atan, sinh, cosh and sgrt. The general meth-
od of calculation of the interval functions involves
bounding the results of the corresponding double
precision basic external function. For functions
that are monotonic over an interval, the endpoints

of the resultant interval are the result of the
double precision function evaluated at the endpoints
of the input interval and then properly bounded. If
the function is not monotonic over the interval, then
a case analysis is done by dividing the input interval
into subintervals over which the function is monotonic

The result obtained from the double precision tun-
ctions must be bounded before it can be used as the
endpoint of an interval. Therefore, the accuracy of
the results of the double precision basic external
functions are required by determining a Tower bound
on the number of bits of the fraction that the result
is guaranteed to have. This can be illustrated by
the following example. Suppose a result is accura-
te to 35 bits of Fraction and a 27 bit lower bound
for the result is required. Assume that the 27th
through 37th bits of the fraction were 10000000000.
If the result were just truncated to 27 bits the
27th bit would be a 1. If however the 37th bit was
one unit too large, then.bits 27 through 37 would
be 01111111111 and the 27th bit of the correct
lower bound would be 0. It cannot be determined
which case is correct.

The following general bounding technique is per-
formed which will produce correct bounds in all
cases, but it does not necessarily produce optimal
bounds. If a lower bound is sought for the double
precision result, then the fraction is decremented
by one at or before the last bit known to be ac-
curate. -If an upper bound is sought, then the
fraction is incremented by one at or before the last
bit known to be accurate. The same bounding tech-
nique used in bounding the results of the arith-
metic operations is then used to obtain the 27 bit
fraction of the result.

A Accur Testin
To our knowledge, there is no documentation con-
cerning the implementation of the basic external
functions on Multics used by PL/1 and Fortran.
Therefore, the accuracy of these functions had to
be determined. Three approaches were considered
for use in determining the accuracy of the required
external functions: ‘
1) rigorous error analysis of actual implementa-
tions
2) rewriting of the algorithms
'3) comparison of accuracy with known test data

First, the error analysis of the mathematical 1i-
brary routines seemed to be impossible due to the:
(a) lack of description of the algorithms employed,
(b) Tow readability of the source programs (most of
which was written in ALM, the assembly language of
Multics). The second possibility had to be elimi
nated due to the time constraints of the project ar |
therefore the third approach had to be taken.
The testing itself was done in two stages:
stagel - generation of input test data and
evaluation of the given function

stare? - comparison of significant digits of
the result and corresponding values in pub-
tished tables (1)

"Driver" nrograms were written which generated
test data and called the routines which were to be
tested. The output was generated in decimal form
anu ther a check was made as to the first digit that
was different from the result given in the table.
A11 digits of function values which were tested
proved to be identical with corresponding tabular
digits (the only exception being the last digit in
the Abramovitz's tables). However, the analysis of
the very next digit in our results showed that in

each case the error was caused by an upward roundina.

The test data had been restricted to the decimal
values that can be represented exactly in the flo-
ating binarv rotation. Thus, we avoided the input
conversion error and the function value could be oh-
tained for the true argument. Also, we have to
warn that the accuracy estimated in this way must be
somewhat pessimistic. We were able to check only as
many digits as were given in the standard tables.
Thus, the tan function is assumed to have only 8

accurate decimal digits even though there are reasorn.

to believe that accuracy is much greater than that.

The Univac 1108 double precision floating point
number has an 11-bit exponent field vs. an 8-bit ox.
bonent in the single precision word. This allawecd
the checking for overflow and underflow faults %o -o
done during the conversion from double to single
hrecision format. In Multics, both single preci-
sion and double precision floating point numbers
nave an 8-bit exponent field. Therefore, the check
for eventual fault conditions had to be made prior
to the calls to the double precision functions.

Overflow could be produced by the following fun-
ctions: exp, sinh, cosh and tanh. In the Multics
implementation of interval arithmetic, overflow in
these functions was prohibited by restricting the
domain of the arguments to the interval (-88.022,
88.028). Should an arqument fall outside this do-
main, special actions (described later) had to he
taken. Restricting arguments to this domain pra-
vented overflow from occuring during the evaluation
of the functions. However, the magnitude of the
ondpoints of the results were always much smaller
than the Targest representable number. This im-
nlies that the domain of the arguments should bo
extended.

! Input/Qutput Routines

The 1/0 routines implemented on Multics were de
signed to some extent after the I/0 routines im-
nlemented for the UNIVAC 1108 version of the in-
terval package (4). Additional routines were in-
cluded in the Multics version to handle scalar in-
terval variables and a matrix of interval variables

79

A.3_56 Decimal Digit Interval Implementatiop

A 56 decimal digit version of the original Multics
interval nackate has also heen. imnlementad on th=
Multics svstem. Tlhis varsion uses the decimal
crithnetic himrdweie available on the Honevwell
H68/80 processor. The decimal arithmetic unit per-
forms both fixed and floating point 59-decimal
arithmetic. Fixed decimal arithmetic was used to
implement the decimal interval package. Floatinn
noint decimal arithmetic was not used due to the
lack of control the user has over both the roundinn
strategy used and the detection of faults (overflow,
underflow, and divide by zero). The endpoints of
the intervals are represented by a 56 decimal dinit
fraction ‘and a 17 binary digit exponent. A 59-
decimal digit fraction was not used because in the
implementation of the BPA routines, two digits were
needed for guard digits and one digit was reserved
Tor overflow. ' '

The implementation of the 56 decimal digit inter-
val package followed the implementation of the
original Multics interval package as closely as
nossible. In this way the logic of the original
interval package was used and the number of errors
cncountered in the implementation could be reduced.
The entire 56 decimal digit interval package was
written in PL/1 as Fortran does not support decimal
arithmetic. Only.the number of words required ton
carry the PL/1 representation of the interval was
declared in Fortran. The Fortran routines would
carry the interval to be passed to the PL/1 routines.

The first step in the implementation of the 56
decimal digit interval package was the implementa-
tion of the best possible arithmetic, BPA, routines
{see section 1.0 of the attached paper). The ex-
isting procedures for doing BPA for the original
interval package were modified to perform 56 deci-
mal version.- In the single precision interval
package the implementation of the 1/0 routines

proved to be one of the most difficult tasks. This
was due to the required conversions between floating

decimal and floating binary. The correct roundings
nad to.be done for the conversions in either direc-
tion and the algorithms for the conversions

hecame rather involved. The implementation of

the 56 decimal digit intérval I/0 presented no such
nroblems as the internal representation of the in-
terval was already-in decimal. The only rounding
donc is on output when thé user requests less than
5C decimal digits of precision.

In the initial interval effort, the interval coun-
ternarts of the basic external functions were im-
nlemented through the double precision floating
binary routines in the Multics library. This ob-
viously would not be sufficient for the 56 decimal
implementation. The basic external functions had to
be calculated to a precision of greater than 56
decimal digits. To achieve this, the Fortran
iMultiple Precision Package, MPP, developed by Brent
(3) was used. The values produced by the basic ex-
ternal functions could be calculated to an arbitrary
precision using MPP. It was necessary to construct
an interface between Brent's routines written in
Fortran and the interval package written in PL/1.
The implementation of the SIN and COS routines pre-
sented an especially difficult implementation pro-
blem. The arguments had to be reduced to a value
between 0 and 2pi. A case analysis then had to be

——

made for each endpoint to determine the correct
interval evaluation of the SIN or COS function.

The case analysis depended on the correct 56 decimal
digit bounds on the numbers pi/2, pi, 3pi/2, 5pi/2,
3pi and 7pi/2. These constants had to computed
using the MPP.

References

(V) Abramovitz, M. and Stegun, I.A., (ed.),
Handbook of Mathematical Functions,
National Bureau of Standard Applied
Mathematics Series, June, 1974.

(2) Binstock, W., Hawkes, J. and Hsu, N., "An
interval input/output package for the
UNIVAC 1108," The University of Wisconsin,
Mathematics Research Center, Technical
Summary Report No. 1212, September, 1973.

(3) PBrent, R.P., "A fortran multiple-precision
arithmetic package," Department of Com-
puter Science, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, May, 1976.

(4) Crary, F.D., "The AUGMENT precompiler, I.
User information," - The University of
Wisconsin, Mathematics Research Center,
Technical Summary Report No. 1469,
December, 1974,

(5) Crary, F.D., "The AUGMENT precompiler, II.
Technical documentation,” The University
of Wisconsin, Mathematics Research Center,
Technical Summary Report No. 1470,
October, 1975.

(6) ~ Ladner, T.D. and Yohe, J. M., "An interval
arithmetic package for the UNIVAC 1108,"
The University of Wisconsin, Mathematics
Research Center, Technical Summary Re-
port No. 1055, May, 1970.

(7) Moore, R. E., Interval Analysis, Prentice-
Hall Inc., Englewood CTiffs, N.J., 1966.

(8) Reuter, E.K. and Podlaska-Lando, S., "Source
Listing for the MULTICS Interval
Arithmetic Package," Computer Science
Department Report No. 76-7-3, University
of Southwestern Louisiana, Lafayette,

. Louisiana, August, 1976.

(9) - Yohe, J:M., "Best possible floating point
. arithmetic," The University of
Wisconsin, Mathematics Research Center,
_Technical Summary Report No. 1054,
March, 1970.))

{10) Yohe, J.M., "Software for interval arithmetic:
reasonably portable package,"
Transactions on Mathematical Software,

to be published.

