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ABSTRACT

In this paper the properties of p-imaginary
number systems are reviewed and a modified bi-
imaginary number system is introduced as a special
case with p = 2, Major properties, including con-
version of integer and floating point operands re-
presented in a radix +p system, range, sign and
zero tests, and shifting are discussed. The ability
to represent the operands as vectors of radix -2
digits suggests advantages in implementing machine-
usable arithmetic algorithms.

1. Introduction

Since Knuth [1] first introduced an imaginary
number system for representing complex numbers,
several articles were published suggesting various
algorithms for performing basic arithmetic opera-
tions. Nadler [2] presented division and square
root methods for complex operand representation in
the quater-imaginary number system, following the
approach taken by Knuth and extending it to al-
gorithms more realizable within the constraints of
a computing machine. Prior to their work, several
investigations had been carried out in the area of
negative radix number systems and their application
to performing arithmetic operations on real numbers.
Pawlak and Wakulicz [3] in 1957 were the first to
suggest the use and summarize the advantages of em-
ploying a negative radix system in the arithmetic
unit of a computer. Wadel [4], [5] followed up on
their results with a more comprehensive review of
negative radix number systems and derived conver-
sion algorithms from conventional positive radix
representations. Dietmeyer [6], and then Pongracz-
Bartha [7] presented the properties that linked
negative and imaginary radix number systems in ex-
tensive detail. The latter also derived algorithms
for arithmetic operations using imaginary number
representations. However, the algorithms were
neither faster nor more cost-effective when im-
plemented in hardware than those of equivalent
binary arithmetic units. More recently, Sankar [8],
Zohar [9], Kanani [10] and Agrawal [11%, [12], have
presented various negative radix arithmetic al-
gorithms together with hardware realizations that
begin to compete in practicality with equivalent
function binary units.
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This paper reviews the properties of imaginary
number systems, showing the relationship with neg-
ative radix systems. A number system based on a
bi-imaginary radix with certain modifications is
described and the major properties illustrated.

The ability to represent complex operands as vectors
of radix -2 digits in both integer and floating-
point formats suggests advantages in implementing
simple, machine-useable arithmetic algorithms and
therefore in designing hardware arithmetic units.

2. P-Imaginary Number Systems

2.1 Representation

The complex number Z in the p-imaginary num-
ber system with radix i/p, with an integer p > 2
and i = /-1 is represented by the digit vector Z,
following the notation introduced in [13], where
Z consists of the set of K+J digits:

Zy 1 Zgp e Iy ZMIy - 2

-J

The digit values are 0 < Zj < p-1, and the symbol A

designates the reference point, which serves an
analogous function as the radix point. This rep-
resentation falls under the classification of a
non-redundant positional number form, where the
weight associated with a digit is determined uni-
quely by its position in the vector, and there
exists only one unique digit vector for a partic-
ular number in the complex plane. A vector Z
represents the unigue humerical value denoted as

K-1 K
Z= 1z Zk(i/p)
k=-J

which can be written as:

K-1 K
1= 3 zk(i/p) + 1
1

. k
z, {(ivp) =17 +1
k=0 k=1 K L

R
The first term ZL above describes complex values

represented by the digité to the left of the
reference point. The second term Zp

describes the complex values represented
by the digits to the right of the
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reference point. All even positions £ k (to the
right or left of the reference point) represent
real quantities; all odd positions represent ima-
ginary quantities. A convention is adopted
whereby all digits to the left of the reference
point (representing integers) are designated as
having left-side values; all digits to the right
of the reference point are designated as having
right-side values. This simplifies the problem of
description that arises because in the p-imaginary
system both integer and fractional parts may be
represented either by ZL or by ZR alone.

For a given integer value of p (p = 2) there
exists a unique weight vector W associated with
the digit vector Z, where the elements are the
weights:

W, = (i/p)k; with K-1 =

iA
=
In

(=

The weights Wy betong to four categories,

which are identifiable by the values of the
modulo 4 residues of the indices k, designated

by 41k. For any integer j, we have the following
weights:
(a) Real-valued, positive when k = 4j, or 41k = 0:
W = (ivp) ¥ = p%
(b) Real-valued, negative when k = 4j+2, or
47k = 2:
. j+ 23
W, = (ivp) 2 = (p)p?d
{c) Imaginary-valued, positive when k = 4j + 1, or
Tk =1:
. j+ . 23
W, = Givp) T = (vp)p?
(d) Imaginary-valued, negative when k = 43 + 3, or
a7k = 3:
- 43+ . j
w = (ivp) N = (~ip/p)p?d

We note a similarity with the weights of the radix
-p representation (p=2): the weights of the even
positions (k=4j or k=4j+2) are the same as

the weights of the consecutive positions

(23, 23 + 1) in the radix -p system. Multiplying
these weights by iv/p will give the weights of the
odd positions (k= 4j + 1, or k = 4j + 3) of the
p-imaginary representation.

2.2 Relationship with Negative Radix Systems

If 7 is rewritten to separate the real and
imaginary parts, the relationship with the -p
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representation becomes obvious.

K]-1 K2-1
k| . k
=1 zp(-p)" ¥ T zp,(-p)
k=-J k=-J
1 2
where K] + K2 + K, J] + J2 =Jand Z is a K+ J

digits long vector. It is apparent that both the
real and imaginary parts of the Z vector follow a
-p radix representation with the digits placed in
the appropriate even and odd positions, respecti-
vely. That is, consider representing some
complex number Z, with real and imaginary parts
denoted RefZ] and Im[Z] respectively, so that

2 =Refz] + iIm{Z]
as a p-imaginary K+J digits long vector Z. First,
it is necessary to find the -p radix digit vectors

which represent Re[Z] and Im[Z3/vp. Let:
A = Re[z], and B = Im[Z]/Vp
K1-] ) K2—1 )
where A= T a, (-p)°, and B = T b (-p)
_ k _ k
k=-J, k=-d,

with 0 < 3 bk sp-1.

Observing that, (—p)k = (1/p)2k and multi-
plying the value B by i/p, we get:

K,-1
. v
/p)B = 1 by (ivp) K]
k=-J,
Also denoting:
g =85 Iy T by

and recalling:

vp B = Im[Z]; and A = Re[Z]
then the required digit vector Z is derived in

the p-imaginary radix, such that

K-1 K
7= =t z,(iVp)

k=-J
Clearly, the conversion process is reversible.

Given the digit vector Z, the ak and bk are

readily available, since

A T ek

B = Zoks
and hence the digit vectors A and B can be found.




We note that in deriving the B digit vector,
the quantity Im[Z]/Vp has to be determined. If
vp is a rational number, this need not be a
problem. For example, if p = 4, and hence the
radix is 21, the familiar quater-imaginary system
results, illustrated in the following example.

Example 2.1

Consider representing the quantity Z =1 + i.

Then, in the quater-imaginary system,

Re[Z] = 1, and Im[Z] = 1;
which gives:

A = 01a00; B = 01420.
Hence

Z = 11a20.

As Knuth {1] points out, using a bi-imaginary
radix, with p = 2 and radix /2i, all digits come
from the set {0, 1}, making this system attractive
for implementation in digital hardware. The ob-
vious problem is that the number Im[Z]/vp will
always be irrational if Im{Z] is rational; for
example 1 cannot be represented in a non-termi-
nating way, producing truncation and rounding
errors. This is the major reason why most ap-
proaches to date have concentrated on the quater-
imaginary number system in deriving algorithms
suitable for machine operation, although four
digit values, namely {0, 1, 2, 3} are possible,
instead of the familiar binary set. A means of
modifying the bi-imaginary system to make it more
suitable for implementation is presented in
Section 3.

2.3 Conversion from Positive Radix Systems

Assuming that a number 7 is represented as
a digit vector in the +p radix system, then a
conversion to the -p radix representation is
necessary prior to deriving the required Z digit
vector in the p-imaginary system as described in
Section 2.2. Pongracz-Bartha [7] unified the
conversion rulss from the +p to the -p number
system outlined first by Wadel [5] for the case
p = 2, and by Knuth [1] for p = 4. The rules in
general are lengthy and are not repeated here.
Dietmeyer [6] detailed the rules necessary for
the direct conversion of a sign-and-magnitude
+p radix-fixed point number into the p-imaginary
number system. The complexity of the direct
method with the many operations required for
ensuring that the number to be converted is within
various bounds for different digit vector lengths
and values of p, makes it difficult to discuss it
in general.

The approach here is to .introduce the reader
to the references describing the general +p to
p-imaginary radix conversion rules and to describe
the special case of p = 2. An example for the
case of p = 2 is appropriate to illustrate the
two-step conversion.
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Example 2.2

Convert the complex number Z = -5 + 81,
originally represented in two's complement
binary format as the two digit vectors:

Re[Z], = 11011A, and In[Z], = 01000

into the bi-imaginary radix represetnation.

Step I: Conversion from the +2 radix to the -2
radix.
A=-5; B= 55656
3 ‘/2 .
A = Re[Z_]_2 = 01111400000
B = Im[;_]_2 = 11010411111
Step II: Conversion from the -2 radix to the iv/2

radix.

where the underlined digits come from A and the
non-underlined digits come from B, as discussed
in Section 2.2.

2.4 Range, Sign Test, Zero Test, and Shifting

An interesting property of the p-imaginary
number system is that the ranges of both left-
side and right-side values extend over positive
and negative, real and imaginary values. Define
the left-side and right-side parts of Z as ZL and

ZR respectively, so that following the notation of
Section 2.1,

K-1 ( )k
Z = I z, (ivp
L7 2o k

J ( K
l,= T z (ivp)~
R Tk

Assuming K] + J] real-weighted digits, and
K2 + J2 imaginary-weighted digits, we have:

Jy )
RE[ZR] = ki] Z_Zk(-P)
J
_ 2 -k
Im[ZR] = '/P ki] Z—2k+] (‘P)
K1—1
[z,] = &z, (-p)F
Re = -
L k=0 2K




K,-1

[4
Im(z, 1= V/p k§0 szH(-p)k
The range of numerical values for each part is
found by subst1tut1nq the values of z; that give
the maximum and minimum values. Detaq]ed deriv-
ations are given in reference [14].

For right-side values (assuming Jp =, = N)

the bounds are, for an even value of N:

-N
p) 1P g
( p) p+] < Re[ZR] < EET—
1-p N __P_
(-pvp) S In[Zp] < ShT
For N odd, the bounds are:
-(N+1) -(N-1)
- I . !
{-p) p+1 = Re[ZR:| - _~EB:1
-(N+1) -{N-1)
(- p/p)——E———~—— < Im[ZR] s vVp l:E—BIT__

In the limit, the upper and lower bounds for
infinite-length right-hand sides are obtained
by letting N approach an infinite value. The
bounds then-are:

. 1
< RelZpl <
- _Eﬁﬂ_ < Im[ZR] < __KR_

p+l ptl

For left-side values (assuming K]—] = K2-1 =

N), that is, N+1 digits each, the bounds are, for
an even value of N:

N _ 1 N+2 )
(‘P) p+] < Re[ZL] < p;T—_
N N+2
p_-1 P~ -1
{(-p)vp 5 < Im[ZL] < /pv ra
For odd values of N, the bounds are:
N+1 N+1
_ -1 -1
(-p) B s Relz] = Bt
N+1 N+1
ey D =1 e -1
(-p)vp s < Iz 1= /p 571

The sign test is performed separate]y for
the real and the imaginary parts of Z. To iest
real opart, the 1o7Nnost non-zero avon-indered

s
PR

digit Z is found.

If its index k is a multiple

of four (i.e., 4]k = 0), the sign is plus; if it
is not (i.e., 41k = 2), the sign is minus. To test
the imaginary part, the index k' of the leftmost
non-zero odd-indexed digit 2y is found. If 41k'=1,

the sign is plus; if 4|k' = 3, the sign is minus.
To perform the zero test, we note that the real
(imaginary) part has the value zero if and only
if all even-indexed (odd-indexed) digits have
zero values.

To perform a shift of magnitude f on the
p~-imaginary digit vector Z every digit Z, be-

longing to position e is reassigned to the position

+ f, the sign being negative for a right shift
and positive for a left shift. The value of a
shifted number Z* may be written,

= (- D) Givp)tF + D,

where
- RN S
7 = T zk(1/p)
J

D] is the value represented by f discarded digits

at one end, and Dﬁ is the value represented by f
inserted (new) digits at the other end.

We note that the conditions D] = 0 and
D, = 0 must be satisfied when the shift serves

as a scaling algorithm. Furthermore, and odd
value of f will switch digits between real-weighted
and imaginary-weighted positions and is not useful.

A multiplication by pz(or p_z) occurs when the
left (right) shift. is by four positions. .(f = + 4),
A shift by two positions (f = + 2} will multiply
the operand by -p or -1/p for left and right
shifts, respectively. Both.f =2 2 and f = 4
shifts are discussed further with respect to
floating point representation.

2.5 Floating-Point Represéntation

A convenient floating-point form of the p-
imaginary number Z is:

J
=)tz = (vpF oz, (v

k=1

where the exponent E is a real-valued integer and
the coefficient Zp is the right-side value of a

digit vector ;R:

Although there is no restriction on representing
£ in any radix, including hinary, there may be an
advantage in feta1n7wo cgmpatwbrq,wy A arithme-
i oa ~iehms Tor both the coeffinitag and the
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Figure 1. Range of Coefficients ZR

exponent parts of floating-point operands by
using the -p radix to represent E.

The digit vector ZR is defined to be

“normalized" in the context of the p-imaginary

number system, when at least one of its two left-

most digits (2_1, 2_2) has a non-zero value.
Under this convention, a nomma]ized_;R may have
one of the following three forms:

(i) ZR FAG Qs Zgs el 5 2y
(i1) ZR =a 0, q, 2_3, vee Z_J
(i11) ZR = Aq, O, 2_3, ee Z-J

where 1< q < (p-1), and 0 < z) s (p-1) for
-3 2k 2 -d.

Recall that only even shifts (f = 2,4,...) are
useful for p-imaginary digit vectors. For this
reason a two-position shift is defined to be a
unit shift; however, the value of the exponent
E is decremented (or incremented) by two for
every left {or right) unit shift of the coeffi-
cient.

i
!
|
{
-1 I
p(prTL | -p(A+iB)
\: A Re[Z,]
X P2 N
P _
ptl : 1
/ R (i Tptl
Zo = p*(A + iB) X

The ranges for infinite-length right sides,
as given in Section 2.4, are plotted on the complex
plane to show the normalized region. As shown in
Figure 1, the smaller area around the origin repre-
sents the region of values for unnormalized right-
side vectors. An arbitrary unnormalized right-side
value, A + i B, as depicted, is unit-shifted left
(one pair of positions at a time), performing mul-
tiplication times (-p) for each left unit shift,
until it falls inside the normalized region. Note
that each unit shift causes the vector to change
direction by 180 degrees in the complex plane,
although the ratio of real and imaginary values
remains unchanged. The exponent E is decremented
by two for each unit shift. This compensates for
the change of sign which takes place when ZR is

multiplied by (-p) as follows:

)E-Z

(ivp (iVp)E 2 (ivp) 2+ (-p)

'ZR(‘P)

(i),

Conversion of a floating-point complex number
initially represented in the +p radix system into
the p-imaginary radix system generally follows the
two-step procedure discussed in Section 2.3 for
fixed-point quantities. However, the ranges of
values of both the exponent and coefficient of a
number represented in the +p radix system are dif-
ferent from the ranges representable in the -p
radix system. A range test must be applied before
the conversion process, to assure that the con-
verted number can in fact be represented in the
p-imaginary floating-point format already des-
cribed. A detafled description of floating-point
conversion is given in [14].

3. The Modified Bi-Imaginary System.

3.1 Definition and Conversion

The bi-imaginary number system is the p-
imaginary number system with p = 2. Hence with
radix iv¥2 the complex number Z can be represented
as a (K+J) digit vector Z, where

K-1 K
1=z zk(i/Z) , and zke(0,1).
k=-J

As discussed in Section 2.Z and originally
suggested by Knuth [1], there may exist advan-
tages to this number representation when designing
logic circuitry because of the binary digit
values. The problem that Gaussian integers X+iY
(where X and Y are integers} are represented in a
non-terminating way can be overcome by introducing
the following modification of the bi-imaginary
system.

In Sections 2.2 and 2.3 the complex number
Z = Re[Z] + iIm[Z].

was converted to the p-imaginary representation by
first finding the -p radix representation of
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A = Re[Z], and B = Im[Z]//p

and then merging the digits a and bk into

alternating positions of the p-imaginary digit
vector Z.

To avoid the non-terminating representation
of B, we will represent the complex number Z by
the complex number Z*,

2" = Relz*] + iIn[Z'] = Re[Z] + i(y2 Im[2])

Now, to convert to the bi-imaginary representation,
we find the radix -2 representations of:

A" = Relz], and 8% = (v2 Im[Z]) /v - Im[Z]

Every Gaussian integer Z now has a terminating
(exact) bi-imaginary representation Z* which
differs from Z by the scale factor v2 that has
been applied to Im[Z]. The presence of this
scale factor causes changes in ranges of repre-
sentable numbers and requires corresponding mod-
ifications of arithmetic algorithms. ‘

It is evident that in addition to p =2,
the proposed modification may be applied to
every other value of p, and it is especially
useful for those values of p that are not perfect
Squares, such as p = 8, p = 10, etc. In each
case, Im[Z*] represents vp Im[Z], while Re[Z*]
represents Re[Z] directly. The modification in-
Creases the practicality of using the deci-
imaginary representation with the radix iv/10.

A division by vp must be performed on
Im(Z*] in order to get Im(Z] during or after
reconversion of the final results into radix +p
for output.

To illustrate the conversion, we use the
operand Z = -5 + &i, which was used in Example
2.2.

Example 3.1

Convert Z = -5 + 8i to modified bi-imaginary
radix representation

*

= Re[Z]_, = 01111a

*
B

In(z]_, = 11000

*
Z =10110101014
where the underlined digits come from A* and

*
the other digits come from B . Contrary to the
result of Example 2.2, ;* represents a Jeft-side
value only.

3.2 Properties of Modified P-Imaginary Systems

The ranges of representable right-side and
left-side values for the p-imaginary systems were
presented in Section 2.4. The modified

p-imaginary system has exactly the same values for
the real parts of ZL and ZR’ The ranges for the

imaginary parts of ZL and ZR are reduced by the

factor vp because of the modification. We note
that in Sec. 2.4 all bounds of the imaginary parts
were equal to ¥p times the bounds of the real
parts. The reduction by v/p makes the bounds of
the imaginary parts equal to the bounds of the
real parts. The conclusion is that the bounds
which were derived for the real parts Re[ZR] and

Re[ZL] in Section 2.4 also apply to the imaginary
parts Im[ZR]and Im[ZL] when a modified p-imaginary

system is used. The resulting uniformity of bounds
is a useful simplification.

The sign tests and the zero test of the
modified p-imaginary system are not affected by
the modification and remain the same as those for

the p-imaginary system, discussed in Section 2.4,

The left and right shifts for scaling (mul-
tiplication or division by -p) also remain un-
changed and follow the rules of Section 2.4.

Floating-point representation is affected
only because the range of imaginary parts Im[ZR]

is reduced by vp. The discussion of Section 2.5
applies throughout, with only one change in
Figure 1, where the three boundary values on the
Im[ZR] axis must be divided by vp and become

equal to the corresponding boundary values on the
Re[ZR] axis.

3.3 Arithmetic Algorithms for the Modified
Bi-Imaginary System

The modified bi-imaginary system appears to be
of the most immediate interest because of its
close relationship to binary systems. For this
reason we go from the general radix iv/p to iv2
in the following brief discussion of arithmetic
algorithms. Detailed discussion of the algorithms
is given in [14].

3.3.1. Additive Inverse. As observed by
Knuth [1], Songster [15], and others, the additive
inverse (negative) of a number represented in the
-2 radix cannot be formed merely by a change of
sign digit as in the sign-magnitude binary repre-
sentation.

A convenient method to find the additive
inverse of a number N represented as a -2 radix
digit vector N, is to shift N one digit to the
left, getting (-2)N and then add it to N to get
the representation of -N. The analogous procedure
for a complex number Z, reprasented as the digit
vector Z* in the modified bi-imaginary radix, so
that

2" = Re[z] +iv2 Inf7]

is to shift the entire vector Z*two places to the




jeft, thus getting the value -2Z% and then to add
the shifted vector to Z¥ This gives the new digit
vector X such that

* *
X =17 -22 = - Re[Z] - iv2 Im[Z]

We note that this method is not suitable for other
values of p.

3.3.2. Complex Conjugate. As an extension
of the discussion of the additive inverse of a
complex number represented in the modified bi-
jmaginary system, we derive the algorithm for the
complex conjugate Y* of Z* which is defined as:

v = Re[z] - iv2 Im[Z]

To obtain the digit vector Y*, we must shift only
the imaginary part two p]acgs to the left and then
add the shifted digits to Z*, thus obtaining:

Y* = Re[z] + iv2 Im{Z] - 2iv2 Im[Z]
= Re [Z] - iv2 Im[Z].

This algorithm depends on the existence of sel-
ective shifting, i.e., provisions to select only
the digits of the imaginary part for the shift
operation. We note that the algorithm is based
on the additive inverse and therefore specific
for p = 2.

3.3.3. Addition and Subtraction. The
bi-imaginary addition and subtraction algorithms
[1], [7] are not affected by the modification of
the representation. The real and the imaginary
parts are added or subtracted separately as
operands in the negabinary representation, giving:

S* = x* + 7* = (Re[X] = Re[z]) + iv2(Im[X] * Im[Z])

The carry-save principle can be directly extended
to jmplement multi-operand summation for three or
more operands. Details of implementation for '
two-operand "lookahead" fast addition and for
multioperand addition are presented in [14]. A
convenient jmplementation of the subtraction
D¥ = X* - Y* is obtained by using a three-operand
adder to add the additive inverse (see 3.3.1.
above) of Z* to X*:

*

D¥ = X* 4+ (2" - 27%)

3.3.4. Multiplication. The modification of
the p-imaginary representation leads to a change
in the complex multiplication algorithm. A
direct multiplication of two complex operands
represented in the modified p-imaginary system
would yield:

(A + ivpB)+(C + i/pD) = (AC - pBD) -+ iVp(AD +BC)

The imaginary part has the required value, but

the real part should be (AC - BD}; therefore the
term (p-1) BD must be added to the real part ob-
tained as above. 1In the case of p=2, the required
correction is the addition of BD to the product
formed by the ordinary bi-imaginary multiplication
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algorithm. A convenient implementation of this
correction results when the terms representing

BD are identified as they are formed during the
bi-imaginary multiplication and are immediately
added to the developing product [14]. Using this
approach, multi-operand summation and multiplier
recoding techniques are very well adaptable to
implement fast multiplication in the modified
bi-imaginary representation [14].

3.3.5. Division. It was pointed out by
Knuth [1] that the conventional remainder-genera-
ting division algorithm in which successive
quotient digits are selected was poorly suited
for his proposed. quater-imaginary system. Nadier
[2] tater described an adaptation of a convergence
scheme which he had called "the method of radixes".
In the present investigation it was concluded
that the most effective method of division for
modified bi-imaginary operands is an adaptation
of the convergence algorithm as implemented in
the floating-point unit of the IBM System 360
Model 91 computer [16]. This approach is based
on the existence of a high-speed multiplication
algorithm and is discussed in detail in [14].

3.3.6. Floating-Point Algorithms. The logic
design of a floating-point modified bi-imaginary
arithmetic unit has been performed [14]. The
implementation of floating-point algorithms did
not encounter any unexpected difficulties. The
range of the coefficients ZR’ when limited to

right-side representations (as described in
Section 2.5) is for the normalized part:

1
- EET < {RelZp], Im[Z 1) < - Ty

which gives a range between -2/3 and - 1/6 for
the modified bi-imaginary operands. We note that
a normalized number, as defined in Section 2.5,
may have only the real part, only the imaginary
part, or both parts in the normalized range. A
range closer to the customary 1/2 to 1 range can
be obtained by allowing two (or four) digits to
the left of the reference point. With p=2, we
then have the range between 4/3 and 1/3 (or - 8/3
and - 2/3). The sign of the floating-noint num-
ber is controlled by the sign of (iv2)E; there-
fore the normalized parts of the coefficients are
either all positive or all negative. During shif-
ting the exponent E is incremented or decremented
by even values only. For this reason the values
of £ for input operands can be restricted to even
values.

4. Conclusions

The results of this investigation of p-
imaginary number representations show that the
proposed modification eliminates the major dis-
advantage of inexact representation of integer
imaginary parts for the bi-imaginary, deci-
imaginary and other p-imaginary representations
in which p is not a perfect square. A floating-
point representation has been defined and its
major properties have been identified. On the
basis of the results reported here and detailed
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in [14], it is concluded that the modified bi-
imaginary and other modified p-imaginary
representations fall into the set of potentially
useful candidates for the implementations of
arithmetic units for complex arithmetic.
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