ARITHMETIC CIRCUIT FAULT DETECTION BY MODULAR ENCODING

Antonin Svoboda

UCLA Computer Science Department
University of California

Los Angeles, CA

Abstract

Design principles of self checking digital
circuits are in the focus of the general interest
and many papers exist treating that subject. The
use of special data encoding techniques, suitable
algorithms of arithmetic, special hardware ele-
ments have been proposed long ago. The purpose
of this paper is to show that the design can pro-
duce rather simple self checking circuit when the
design principles are chosen which collaborate
harmoniously:

1)
2)

decimal numerical system is used

decimal digit d « {0, 1,...,9} is rep-
resented in the Diamond Code by the
5-bit binary number f = 3-d + 2

3) decimal digits' addition algorithm
introduced here is simple and effective
so that 10 decimal digits can be added

in parallel

4) dimplementation of the addition algorithm
by conventional Full Adders results in

in a single fault detecting circuit.

The design of a decimal adder for 10 decimal num-
bers, each with 10 digits, is described here as an
illustration. It shows the way how to design
other decimal arithmetic circuits which are single
fault detecting, for instance a multiplier (der-
ived from the adder for 10 decimal numbers).

1. Introduction

The present arithmetic design practice, es-
pecially when dealing with medium or large size
computers, is based on binary numerical systems.
The use of decimal system is connected (better:
it is believed to be connected) with a slow-down
of operation because most frequent arithmetic
operation - addition - is performed in two steps:
binary addition first and then decimal digit code
restitution. Roughly speaking the speed is cut in
half.

The slowdown of the adder for a large num-
ber of decimally encoded numbers (presented here)
is insignificant because the code restitution is
done only once after a parailel binary addition of
many (typically 10) numbers.

*This research was supported by the National
Science Foundation, Under Grant No. MCS72-03633
AQ4,

CH1412-6/78/0000-0208500.75 (c) 1978 IEEE

208

90024

The adder is shown to be SFD (Single Fault
Detecting) an attractive feature for some applica-
tions.

The decimal digits are encoded in Diamond
Code (one of the Brown Codes [1]) so that the al-
gorithms of the arithmetic become very simple for
hardware implementation [2]. The adder can be
used to design a very fast multiplier. A1l ten
multiples 0:D, 1:D,..., 9-D are prepared during
the execution of the instruction: FETCH the
multiplier D*. Then the execution time of the
instruction MULTIPLY D by D* with 10 decimals has
only two components: time needed to add a column
of decimal digits (addition of only 10 five bit
binary numbers) and time needed to add two decimal
numbers. Note that the result's accuracy is e-
quivalent to the accuracy of a 33 bits x 33 bits
binary multiplication.

2. Algorithmic Structure Of The Decimal Adder.

The adder
of course.

must process numbers of both signs,

The input format for input numbers N is
shown in Figure 1. To fix ideas 10 significant
digits plus sign digit are supposed as an example.

L d9 d8 d7 6 ,5 4 3.2 .1 0

d-d"d d°d"d d
t
Sign digit: O.or 9
Figure 1: Input number format: Sign digit, deci-

mal point, ten significant digits.

“Tenth's complement" rules are used to handle the
sign:

Decimal digit:
d'e {0, 1,...,9} for i =

0, 1,...,9 (2.1)
Sign digit:
d'% ¢ 0, 9 (2.2)
Zero and positive numbers:
N=D2>0withd? =0 (2.3)

Negative numbers:

n=D-10<0withd%=9 (2.4)
The interval for N;
-1 < N <] (2.5)
The value of D:
D= (6101010 + 4%.10% .. 4a%100) 10710 (o)
Figure 2 represents the decimal digit pattern
written when 10 numbers Dk, k=20,1,..., 10
defined in Figure 1 are added by hand.
Sign digits
11179 87 6 5 4 3 2 10-= i
O
o o o] o o © o o [ood—D'IO
TOta]=X=ooooooooocoo
Sign digit
Figure 2: Addition of 10 decimal numbers
Dk’ k =1,2,...10 by hand proceeds
column by column (i = 0,1,...,10)
The total X = ¢ Dk for all k.
The columns of the pattern are indexed by
i=0,1,..., 11, the rows by k =1, 2,..., 10.
The row k contains the number
= (dg 10" w0010 s a)).10719,
1 10
where dk = dk (2.7)

The digit d; belongs to the row k and to the

The column i=11 is identical with the
That column must be added to get the

column 1.
column i=10.

correct total (Figure 3) whose digit x]] is nec-
essary as sign digit.
11 /
; X10 X9 x8 x7 X6 X5 x4 X3 X2 x] XO
Sign digit: 0 or 9.
10
Figure 3: Format of the total X = 7 Dk' Digit

10 k=1
X'~ being significant, the digit x
added as Sign digit.

n is

209

The by hand addition algorithm which adds a
carry from the column i-1 to the sum of decimal

digits of the column i to get the digit x| of the
total as well as the carry into the column i+1,
was changed sTightly to improye its implementation:

BEGIN with the matrix dy, i =0, 1,..., 10,
k=1,2,...,10
1: EVALUATE for each column i=0, 1,..
integers CI, A' so that

.» 10 the

0 . . i .)
% d; = ¢'-10+A" with 0<A’<9, 0<ci<g
k=1

(2.8)

2: EVALUATE the total X by executing X =C-10+A,

where

(A 9

10,3017 4 2103010 4 49702

ot Ao)-lo'IO
(2.9)

(107" + A°7-10

(c'%1010 4 ¢9.109 4.+ ¢0).10710 (2.10)

step 2 is illustrated in Figure 4.

3,2 .1

8 .7 56 .5 ,4 A% A

A AT AT AT A
6

10 A]O .9 A AO

8 ¢/

58

A= A

5 2 0

cd ¢4

10 C9

X]O .

G

X:x X2 X]

C

6 5
X

10-C= ¢ €

0

7 X

11 %! x

i

Sign digit

X=

Figure 4: Second step of the addition algorithm.

Note: C€'-10 + A’ is the sum of digits
in the column i.

Note that A]0 occurs twice in A because columns

i =10, 11 being identical their sums of digits
are equal. The execution time is composed from
two items only: time to execute step 1 is equal
to the time to add one column of decimal digits
(addition of 10 b-bit binary numbers) because all
columns are processed at the same time; time to
execute step 2 is equal to the time to add two
decimal numbers (Figure 4): C-10+A (about double
of the time needed to add two binary numbers 55
bit Tong).

3. Column Addition Algorithm

To evaluate the sum Zd; in (2.8), each dec-

imal digit is represented by a binary number F.
To achieve SFD (single fault detection) an en-

coding with redundancy must be used. The Brown
Codes are very useful for that purpose because

their formula:

F = pd +q, (3~])

where p,q are integers and d ¢ {0, 1,...,9},
permits modular arithmetic checking:

F
F=q (mod p) (3.2)
fa 3 210
The decision to use the Diamond Code
F = 3d+2 with 2<F<29 is quite natural because that
code is the least redundant of the Brown Codes,
needing only 5 bit format (Figure 5).
1 F=3d+2 G
d F f4 f3 f2 f1 fO f4 3 f2 f] fO
Q L ra |

0 210 001 0101 O0OO

1 510 0 1 0 1 |0 1T 1 1 1

2 8101 00 O01J0 0O0T10

3|1 (o101 1000 000 —

4114101 1 1 0100100

5117 110 0 0 1T {1 10 11

61201 ¢ 1 00 (1T 1T 1T 1 0 | |

712311 01 1 1 |1 1 1V 01

812611 1 0 1 011 0 00O)

9129 |11 110 1 11 0 1 11
Figure 5: DIAMOND CODE for representation of

decimal digits. Checking is done
by counting zeros in G derived from
; F by complementing f3 and f]. 0K
The next best code is F = 7d with 0<F<63 which Figure 6: Diamond Code checking circuit. The
needs 6 bits. Figure 5 tabulates the Diamond output signal OK is ON only when the
Code: input signal configuration represents
4 3 2 1 a decimal digit in the Diamond Code.

F=3d+2 = f42 + 527+ £,20 4 f]Z + fy (3.3)

and G-numbers derived from F by complementing the

bits f3 and f]. It is easy to prove that when the

5 bit number G has either one of four zeroes it
belongs to one of meaningful F numbers tabulated
in Figure 5. (Note: there are exactly 10 numbers
of the form 3d+2 within the interval (0,31) and
there are exactly 10 5-bit numbers written with
either one or four zeroes and they are all present
in the table Figure 5.)

)

01l 2t
16

)
o
—_—

Figure 6 shows one of possible implemen-
tations of a [amond Code checking circuit. The
output signal OK is ON only when the input signal
configuration represents one of the F numbers in
Figure 5.

It is difficult and unrewarding to explain
the creation of the Column Addition Algorithm.)
Figure 7 describes a hardware implementation for 0003
an addition of 16 decimal digits dk’ k=1, 2,...,

16. For decimal digits the algorithm takes on a
very simple form:

OIOC OO0 OoOCOOOOCOoOOCOoOP
[} [sJeoleloelololalololoNoloRoNoNoal o)

OO QO OO0 OO0O
-
=~

<
it | o e e e e e

Figure 7: Column addition algorithm illustration.
Begin with Fk = 3dk +2,k=1,2,..., 16
2L + ¢ Fk = R + 32L; 0<R<31; 0<L<15

(3.4)

210

1: EVALUATE L, R so that by the binary number L. (Figure 7 shows the
addition of 16 Zeros).

16
2L + 3 Fk = 32L+R with 0<R<31; 0<Ls15 (3.5) Figure 8 tabulates the numerical values

] bound by (3,4), (3,5), (3,6) for selected values
2: The resulting sum of digits will be C.10 + A, 16

where of dk’ When the table is completed for all
1
¢ = L-1 A = (R-2)/3 (3.6)
. . 16

The column adder is composed from a binary - _
adder for 17 5bit numbers: Fy, Fpy..., Fe, 2L ; d = 0,1,2,...,144 the last column of the
the resulting 9-bit sum is split in two parts:
L {4 bits on the left), R (5 bits on the right). table is identical with its first column. That
The value of L is fed back into the adder as 2L proves that the column addition algorithm
(one bit shift to the left). Note that A is is correct.

expressed by R in Diamond Code, C being expressed

16 16 16
. 2 = - = -
B | RS TRR O A= (R2)/3 | (CA)
0 32 |1 34 2 0 0 00
1 35 |1 37 5 0 1 Qi
9 59 |13 61 b9 0 9 09
10 62 | 2 66 2 1 0 10
19 89 | 2 93 9 1 9 19
20 92 | 3 98 2 0 20
99 | 329 |10]| 349 29 9 99
148 | 464 |15| 49a 14| 14 4 144

Figure 8: The numerical va]uessof L, R, C, A, belonging to
different values of % dk (column addition algorithm
for sixteen decimal digits).

Note that L stays constant as long as ;6dk
stays between two consecutive values divisib}e by
10. 6

For each value I dk which is divisible by
10 the table gives R=;, A=0.

To keep the value of C below (to exclude
second order carry from the column) the sum

16
z dk must be kept below 99.
1

It is easy to use the column addition al- Figure 9: Co]gmn ainFion algorithm for ten
gorithm to add a number of decimal digits which decimal digits:
is below sixteen. A1l what is to be done is to
freeze certain number of decimal input digits to
zero. Figure 9 illustrates the column adding C=L-1, A=(R-2)/3
algorithm adapted to add 10 decimal digits.

211

The algorithm:

Begin with Fk = 3dk + 2, k+1,2,...,10;
(3.7)
Fk =2 for k = 11,12,...16
1: EVALUATE L,R so that
10
2L +12+ 7% Fk = R + 32 with 0<R<31; 0<L<10 (3.8)

2: The resulting sum of digits: C-.10+A, where

C=L-1, A= (R-2)/3. (3.9)
Six input digits being frozen to zero a lump

sum 12 = 6.2 was added to balance the total.

BIAS. A simple trick of arithmetic is used
here to simplify the column addition algorithm:

The small number -1071° encoded by
99.9999999999 is added as eleventh input of the
adder as suggested in Figure 11 (compare with
Figure 2).

The decimal digit 9 is added to each column.
To add this digit in the column addition algorithm
(Figure 9), the value of F = 29 must be added as a
constant (BIAS). (Note that will increase the
maximal sum of decimal digits to 99, which is
permitted.) In combination with the constant 12
(Figure 9) the amount to be added would be
29 + 12 =41 =32 +9. It is clear, however, that
32 units (from 41) contribute in L exactly one
unit. By reducing the additive constant to
9 (= 41 - 32) units, the value of L will decrease
exactly by one unit. (Figure 10).

L 2L
01001 9
EEEEE\L"‘-":J Fe
5, K=1,2,..., 10
= ---
L R
Figure 10: Column addition algorithm for ten

decimal digits simplified by BIAS.

C=L, A= (R~ 2)/3

212

That will simplify the column addition algorithm
(with BIAS) as follows:

BEGIN with Fk = 3dk +2,k=1,2,..., 10
(3.10)
1: EVALUATE L, R so that
10
2L=9+73Z Fk = 32L + R with 0sL<9; 0=R=<31 (3.11)
1
2: The resulting sum of digits will be C.10+A,
where € = L and
= (R -2)/3 (3.12)
-10
99.9999999999 BIAS = - 10
di
..... K
T =x - 10710
-10

Figure 11: BIAS of the adder by -10
By applying the BIAS the total X will be distorted

into X - 107 The distorted total is corrected

by adding 10710 to the value 10-C as suggested in
Figure 12.

A1O AlO_ a9 a8 A7 ab a° ad 43 a2 Al a0 - A

0 BT ES B2 =000
KT 10 9.8 7,65 <& 3 RN

Figure 12: Correction of the biased total by

adding 10710

It is important to stress the fact that
(Figure 10) R defines the digit A of the
sum of digits in a column directly in the
Diamond Code.
L, however, defines the digit C {carry) as a
binary number
_ 3 2 1
L = L3.2 + L2.2 + L].Z + L0
The decimal adder which evaluates the total X as
suggested by Figure 12 accepts input data in the

Diamond Code. For that reason the carry C must be
encoded in that code:

.) 4 03 L o2 Ll
B=3C+2-= b4-2 + b3 27+ b2 2° + bI 2+ bo.

A combinational network (Carry Circuit CC) is used
to do it.

4. Block Diagram Of The Adder

10 .
The column additionkgl d; + 9 (biased as in Figure

10) is pgrformed at Ehe same time in eleven Column
Adders 21, i=0,1,...,10 (Figure 13).

input numbersgf]dlo AAITdE

Column
Adders

Ripple C]]]
Carry [11
Adder 6—{—
Total ‘
OK 0K
Figure 13:

[(C| CC]
¢ JRT(Ta 0 QAO 1
NEENE
2 T K& A0 0
D

Q Q ;{]
‘ 2] N [i} 0
0K oK 0K

Block diagram of the parallel decimal adder for 10

input numbers,

The adder 5 is entered by all digits d; belonging
to the same index i.

The sum of digits in the column i is a deci-
mal number (C],Ai)]o with two decimal digits. The

total X (Figure 12) is produced by a ripple carry
adder (Figure 13) which works in the Diamond Code.
For that reason:

1) The digit A" comes in from the column

adder on the five-wire bus A' including
output wires 4413313913172 of the

column adder (See Figure 16, note ajER.).

2) The digit pl=? (Figure 10) is produced

by ! as a 4-bit binary number L' =

P 5,31 .,2,,1 .1 .
L3-2 +L2-2 +L]~2 +L0 unsuitable as
ripple carry adder's input. For that

reason each column adder %' is provided
with a Carry Circuit CC (Figure 16)
which does the necessary encoding in
Diamond Code:

4, bi~23+ b1-22+b;

LT SRS
B = 3L + 2= b4 2 3 ?

1
2 +b0
(4.1)

(five wire bus B' in Figure 13).

_ The ripple carry adder 1n§1udes 12 b]ocks
AD% J=0,1,...,11. The block ADY has inputs AJ,
Bj_], Rl (where d1 is the ripple carry: 0 or
1) from the block ADj']. The block's apd outputs
are: xJ of the total and cJ (ripple carry into
the block ADI*TY.

Note the correction of the BIAS which enters

as a constant 1 into ADO.
11

Note the way in which

the sign digit x ' ¢ {0,9) is generated.

5. Single Fault Detection

The components of the adder in Figure 13
will be assembled to get an SFD (Single Fault
Detecting) system. The desired goal is to connect
hardware elements in a network where a sin le
fault STH (Stuck HIGH) or STL (Stuck LOW) distorts

at least one output signal configuration x' of the
total {(Figure 13) making its encoding meaningless.

Full Adder. Single fault induced
error in the output v = 2b + a is
never divisible by 3.

Figure 14:

The Full Adder (Figure 14) is used as the
main component of the SFD adder because it has a
property expressed by

Theorem 1. The change of the numerical
value v = 2b+a of the output of the Full Adder in
Figure 14 induced by a single fault ¢ is never
equal to #3.

Proof. There are exactly four distinct
signal configurations at the output:

(b,a) € {(O’O)s (0:])’ (],0), (]-.])}

corresponding to the output values 2b+a =

v ¢ {0,1,2,3}. For that reason there can be only
two ways how to get the change of the output

v = 2b+a by 3: both outputs b,a must change either
from 0 to 1 or from 1 to 0 simultaneously. Start-
ing with the faultless state a=b=c=d=e=0 we want
to place a single faulty 1ink ¢ {STH or STL) any-
where within the circuit in Figure 14 so that both
outputs would change as asked for above. First of
all we must disqualify places for ¢ from which
only one of the outputs b,a is affected:

Cps dys hy €5, foy g, b {affecting only b) plus

ey fys a (affecting only a). From the remaining
locations ¢, d, e are ruled out because a change

of signal on any of those changes the output
v by +1. When either 9 d1 or f is STH the

output becomes b=0, a=1. For faultless state
a=b=c=d=e=0 the possibilities are exhausted.
Starting with the faultless state a=b=c=d=e=1 the
reader can find for himself that there is no place
for ¢ which changes both outputs b,a from 1 to O
simultaneously. QED.

Figure 15 explains the graphical symbol for
full adders in figures to come. The three inputs

represent the same input value 29 with integral
exponent which is written inside the square symbol
for the full adder. The right hand output repre-

sents always 24 units, the left hand output repre-
sents always 2q+] units. The total value of the
output v:

0<ve2® 429 =39 (5.1)

When a single fault is within this full adder the
error i3.2q at its output is ruled out. The fault
av is restricted to O, qu, 12q+].

2 2 2
q Ji q
q
2q+] 24
v v

Symbol for the full adder. Active
input signal carries 29.

Figure 15:

6. Single Fault Detecting Column Adder

Figure 16 shows a SFD version of a Column
Adder together with the Carry Circuit CC placed
there in a special enclosure. In this section the
attention will be focused on the Column Adder
alone. The network is composed exclusively from
Full Adders of the type described in Figure 14 and
drawn according the rules given with Figure 15.
An empty circle at the full adder's input means
that its signal is frozen to LOW, a full
circle at the input means to HIGH. (Note two
full circles in the upper part of Figure 16.
They are used to implement the BIAS of 9 binary

units (= 20 + 23) shown in Figure 10.)

Bob, b, b, |b, b, Ad

a4

vy

Figure 16: Column Adder and Carry Circuit.

As all column adders in Figure 13 are iden- of input wires each belonging to some set
tical we shall not consider any particular decimal 1 .2 10 . ;
order i of a column adder. The index i will be fj’ fj""’ fj with the same ya]ue of J. FEach
dropped. Each column adder : is entered by 10 group looks 1ike a set of 10 organ pipes and be-
decimal digits dk’ k=1,2,..., 10 each encoded by Tongs to a fixed j= 0,1,2,3,4 the numbering pro-

‘ ceeding from the right to the left. (Note the
4
-2

f§ enters a full adder labeled j.).

¢ _¢K k 53,0k 52,k o1,k
3d, +2=f =f, g 2Ty 25102 +5 (6.1)

At the top of Figure 16 there are five groups Figure 16 implements the column addition

215

algorithm described by (3,10), (3,11), (3,12) and
illustrated in Figure 10. To bring both those
figures in proper relationship we note how the
signal carriers for R and L are described in
Figure 16:

The right hand component R is represented by 5
signal wires:

_ 4 3 2 1
R = R4-2 + R3.2 + R2-2 + R]-z + RO (6.2)

The left hand component is represented by 4
signal wires:

S R Y L

L= L3'2 9 1

0 (6.3)

In figure 10 the L-number components belong to the
9-bit total (Figure 16)

(R8 R7 R6 R5 R4 R3 R2 R] Ro) 2 (6.4)
in the following way:
R8 z L3, R7 = L2, R6 z L], R5 = L0 (6.5)

The network adds 2L to the column of digits
(Figure 10). To implement this operation
Lt(ERt+5); t=0,1,2,3 is fed back to be added into

a full adder with g=t+1 (notice a shift by 4 bin-
ary orders to the right as in Figure 10). For
instance the signal of the wire L0 is fed in the
full adder LL] with q=1.

Theorem 2. A single fault ¢ incident with
any hardware element (either a full adder or a
connecting link) causes the configuration of out-
put signals (R4 R3 Ry Ry RO) to fall out of the

Diamond Code (Figure 5).

Proof. When the circuit is faultless the
equations (3. 10,11,12) of the addition algorithm
can be written in the form:

10

29+3 td
1

K S 30L +R with 0<L<9; 0<R<29 (6.6)

Taking this equation modulo 3:
2 = R (mod 3) for 0<R<29 (6.7)
it is proven that the configuration of bits in
R= (R4R3R2R]R0)2be1ongs to the Diamond Code (see
Figure 5).

A single fault ¢ located within any full
adder can produce an arithmetic error

A Ve {O,izq, i_2q+1} at its output. A single
fault ¢ connected with a link induces an arith-

metic error jﬁh. In both cases when the error is

non-zero it has the form 1?3, where h is an inte-
ger. This value becomes added to the column of
encoded digits so that {(6.6) changes into:

J. Carry Circuit

10

2943.7 d +2"= 30 L + R with 0<L<3; 0R<29 (6.8)
1

so that

R =2 +2"% 2 (mod 3) (6.9)

It is obvious, however, that

Mz o (mod 3) (6.10)

so that the number (R4 R3 R2 R] RO)2 = R has a

configuration of bits which does not belong to the
Diamond Code. QED.

Remark. The proof supposed that ¢ is located
anywhere except the output wires R4, R3, R2, R], RO

(Figure 16). It is clear that ¢ affecting any of
those output wires is detected. On the other hand,
where fault ¢ has been detected the value of L
either stays correct or is distorted.

Conclusion. Incidence of & single fault with any
element of the column adder s detected by checking

the output signal configuration (R4 R3 R2 R] RO)

which ceases to belong to the Diamond Code. The
condition R=2 (mod 3) does not hold anymore. The
code checking circuit (Figure 6) can be used to do
the checking,

Remark. It has been said that an error in
the value of the carry C can occur when an error
occurs and is detected in the column adder. When
the incorrect value of C (representing by B in the
Diamond Code) overflows the value 9 the fact is
signalized by FLT {(Figures 16, 19).

The decimal carry C = L is defined as the

binary number L = (L3 L2 L LO)Z' The ripple car-

ry adder (Figure 13) requires an input oncoded in
Diamond Code, For that reason a Carry Circuit
(enclosure in Figure 16) is provided to encode L
in the Diamond Code:

B=3L+2 (7.1)
where

_ 4 3 2 1
B = b42 + b32 + b22 + b12 + bO (7.2)

The encoding algorithm is very simple and is
expressed in a simpiified form in Figure 17.

P
e, = 2L
00010 = 2
C in Diamond Code: =3L+2=8
_ 4 3 2 1,
B = b42 + b32 + b22 + b]2 + bO

Figure 17: Carry Circuit algorithm.

lhe implementation of the algorithm has a
snag, however. Figure 18 shows an implementation
which is theoretically correct, but is non SFD.
The source of the trouble is the presence of the
integer 3 in (7.1). The value of B changes by 3
for each unit of L. For that reason the signal
configuration (b4 by by b] bo) stays in Diamond
Code when the fault is incident with LO’ L], L2 or
L3.

Before the solution of this difficulty is

explained, the following example is discussed.
Supposing L = C = 7 it is L3 =0, L2 =L, =L, =1

1 0
(Figure 18). The faultless output is:
b4 =1, b3 =0, b? =1, b] =1, b0 = 1 so that

C =7 in Diamond Code. Supposing that the input
Lo s STL (Stuck LOW) the resulting coding

b4 =1, b3 =0, b? =1, b, =0, b0 = 0 remains
Diamond Code meaningful, corresponding to B = 6.

—O +2

FLT

B 5 |b b b2
\ W N N

by by

Figure 18: Carry Circuit which is not SFD'

To make this fault detectable (Figure 16)
the input L0 is not connected directly to the in-
put 2Ly (as in Figure 18) but the connection is

provided by a path including an element of the
column adder whose signal is single fault detect-
able. For instance LO is connected with ZLO

(Figure 16) by a path passing through the point
MO' A fault incident with MO, is detected by the
configuration (R4 R3 R2 R1 RO) being out of the
Diamond Code.

8. Ripple Carry Adder

An SFD version of the section AD (Figure
13} of the ripple carry is in Figure 19.

217

¥
£3 N

N
1
X4X

(SFD version).

Figure 19: Ripple Carry Adder

The addition algorithm is quite simple:

BEGIN with inputs A, ci-l given in Diamond Code:

digit Al enters as binary number (R4R3R2R]RO)2=

3’ + 2 =R digit ¢! enters as binary number

i-1 .

(b4 b3 b2 b] bO)2 = 3C + 2 = B ripple carry
LRI {0,1} generated by AD"" enters at E.

) i1, :

1. EVALUATE S= R+ B + ¢ -(55 54 S3 52 S 50)2

1
LooAd .

2: ¢ « Sg and S' = (S4 S3 Sy S SO)2

3: IF ¢' = 1 THEN go to 6

4 suM'=s' + 2¢71 4 30 (mod) with ossuMi < 31

5. STOP
6: SUM'=s' + 2771 (mod 32) with 0<SUM < 3]
7: STOP
Remarks. AN carries are defined during the Step
2: as soon as ¢ 7! is evaluated. It is surpri-
sing that
, i
S x

in words: the decimal digit x' of the total is
well determined by the value of §' alone (see [2]).
The table in Figure 20 shows this functional
dependence.

st =

0 1 2 3 4
1‘

X =

00 02 04 |03 05 07| 06 08 10 |09 1 13‘ 12 14 16

I]S 17 19| 18 20 22! 21 23 25| 24 26 28 |27 29 31
5 6 7 8 9

Figure 20: The decimal digit xi of the total is well determined by the value

S' = (s4 S3 Sy Sy so)2

fhe network in Figure 19 is Single Fault
Detecting only as long as the desing principles
discussed in Chapter 7 are observed.

First of all the ripple carry T nust
change the decimal digit «' of the output by one
unit for each 3 units in the Diamond Code. One
unit is added through the 1link g, two units through
the Tink f (Figure 19).

When the fault ¢ affects one of the links g,f

it will be detected at the output x1, because the
change in the f-value of the Diamond Code will be

changed by either 20 or by 2]. When the fault ¢
affects the link h, then it will affect the point
E and the 1ink e will be detected at the output
x1'] because the f-value of the corresponding
Diamond Code will be changed either by nothing
instead of correctly by -2, or by -2 instead of
correctly by nothing. E is a point whose single

fault is checked by x1']. The path g-f connecting
inputs belonging to full adders with g=o0 (output

SO) and g=1 (output x])--note that 20 + 2l = 3.

passes through E which is fault checked by the
output P

Note that the network would be not SFD if the
wiring is changed as shown in the insert. A fault
¢ incident with the Tink ¢' between E], E2 will
pass undetected by x1.(change by 3 in Diamond
Code) as well as by i1

(the signal E, being
correct).

Another structural detail needed for SFD is
seen at the point E3 (Figure 19). Fault incident

with this point is detected by the distortion of

the Diamond Code of x'. A path which connects

two full adders' inputs whose combined weight is
divisible by 3 must pass through E3. For instance
24 + 23 = 24 so that the path connecting the inputs
to full adders labeled 4,3 must pass through E3.

On the other hand 23 + 2] = 10 so that the path
connecting the inputs to full adders labeled 3,1
is not obliged to pass through E3.

9. Single Fault Detecting Multiplier.

The adder described above can be used to

218

See Figure 19).

design a SFD multipiier. The multiplication al-
gorithm has two main sections.

1) FETCH the multiplier D¥
2) FETCH the muitiplier D*

During the execution of 2) the d-tuples of |D| are
evaluated and stored for d=0, 1, 2,..., 9

The multiplication is executed with absolute values
[, |D*| the sign processing being done separ-
ately.

Supposing that the numbers |D| have the for-

mat as in Figure 1 the d-tuples d [D| < 10 will
never overflow that format.

Double precision multiplication algorithm is
based on the well know pattern in Figure 21.

< p.d""

S
*

0 OO OOOoOCO
00 OO CCOOOO
0 00 ODOOOOOCOO
00 0 0 OCOOOCOQ
0 0 00 0 ODOOOO
0o 0 06 a0 0 ODOOO
o 0 0 6 0 0 0 OO
0 0 0 0 0 0 0 0o OO
o o o [+]] o © o o O

+

o

o

@ o 6 o 06 06 0 0 0 ©
o © 0o 0 06 0o 0 0 0 ©
O o 0o 0o 0 0 ¢ v O

OO OOODOOOOO -«
[tel
*

OOOOo o © 0o o ©
COOOCCo o ¢ o ¢
OOOOOO o 06 o o
COOOOOOO o o o
OO OODOOOODo o

© o o 0o 0 0 o 0 0 ©

+
o
[=%

o
o
o
o
°
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
°

SFD decimally encoded multiplier for
10x10 decimal digit multinlication.

Figure 21:

Twenty Column Adders are used. The adders with
less than 10 significant digits should be designed
to simplify the structure of the corresponding
column adders. The execution time will not be
improved by that process, however, because the 10
significant digits column's execution time will re-
main dominant.

To assess the performance of the multiplier
we suppose that SN54H183 chips are used to build
the column adder. Then the execution time of that
adder, including the delay in the carry circuit CC
(Figure 16) will be about 100ns. Using the chips
SN5483A and SN74H183 to build.the Rippled Carry
Adder we get the delay of Tess than 450ns. The
total execution time (double arithmetic) with MSI
design will be less than 550ns. (twenty decimals
product).

References

1. R.M. Diamond, "Checking Codes for digital
Computers," Proc. IRE, Vol. 43, pp. 487-

488, A
2. David

pril 1955,

T. Brown, "Error detecting and Correcting

Binary Codes for Arithmetic Operations,” Trans.

IRE, V
3. A. Svo

Codes,

1965.
4. A. Avi

Low-Co
Tech.
Labora

5. D.A. A
digita
Techni
Lab.,

ol. EC-9, pp. 333-337, September 1960,

boda, "Arithmetic Properties of Brown
" Symposium of IFIP Congress, New York

zienis, "Digital Fault Diagnosis by
st Arithmetical Coding Techniques,"
Report No. 32-1476, Jet Propulsion

tory, August 1970.

nderson, "Design of self-checking

1 Networks using coding Techniques,"

cal Report R-527, Coordinated Science
University of IMlinois, Urbana, I11inois.

219

