TWO METHODS FOR FAST INTEGER BINARY-BCD CONVERSION

F.A. Schreiber, R. Stefanelli

Istituto di Elettrotecnica ed Elettronica

Politecnico di Milano
Piazza L. da Vinci 32
20133 Milano, Italy

Abstract

Two methods for performing binary-BCD conversion
of positive integers are discussed. The principle
which underlies both methods in the repeated divi-
sion by five and then by two, obtained the first
by means of substractions performed from left to
right, the second by shifting bits before next
subtraction.

It is shown that these methods work <n a time which
is linear with the length in bit of the number to
be converted.

A ROM solution is proposed and ite complexity is
compared with that of other methods.

1 - Introduction

The problem of converting the binary numbers, used
by the majority of arithmetical units in modern
computers, into a decimal output form, which is
still the most familiar to human users, has been
considered by many authors, for integers as well
as for fractionary numbers.

The core of the conversion process for integers is
the repeated division of the binary number by ten;
generally speaking, division is a complex and time
consuming operation and the different methods which
have been proposed are focused on fast algorithms
which take advantage of the peculiarities of the
divide-by-ten operation.

The integrated circuit technology made the hardware
solution competitive with the traditional software
routines from the point of view of the speed Vs,
cost x bit ratio /1/, /2/.

In the following, two versions of a hardware con -
verter are described for converting positive bina-
ry integers, presented in parallel form, into Bina-
ry Coded Decimals, which use a combinatorial array
divider to divide by five and right shifts, obtained
by appropriated wiring, to divide further by two.

The methods result in regular structures the conver-
sion time of which grows linearly with the number
of bits to be converted.

2 - The divide-by-five method

When converting a binary integer B to its BCD repre-
sentation, the i-th decimal digit Di is the remain-

der of the division of the binary integer Bi by ten
that is /3/

CH1412-6/78/0000-0200$00.75 (c) 1978 IEEE

D, = B, mod 10 = Zx(lEj/EJmod 5)4b. (1)

where Bio is the least significant bit of Bi’ i.e.

b, = By mod 2 and [A] denotes the integer part of

A. Moreover

8,1 = LLes-0074 /4 (2)

can be used in (1) for D1+], and the division can

be iterated until the last (most significant) deci-
mal digit is obtained, when the last binary integer
has no digits Teft.

If B is a multiple of five, to divide B by five we
can use the following relations

B = 5P p=B-4p (3)

that is the quotient can be obtained by subtracting
from B the quotient itself shifted left twice. As
it can be seen from the following example the two
least significant bits of the quotient correspond
to the Teast significant bits of B

0 0 b, b.g bn-Z"'b3 b, by by
Pn Pn-1 Pn-2 Pnoz Pyoge- Py Po 0 0 (4)
0 0 Py Py PyogeeeP3 by Py R

In this way it is possible to calculate the result
going from right to Teft, with a possible borrow
which propagates in the same direction.

However this method can be applied only if the divi-
sion has a null remainder. Otherwise we should add,
as a borrow, at the beginning of the subtraction
process, the very remainder we are looking for!

Things would go better if we could make the subtrac-
tion from left to right. This is really possible if
we solve equation (3) as

P =B - P

In this case the last generated borrow represents
the remainder of the division by-five, while the
difference, shifted right twice, consitutes the
next dividend.

200

00 b b

n n-1 b

..b3 b, b] bo

n-2* (5)

0 0 py Py PypeeP3 Py Py P,

Pn Pno1 Pp-g Pne3 Ppogo Py P 0 0
Two methods based on the same technique will now
be described.

In/1/Nicoud also suggests a method which works from
left to right. In the appendix a comparison is made
between the methods.

2.1 - The grouping-by-two method

For the first method, let us put, for the sake of
semplicity, the following positions

A = B base 4 5 Q = P base 4

that is we consider the bits grouped by two. With
such positions we get the bounds

€35 r=(0,1) (6)

We must now establish the internal structure of a
combinatorial cell wich can make the subtraction of
any two bits: figure 1 shows the cell as a black-
box. After a short reflection one finds the fol-
Towing equation

TR TS T PO B (7)
With the Timits given by (6), the left hand side
of equation (5) tells us that

3¢5, g7 (8)
while the right hand side of equation (7) allows
for

0<s, <6 (9)
Since both sides must be satisfied, we shall "a

priori" exclude all the input configurations for
which

-3 & Sy < 0 or 4« 55 < 7
Moreover many ambiguous situations exist since, for
given values of ;5 g5 and ris there are different

possible combinations of ;.7 and ry.y which sat-
isfy equation (7).

In these cases the ambiguity can be solved looking
one position ahead and imposing that 5.7 7 Q59
i stays in the limits of (9).

In this way we can build Table 1, which describes
a 4-inputs-2-outputs combinatorial function.
(Fig. 1).

201

S.l a8
0| 0
0t 1
0} 2
013
111
112
113
110
21 2
21 3
210
211
313
310
311
312
410
411
442
4 (3

Table 1

Figure 1

2.2 - The single bit method

The second method prescinds from bit grouping,
since it considers each bit of the subtrahend by
its own.

In this case, by direct inspecticn of (5), we find
the expression for the left-to-right subtraction

by = Py +ryq) = Py - 2y

which is easely rewritten as
by =Py +2ry =Py, t i, (10)

Expression (10) defines the cell of fig. 2.

I

-—.l‘i ri-l ———

Py

l

Figure 2

Since the right hand side of (10) is always posi-
tive we can admit as input configurations only
those satisfying the following Timits

0« b,

;TP T ary< 3 n

These limits are used in resolving ambiguous condi-
tions which arise also with this algorithm. In this
case however we must go ahead twc position to de-
termine the right values for Pi-z and rio1 The

combinatorial function is given in Table 2.

3 - The structure of the array converter

We must now arrange the combinatorial cells in such
a way that they can iteratively solve equation (7).
This is made in Figure 3 for the grouping-by-two
algorithm,

In the triangular array, cells belonging to a row
accomplish the division by-five. The different rows
work on the successive residues unti @ is obtained
as a quotient.

Since the least significant bit bio must be append-
ed to the remainder, one shift right of the
quotient must be made before grouping bits for the
next division. The division by-two is obtained by
scaling all the row-cells one place right. The mul-
tiplication by-two is automatically obtained by ap-
pending bi to the right of the remainder. We can
follow the converter operation in the follow-

ing example (borrows are appended as a left ex-
ponent to the minuend):

bg b; bg by by by b, by by
— T e o ———
B, T 0 1 0 1 1 7 0 1
A 2 2 3 2
0 0 0] 1
0 0 . 0 .2/ /1001
4Q, 2/ o/ 2 3 D,=9
B, 21 0o 01 0—
Ay 1 0 1
0 1 1 A
0o, 0 /3/ >—-01oo
4, 0 3 1 04
B, W I
Ay 1
0 /T\
0y /=001,
4 z Dp=3
That is: 101011101 —~0011 0100 1001 = 349
101011101 5=>=0011 0100 10
B D
i Py i Piay Piar Pip | Piez Ty
0 0 0 X X X 0 0
0 0 1 X X X 1
0 1 o0 X X X - -
o 1 1 0 0 0 0 1
0 0 1 1 0
0 1 X 0 1
1 0 X 1 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 0 0 0 !
0 0 1 1 0
0 1 X 0 1
1 0 X 1 0
1 1 0 0 1
1 1 ! 1 0
10 1 X X X - -
110 X X X 0 0
11 X X X 1 1

B i ﬁ—*—fﬁ Frﬁ—ﬁ{ [L
= ol le l : =

[P

OZZZ_I :.'-"1
s =y |l Fh [l
0., T,
e
|
=l
” ::J_
Figure 3

It must be noticed that if the lenght of the sub -
trahend is even, a @ must be considered for the most
significant bit.

The time taken for the conversion process is propor-
tional to the number n of bits to be converted 1.
More precisely, since the time taken from a single
cell to produce the quotient 9.9 is the same as
that to produce the borrow ri_1 » we can call this

time the "cell delay" t.4- Moreover, while the bor-

row propagates only horizontally from one cell to
the other, the q. bits must propagate also vertical-
1y, and the celld in the next row owing to the shift
right, must wait until bits of the partial quotients
a; and 9.7 are ready. For this reason the vertical

propagation time between any two rows is thcd.

Since the number of rows is |(n-1)/2] - 1, the
propagation time from the first to the second row
is t_ . only, and to complete the operation one more
horifgntal step is required, we conclude that,

in the worst-case, the conversion time is

T (5] - met gy v o (12)
e e g
propagation delay sum delay

where the second term takes into account the time

to sum the remainder bits, being t the delay of one
Togical gate.

The number N of cells required to convert n bits is
at most 2

1 Please notice that the least significant bit of
the number to be converted is not processed, but
it is only appended to the remainder. Therefore
the actual lenght of the examples showm is n + 1
bits.

& We noticed above that the gemeral grouping-by-
two structure works on an odd number of bits.
If the number of bits is even, the values of T
and Nl given here can be greatly improved. As an
example, conversion of a 16 bits number requires
only 23 cells and a time T = 7 t ., + 21(see the

7 . ; ed
example in the appendiz).

203

int(=5—)-1
—
N= 2. (2+i)
0

? Figure 4 shows the array when the non-grouping al-
; gorithm is used.

———

...... be- |- - - 4
...... ke |- -

e -« ~ fe-f- - -

TXT
KR
[RR

credembed

In this case there are three paths which propagate

from right to Teft. This is true only appearently;
in fact these paths represent partial results ob-
tained from cell i-1,
obtained from cell i+] so that no time delay is
troduced through these Tines.

The following example shows the operation of the
single bit method

which computes them from data
in-

Figure 4

&AL
tat
[

1YY

If again tcd represents the internal delay of a

cell, the maximum horizontal propagation delay is
(n-1) % tcd‘ The vertical propagation delay is cal-

culated by noticing that the i-th cell must wait
until b1._2 is ready before producing Pip and riop

so that a total delay of 3 % tcd is introduced by

each cell. However by inspection of the structure
of figure 4 we find that the maximum Tength path
takes

n-1
L:_j_ij * 3tcd + (n-1) mod 3xtcd = (n-])itCd

so that the conversion time becomes

T={(n-1) » tcd + 27
—_— | C— (]3)

propagation delay sum delay

The number N of cells required to convert n bits is

[ﬁ;q
N = 2:1 E”‘”‘i]

By comparing expressions (12) and (13) it results
that the grouping by two converter is slightly
faster. However this result depends on the actual
values of the cell delays t _, which, in turn,
heavily depend on their imp?gmentation.

It is important to notice, however, that the con-
version time for both algorithms is proportional
to the number of bits to be converted, a fact
which compares favourably with times given in /2/
and /3/ .

As to the actual implementation issues, since they
are heavily technology dependent; we are giving
some comparison results in the appendix.

4 - References

/]/ J.D. Nicoud - "Iterative Arrays for Radix Con-
version”, IEEE Trans. Comp., Vol. C-20, Dec. 71,
pp. 1479-1489.

/%/ 3.F. Couleur - "BIDEC - A Binary-to-Decimal or
Decimal-to-Binary Converter", IRE Trans. on
Electronic Computers, Dec. 1958, pp. 313-3T6.

/3/ R.L. Sites - "Serjal Division by ten", IEEE
Trans. Comp., Vol. C-23, Dec. 1974, pp. 1299-
307.

Appendix

A rather straightforward way for implementing the
combinatorial cell defined by Table 1, is to imple-
ment two functions for both cases a;_7 <s and

a:_ 1 25. Such functions which have a five varia-
b1el input (a] i7 3 50 9y s 9 s ri) and a three

variable output (q] .10 G 5_y» r1_1) can be
easily found as a two level minimal form using, for

205

example, a simple method such as Karnaugh maps.
A circuit is implemented apart with a two cell pa-
rallel adder for calculating a; +q; and an AND

gate to add further 4r1, a two cell XOR circuit to
make the comparison with a, ., and AND gates to
make the selection between the two functions.

The boolean equations resulting for the functions
are the following (we drop the index i):

a) s a4
T =0
9,173y T Ha, T+ E] r+a, r+a]aiﬁé + a]a261

92,i-1782 9 * 35 0

b) s> ;1
R
q1,1._1=a]r + C|] r + a]azq]qz + a] 32 q] q2

92,1-1732 O + 35 q,

We can notice that these functions can be implemen-
ted with a three level combinatorial network reduc-
ing the total gate count to 12.

The comparison circuit however requires a five le-
vel network and the selection circuit another two
levels so that the total cell delay for this imple-
mentation amounts to tcd =7 1, if t is the single
gate delay.

The cell defined by the combinatorial function of
Table 2, which is a six inputs-two outputs function,
is also described by the following equations:

Pig = "y (b5 8 py) + (by 8 py) g

o=y (B By + (bs 8 py) X,
where ‘
im0 (i B g) by by By

It is possible therefore to implement it with a
four level AND/OR network. It is interesting to no-
tice that, since OR gates can have at most one
input at logic level "1" they can be realized as
wired OR" connection, so reducing the number of le-
vels to two only.

Signals involving bﬂ‘,_‘1 and P;-7 can be drawn from

the first and second level gates of the i-1th cell,
so reducing the overall circuit complexity (fig. 5).

The total delay for this cell is therefore at most
t =4 1.
cd

However the fastest solutions for combinatorial
functions implementation are to be found, with to-
day and probably even more with future technologies,
by using ROM's.

For the sake of comparison let us focus on a ROM
implementation for the combinatorial cell defined
by Tab. 1, which produces the fastest structure.

- b, b -
U B E S S S)
b p, = 5, _,p._
Py] i-1¥i-1
by 8 R bi_1 8P
e B3 T, E——
i Pi_3 i-1
Figure 5

This cell, as shown in fig. 1, is a 7 bits input 3
bits outputs one and it could be implemented by a
128x4-bits words ROM.

However this would be a rather inefficient solution,
since many of the 128 words would remain unused.
Then let us decompose the cell as shown in figure
6.a; the upper subcell evaluates s., while the
lower subcell produces the outputsT If we consi-
der a row in figure 3 we can shift right 1 place
the Tower subcell to obtain the structure of fi-
fure 6.b.

...,_Ii_l

95-1

Figure 6.a

In this case the cell has a 5 bits input (2 for a,
and 3 for Si+1) and a 5 bits output (2 for q; and

3 for Si) which make a 32x5-bits words ROM .

We can now compare our two algorithms and Nicoud's
one in terms of number of bits required in a ROM
implementation of the resulting structure. lLet us
consider an infinite row of cells (an infinite co-
Tumn for Nicourd's algorithm) and let us take n
cells; since the cell of Tab. 1 is used to convert

2 bits, we must compare it with twice the number

of cells for the algorithm of Tab. 2 and for Nicoud's
algorithm, which both work on a single bit.

If now we should like to implement the n cells with
a single ROM the number of bits in it would be given
by
address length
e e,
(n0 of output bits)xZ(no of input bits)
S —
word length

Table 3 shows the ROM dimensions for the conside-
red methods. It results from it that the grouping-
by~two method requires the smallest ROM.

Moreover, if instead of considering an infinite row,
we consider a finite one tc be implemented with a
single ROM, the boundary conditions for the grouping-
by-two algorithm show that the most significant cell

Figure 6.b

Method n® of bits in the ROM

grouping-by-two (Tab. 1) (2n + 3) % 2 (&n*3)
Nicoud's /1/ (2n + 3) % 2 (2n+4)
single bit (Tab. 2) (2n + 2) % 2 (20%5)

n=n° of cells = n° of bit couples

Table 3

(index m) reduces to the external input as since
Pm = 0s G, = 0, and Speq = 05 the least signi-

ficant cell (index 0) reduces to the lower subcell
alone having the external input a_ = 0 which, being
a constant, needs not to be 1mp1eﬂented as an
actual input, and the external outputs 9 and o
The ROM implementation of an n-cells row in figu-
re 3 requires then a number of bits given by

(2n + 1) & 22"

As a final example, a 16 bit converter is shown in
Figure 7. A1l the intermediate results are also
shown in the conversion process from
(11111111]1111111)2 to (65535)]0; for clarity

reasons, the values of the intermediate s; are not
shown in the figure.

AL 1

=]

-

Q-]

Figure 7

207

