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Abstract

The concept of merged arithmetic is introduced
and applied to signal processing. The basic idea
involves synthesizing a composite arithmetic func-
tion (e.g., a complex multiply) directly instead of
decomposing it into multiply and add operations as
is conventional practice. This approach results in
a simpler design which is also faster.

Introduction

In the implementation of digital signal pro-
cessing systems, conventional practice involves
interconnecting arithmetic elements (i.e., adders,
subtractors, and multipliers) and memories to per-
form the desired algorithms. ] Consideration of
array multiplication algorithms such as the Wallace
treed and its successor, Dadda's method,3 which has
been shown to be optimum, suggests that when sums
of products are to be formed, a saving in hardware
and improvement in speed results if the multiplica-
tion computations are not completed and added as is
conventional. The alternative approach, termed
merged arithmetic since it dissolves the boundaries
and merges the multipliers and adders into a single
functional circuit, uses Dadda's matrix reduction
scheme to produce the sum of products with a single
reduction process. Before presenting this new
approach, Dadda's multiplier algorithm, upon which
it is based, will be reviewed.

Dadda‘s Multiplier

The sequence of operations required to perform
parallel multiplication is shown in Figure 1. The
first step is to generate the bit product matrix
with an array of N2 AND gates. During the second
step, the matrix is reduced by counting the ones
in each column and performing carry processing
which results in a two-row matrix. The two rows
are summed in a carry lookahead adder to generate
the product of A and B.

The technique used to reduce the bit product
matrix to a two-row matrix is illustrated for an
8 x 8 multiplier in Figure 2. At the top of the
figure, the bit product matrix is shown as a skewed
array of 8 x 8 dots (each dot represents one of the
N bit products). A counterd is a circuit with
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many inputs that generates a binary count of the
number of inputs which are ones is provided for
each column of the bit product matrix which has
more than two elements. In this drawing, the
inputs to each counter are in a rectangle which has
a line extending down to the ouputs in the next
matrix. Matrix II of Figure 2 shows the outputs of
the counters (and those bit products which were not
reduced with counters). Each of the counters has a
sufficient number of outputs to indicate how many
of the inputs are active (an i input counter has 1 +
[Togo 1] outputs*). A1l counter outputs except the
least significant are carried up to more signifi-
cant columns of matrix II. Since the two rightmost
columns of matrix I have fewer than three entries,
they are transmitted directly to matrix II. Col-
umn 3 of matrix I has three entries, so a counter
is used to reduce it to an entry in column 3 and a
carry to column 4 of matrix II. The next column of
matrix I has four entries so its counter will have
three outputs (corresponding to counts of 1, 2, and
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Figure 1. Flow Chart for Multiplication Using

Dadda's Method

*The notation [X] indicates the largest integer not
greater than X, i.e., the Entier or Floor function.
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4) which go to columns 4, 5, and 6 respectively, of
matrix II. The second matrix is reduced similarly,
yielding matrix III, which is reduced to yield
matrix IV which has two rows. A 15 bit wide carry
Tookahead adder completes the multiplication pro-
cess.

The approach up to this point assumes the use
of counters of all sizes between 3 and i in the
implementation of an i bit multiplier. Implemen-
tation of counters of arbitrarily large size have
been considered elsewhere.® Counters with more
than three inputs are generally constructed with a
number of adder modules (full and half adders).
However, it is more efficient to implement the
multiplier directly with adder modules. A proce-
dure similar to the one which was shown in Figure 2
is used. The difference is that if any column of a
matrix contains more than three entries, a multi-
plicity of three input counters (full adders) and
two input counters (half adders) is used to perform
the reduction. Suppose a column has eight entries:
two full adders and one half adder are used; as a

Reduction of Bit Product Matrix to an Equivalent Two

result, the next matrix contains three entries in
that column and three carries to the next most sig—
nificant column. Dadda has developed a technique
which is a slight variation on this approach that
achieves the minimum delay with minimum complexity.
Instead of fully reducing each column in the initial
reduction, only a partial reduction is performed.
This scheme is illustrated for an 8 bit multiplier
in Figure 3. The outputs of full and half adders
are indicated by two dots connected with dashes and
crossed dashes, respectively. The procedure
involves four distinct steps:

1) Let d] = 2 and d; + (3d5-1/2). Find the
largest j such that at %east one column
of the bit matrix has more than dj
elements.

Use adder modules as required to achieve

a reduced matrix with no column containing
more than dj elements. Note that only
columns with more than dj elements (or
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Figure 3. An 8 Bit Parallel Multiplier Implemented
with Adder Modules

those which
significant

receive carries from less
columns) are reduced.

3) Repeat step 2) with j = J - 1 until a
matrix with only two rows is generated.
4) Use a carry lookahead adder to compute

the product.

The total delay for computation of the product
of two N bit operands includes the delay of the
gates that form the bit product array, delay of the
network of adder modules
The delay of the network of adder modules is equal
to the largest j such that

N > d.
J

where

d] = 2 and dj = [3dj-1/2]

» and carry lookahead array.
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The total delay is approximately
rmu]t - Tgate * Tadd (2 ]OQZ(N) -2l Tc1a (M

The number of adder modules (most of which will be
full adders) is

Nadd = (N-1) (N-2)

These techniques are illustrated in Figure 3
which shows the implementation of an 8 bit parallel
multiplier. A total of 42 adder modules {seven
half adders and 35 full adders) are used to effect
the reduction.

Conventional Complex Multiplier

The basic notion of the merged arithmetic ele-
ment is that the four multipliers and two adders
which comprise a complex multiplier can be

coalesced into a simpler overall structure. To




evaluate the improvement resulting from merged
arithmetic consider the conventional approach,

The conventional approach for implementing
a complex multiplier is to compute the real and
imaginary components of the product (i.e.,
P real and P imag) directly:
P real = X real

Y real - X imag + Y imag

P imag = X real - Y imag + X imag - Y real
Clearly this requires four multipliers and two
adders as shown in Figure 4. The time required
to perform the complex multiplication, T s 1S
: cmult
simply
T

Tcmu]t - Tmult * add

where Tpy1t and Tadd are the time to perform a
real multiplication and addition, respectively.
Using the multiplier delay from equation (1) and
assuming that the real adder is realized with a
carry lookahead adder:

T + Tadd [2 1092(N) - 2]

cmult © Tgate

+2T (2)

cla

Since each multiplier requires a carry lookahead
adder, the total hardware requirement is

_ 2
Ngates = 4N
Nogg = 4 (N-1) (N-2)
Nc]a =6 (2N bits wide).

where the inputs are N bit numbers and a 2N + 1 bit
result is produced at the multiplier outputs. A
major fraction of the multiplier complexity is the
need to provide six carry lookahead adders of 2N
bits each.

Merged Arithmetic Complex Multiplier

Direct application of the merged arithmetic
concept to the complex multiplier of Figure 4 is
illustrated by considering a two-term multiplier/
adder. Such a device forms the sum of two pro-
ducts directly. Two two-term multiplier/adders
are used to realize the complex multiplier (one
forms the real part of the product while the
other forms the imaginary part). An implementa-
tion of the two-term multiplier/adder is shown
in Figure 5. The two bit-product matrices are
reduced through six stages of adders to produce
a pair of numbers which are summed with a carry
lookahead adder to produce the value of P imag.

This example (for 8 bit operands) requires the
following components:

97 full adders
7 half adders
1 16 bit carry lookahead adder

Here the array of 128 2-input AND gates has not
been included since both the conventional and
merged arithmetic approaches require the same num-
ber of AND gates. The total delay for this cir-

cuit, Tmerged’ is given by

T +6Ta +t (3)

Therged = Tgate dd * ‘cla
Emprical experience indicates that the number of
adder modules required to implement a two-term
multiplier adder for N bit operands is:

N o= N2 3

A conventional implementation requires two 8 bit
multipliers and a 16 bit carry lookahead adder for
a total complexity of:

70 full adders
14 half adders
2 15 bit carry lookahead adders
1 16 bit carry Tookahead adder
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The total delay for this circuit, Tegpy, is found
from equation (2):

T =T

+47
conv a

dd * 2T (4)
Comparing the two approaches, the merged
approach requires 27 more full adders, seven
fewer half adders, and two fewer 15 bit carry
lookahead adders. To simplify the comparison,
note that a 15 bit carry lookahead adder
(realized with carry lookahead across 5 bit
blocks) is implemented with 280 2-input gates, a
full adder requires eight gates, and a half
adder requires four gates.® The net savings
for a two-term multiplier/adder is 372 gates.
In terms of speed, the merged approach incurs

gate cla

two more full adder delays, but saves a 15 bit carry

lookahead adder delay. The gate delay timing is
equivalent since two levels of carry lookahead
are required.

The extension of this approach to 12 x 12
arithmetic results in the comparison shown in
Table 1. This comparison is based on element
complexity figures from Table 2. Note that the
merged approach replaces two 23 bit carry Took-
ahead adders (a total of 900 2-input gates) with
32 adders (a total of 256 2-input gates). This
savings of 644 2-input gates for each multiplier/
adder reduces the total complexity of the com-
plex multiplier by over 1000 gates.

Table 1. 12 Bit Two-Term Multiplier/
Adder Complexity
CONVENTIONAL MERGED
GATE GATE
FUNCTION IUSAGE | COUNT [ USAGE | CCUNT
FULL ADDER 220 1760 252 2016
23 BIT CARRY LOOKAHEAD
ADDER 2 900
24 BIT CARRY LOOKAHEAD
ADDER 1 485 1 485
TOTAL GATE COUNT 3145 2501

Table 2. Element Complexity
2:-INPUT
FUNCTION ‘WIDTH GATE COUNT
FULL ADDER 18IT 8
CARRY LOOKAHEAD ADDER 23 BITS 450
CARRY LOOKAHEAD ADDER 24 BITS 485

In fact, the complexity is reduced encugh
that a complete compiex multiplier becomes feasi-
ble as a single very large scale integrated
{VLST) circuit. Initial assessment suggests
that use of the triple diffused silicon VLSI pro-
cess will result in a multiplier operating at a
10 MHz rate. As finer geometries are employed
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over the next few years, it should be possible to
increase the speed to the 30 MHz level, with
ultimate speeds on the order of 50 to 100 MHz.

The merged arithmetic concept offers a
significant advantage in the implementation of a
single-chip complex multiplier as only two carry
lookahead adders are required compared to six
carry lookahead adders for the conventional
approach. Since large carry lookahead adders
are difficult to realize on single VLSI circuits,
the complex multiplier becomes practical only with
the advent of merged arithmetic.

Although the circuits shown here are for
positive numbers only, correction terms may be
added to the bit product matrix’/ to accommodate
two's complement operands.

The merged arithmetic concept which is simi-
lar in many respects to the gquasi serial inner
product computer,8 facilities the development of
a complex multiplier, which is a key function for
signal processing system. As has been shown by
examples, the complexity of complex multipliers
is reduced sufficiently through the merged
arithmetic approach that realization on single
VLSI circuits is now practical.
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