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Summary

This report derives the theory of
high-radix division in terms of the proper-
ties of the overlapped regions of the P-D
plot. The minimum precision requirements
in quotient selection are discussed. The
methods of implementations in hardware and
in read-only memory are explored.

Introduction

Division is generally recognized as
the most complicated arithmetic operation
performed by a computer. In the past
twenty~-five years, many methods have been
developed to increase the speed of the
division operation by computer. The pro-
cess is continuously moving from simple and
slow techniques (such as nonrestoring and
SRT divisions [1]) towards more complicated
but fast algorithms (such as range trans-
formation [2-3] and high-radix divisions
[4-6]). In the past, these fast division
algorithms were very costly to implement,
therefore not widely used in computer
design. However, in the LSI technology,
circuit counts are no longer the dominant
factor in design. High-speed algorithms
can be implemented economically to improve
the performance of the computer operations.
In this report, we shall examine the theory
and discuss implementations of a high-radix
division algorithm.

Derivation of High-Radix Division

Properties of the P-D Plot

The high-radix division was first pro-
posed by J. E. Robertson [1] and is
further studied by D. E. Atkins [4-5]. The
fundamental equation for the division
iteration is
(n

Piyqg = TPy = qy4q * d
where
P = the partial remainder produced in ith

i
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iteration
PO = the dividend
= the divisor

u
i

r the radix
Gipq = the gquotient generated for (i+1) ith

iteration

It was established by Robertson [1]
that the quotient q; is allowed to be a

range of integer values (~-n,-(n-1),...-1,
0,1,...(n=-1),n). Clearly r-1 2 n. The
above range of integers requires 2n+1
unique values to represent numbers from

0 to r-1, then 2n+1 2 r, or n 2 %(r—1).
Therefore the range of n is determined to
be

%(r—T) <nsr-1 (2)

If the unique values provided by 2n+1
are more than the r values required for
quotient representation (2n+1 2 r), then
we say the quotient is represented redun-

dantly. Define the redundancy constant as
k = n/(r-1). Then from Eg. (2):

1

7 <k s (3)

It is also required that
lp;l sk - a ()
Therefore the choice of k for a given r is

an important design parameter that must be
cdletermined before the actual implementa-

tion. Rewrite (1) as

FPj S Piyq * dyq - d )
Assume d is bit normalized and is in the
range % sd < 1. For a given 95417 the
maximum and minimum rp; are,

(rpi)max = (k + qi+‘|) « d (6)

(TP pin = 7k + q;.q) d 7)




-an —w3
[u—
“©

L N
2 20 W 8 14 12 10
-}
Pj

T S TR
®» M @ 0 s 28 T 4

=8 k=g -3 2073

Figure 1b. P-D plo

Eq. (5) can then be plotted as a function

of d with d; 44 &5 the parameter ranging

from -n to n in steps of 1.

between (rpi)max and (rpi)min

9547 = J is dencted as the q(j) area.

The area

in which

This
graphical representation of division itera-~
tion is referred to as the P-D plot. The

P-D plots for k 2/3 and r = 4 and r 8
are shown in Figures 1a and 1b.

The P-D plot will ¢
the division iteration steps. A given
divisor d and the shifted partial remain-
der rp; will specify a point in a q(3)

ompletely specify

area. The value j will be the value of the

new quotient digit 941+« In this represen-

tation, the redundancy is indicated by the
overlapping regions Q(j) between adjacent’
g{3j) and q(j-1) areas, in which either

9i4q = J or di49 = J-1 can be the correct

choice for the
1 to n).

quotient (j range is from

Some General Properties

Regions

The overlapping regions Q(j) play an
important part in the quotient selection
procedures. Some of its general proper-
ties are derived in this section. See
Figure 2,

of the Overlapping

1. The area of each overlapped region

Q(j) is develcped as follows:
1
Area of Q(j) = j Lrps 1) - (rpy) 4o ldx
1/2
!
= /(2k—1) % + dx = 3/8(2k-1)
172 (8)
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t for r=8, k=5/7.

Eq. (8) state
identical and

s that all areas of Q(j) are
its size depends on k only.

The Q(Jj) diminishes when K = %, which
corresponds to no redundancy in q.

2. The distance between Q(j) and Q(j+1),

the center line of Q(3j)

1
2

=7 [RH3=1) + (-k+3)ld = 7 - @« (25-1) (9

I

The distance between center line of Q(3+1)

and Q(j) is

d

8D = 3 d (2341 - (235-1)) (10)

qti+ 1)

Figure 2. Q(j) regions.




(9) and (10) reveal two important
facts: (a) The center line of each Q(j) is
stationary. It is independent of k. 1In
fact, each Q(j) will expand or sprlnk
symmetrically sbout the center line as k
takes on different values. (b) As a con-
sequence of (a), the center—to-cente; .
distance AD is always equal to the divisor
at that point.

Egs.

3. The height of Q(Jj)

Ah = (rpj—1)max - (rpj)min
= (k+j-1)d - (-k+3j)d
= (2k-1)d (11)

4, To determine the width of Q(j):

Aw = d2 - d1
s S - S, 2k~-1
-k+3 k+¥3=-1 ~ . -
J J 32 j+k-k2 (12)

Quotient Selection in High-Radix Division

The primary advantage of allowing
redundancy in the quotient representation
is that only the truncated, rather than the
full, precision values of rp and 4 are
needed to select the correct gquotient digit
(qi) for each iteration. The overlapped

region Q(j) plays an important part in the
quotient selection process.

Define:

rpi,d to be the full precision shifted
partial remainder and divisor of

m bits each
to be the truncated divisor
to be the number of bits in 4
Ad to be the truncated error in &
ad £ 2782 ¢ 78
larger than ¢
rpy to be the truncated shifted partial

o> A

assume m is much

remainder

to be the number of fractional bits

m

in rﬁi
Ap to be the truncated error in rﬁi

-€ -mo_ o, =€

ap = 27% 27M

We have specified % <d < 1. Since
d=438+ ad, and d = a, therefore Ad = 0.

Also rp; = rp; + Op.

[\
Q

a. For rpy > 0, then rp; 2 rp. . Ap

b. For rp, < 0, then rﬁi 2z rp, Ap £ 0

1

In both cases, the truncated rp; will
always round the number toward zero.

Since P=D plot is symmetrical about
the d-axis, without loss of generality, we
shall analyze only the positive regions in
which 4 > 0 and rp; 2 0.

The Truncated Precision Recuirement for
the Quotient Selection

Inside each overlapped region Q(j),
we can select 549 = j or Ai41 = j=1 by

using the truncated rﬁi and 8. Outside of

each Q(j), the choice is unique for each
pair of (rﬁi,a). To insure that the

quqtient selected in Q(j) by the truncated
pair (rﬁi,a) is always correct, we must

require the untruncated pair (rpi,d) to be

located in the same Q(j). In other words,
the rectangle with vertices (rﬁi,a),

(rﬁi + AP, @), (rﬁi’ a + ady, (rﬁi +Ap,

4 + Ad) must be completely enclosed within
Q{3).

Next we shall locate the region where
the maximum truncated precision is
required, which corresponds to the region
where the height and width of Q(j) are
minimum. For a fixed k, from Eg. (11), the

minimum height of Q(j) occurs at d = % .
Erom Eq. (12), the minimum width occurs at
J = n. Therefore the location in guestion

is situated in Q(n) and close to the rp-
axis,

It can be shown that

e 2z 2 - logz(Zk-1) (13)
(n-k) _ k (r-2)

822+ log, oy = 27 109, iy (14

From Egs. (13) and (14), e is depend-

ent on k only, while 6§ is a function of
both k and r. Table I shows the minimum ¢
and § for a range of k and r.

Table {. Minimum precision.

k = 2/3 k = 3/4 k =1

Radix (r)

18
32
64
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A Theoretical Quotient Selection Complexity I
Measurement E

In actual implementation, the useful-
ness of the overlapped region Q(j), in
addition to truncated precision, is to g =
allow the designer some degree of flexi-
bility in choosing the quotient digit so

that the hardware required can be mini- % Aw, = Aw, + Aw, + (1 + O ... + 01'%
mized. Each Q(j) region is partitioned j=1 1 1 2
into a subregion in which g=j and a sub- G+ 1 I-1 ]
region in which g=j-1; and the subregions = [V + =—x (¢ - D vy 25
are combined in the appropriate gq(j) area.

3 The dividing line for the subregions will Lo I-1 T =2 8w, | E_:_% + 1

5 be a series of staircase steps as indicated < 0 S T W, o+ (18)

in Figure 3,
g =1 vV -y 2k - 1

TFT T VEFG T IETY
From (11)  4Ah, = + « 1 (2k=1) = u Aw
0 2 2 " 1
Awg
w Soo(2k=1) = 4y Aw1
1 2(1-2 Aw1)u
. + 1
121555 " togl—mgy—r—+1) (19)
Ahg ah ) _ o =1 = 1+t x
- ! Let x = — T + then o T 0 <x <1
I;, log o = log 1 f z = log (1+x) - log (1-x)
d
. . - ‘(3
Figure 3. Q region staircase siope. = 2[x + 3— + o]
We shall define and derive the minimum x 2y = 1_%%3§;%L
(I} of such steps in Q(j) to be the theo- J
retiial_geasurement of quotient selection (24-1) 2(1-2 Aw1)u
complexity. . R R
P Y R 23 =S D M e T ()
The overlapped region Q(j) is bounded :
above by kK - =
From (12), bw, = % - i
rp = (k+j=1)d let v = k+j-1 3 -
=v + 4 substitute in (20)
and bounded below by L -1
12 251 L 1o (2 - ) + (21)
rp = (-k+3j)d let u = -k+j
=3 - d
From Figure 3 Practical Considerations in Quotient
! Selection
oh, 4h, -
= u Aw. = — Determining the Actual Values of Aw,., Ah.
Aw2 2 u 1 1
ih Iq the preceding section, we
2.y 8hy = v - aw, established the minimum precisions €, 8
&w, 2 required in rp and d. Since we are dealing

with truncated precision, the values on

In general the d and rp axes of the P-D plot transform

Aw .= @51-2 . Aw for i > 2 (15) into a set of discrete points. The value
i u 27 : of each point on the rp-axis is an integer
. -€ . .
9 o 4 _utv multiple of 2 and on the d-axis is an
sz =3 Ah1 =3 (Aho + vhw,) = - 4w, (46)

integer multiple of 2"6. As a consequence,
each step of the staircase line that

We want to find the minimum I such that divides Q(j) must also be an integer mul-
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tiple of the minimum precisions. Let Aw ’
and Ah be the actual values in the stalr-

case llne, then for each i,

-6 -
bw, 2 Aw! = a - 2 ,AhizAhi=a'-2€
a, a' >0 (a, a' are integers)

For example,
e =4, § - 7.

let r = 16, k = 2/3, n = 10,

bhy =3 3+ 2-3- 1) =112

2«27 5 >0 . 274 tht =1 . 27
= o4

dwy = dhg/u = 1 HI':E=%7 T(T-;Tj'_‘%

When the real values Awi, Ahi are used,

more steps will be required than the theo-
retical number of steps calculated from
Eqg. (20) to traverse the overlapped
regions.

The Restrictions on Quotient Selection in
2(3)

Because the points in the overlapped
region Q(j) are multiples of the minimum

precisions 27 % and 2_6, and in order to
satisfy the criterion stated for truncated
precision that (rﬁi + Ap, 8@ + Ad) be in

Q(3j), not all the points in Q(Jj) can bhe
selected for g=j or g=j-1 with complete
freedom. For example, in Figure 4, point A

[(zp, @) = (-J%, 3'1&')] is in Q(2).

point A can not be selected for g=2
because, if the untruncated errors be
€

However,

&p = 0, and Ad = 2~ °, then
rp = rp 11_
d=d+aa=3+ +gr = o

Clearly the point (%%y %%) is in g(1) but

not in Q(2). Therefore, point A can be

assigned only to g=1. Similarly, point B
= %%, EE) is in Q(3), but can be assigned
only to g=3, not to g=2.
untruncated (rp, d) be

~ 2
rp=rp+Ap=1—2+-%-§-=%

Because if the

d:(’i:é%
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Figure 4. The restricted points in Q(j).

Then the point clearly falls outside of
Q(3) and is in g(3).

In fact, all points for which Ap is

less than 2~ % distance away from the upper
bound of Q(j) can be assigned only to g-j.

All points for which Ad is less than -2
distance away from the lower bound of Q(j)
must be assigned to g=j-1. Only the points
on or between the following pair of lines
can be assigned to either g=j or g=j-1.

. - L _ 5=
inner upper bound rp = (k + (j-1))d 2 (22a)

inner lower bound rp = (~k + j)(d + 2—6)(22b}

The Selection Procedure for the Minimum
Number of Steps

In a previous section, we have estab-
lished a theoretical quotient selection
complexity criterion. It was shown to be
a function of the initial step bw,. We

have also shown that the actual step
values that can be used are less than the
theoretical values for each step. Hence

the actual number of steps may be more than
that calculated by Eq.

(21). We have




further indicated the restrictions placed
on qguotient selection in Q(j). Our goal

in this section is to establish a procedure
based on the restrictions derived from
previous sections for constructing the
steps of the staircase dividing line so
that the actual number of steps will be
minimized under the stated restrictions and
will approach the theoretical minimum as
determined by Eq. (21).

Recall Egs. (22a) and (22b) placed a
pair of inner bounds for the points in
Q(3), which can be translated into the
following selection criteria:

1. The point (rp, &) can be assigned to
g=j or g=3j-1, if the 3 other vertices

(xp, + 27, @), (b, a + 2°%) ana
(xp + 275, a + 27% are all in Q(3).

2. If all vertex points are not in Q(3),
and if any one of them is located in
a(j), then (rp, 8) must be assigned to
g=); or if it is in q(j-1) then
(rp, 8) must be assigned to g=j-1.

In conjunction with the above cri-
teria, we present the following pro-
cedure for constructing the steps of
the dividing line in Q(3):

a. The initial horizontal step starts
out from the center point of each
Q(J) on the rp-axis.

b. The horizontal step line will ter-
minate at the point (rp, @) when
the right two vertex points (rp,

a+ 2% ana (rp + 27%, & + 2"6)
are outside of the overlapping
region Q(j)

C. The vertical step line will start
at the terminal pocint of b. and
move up until it reaches:a point
which is on or just below the inner
upper bound line defined by Eq.
(22a).

d. Take the last point in c. and
repeat b. and ¢. above until the
right side of the P-D is reached.

e. All the points on or below the step
dividing line are assigned to
g=j-1 and merged with the qg(j-1)
area. All points above the step
dividing line are assigned to g=j
and merged with the q(j) area.

The example in Figure 4 compares the divid-
ing steps constructed by the restrictive
bounds, and by the above procedure. A
portion of the dividing lines for r=16,
k=2/3 based on the procedure is presented
in Figure 5.
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Figure 5. Quotient selection dividing lines for r=16, k=2/3

To indicate the relative complexity
of gquotient selection discussed in the
preceding sections (the number of steps in
each Q(j)), Table II shows a comparison
for the case r=16, k=2/3, n=10, e=4, and
§=7, The number of Steps in each Q(j) is
directly proportional to the hardware
implementation cost of each q(j) area, as
we shall see in the next section.




Table II. The number of steps in the overlapped regions for three different procedures, r=16.

k=1 k = 2/3

I Aw1’ Aw{ I I o

3 awy from (23) from (16) {actual) from 23) Restricted Derived
Theoretical Min, (procedure)

1 - 1 1/4 1/4 2 2 2
2 1/2 2 1/16 1/16 [} 5 i
3 1/8 3 1/28 1/32 6 9 ]
4 1712 3 1/40 3/12¢ 8 14 1m0
5 1/16 4 1/52 1/64 10 18 12
3 1/20 5 1/64 1/64 12 21 15
7 1/24 5 1/76 /128 14 28 17
B 1/28 6 /88 1/128 17 3u 22
9 1/32 7 1/100 1/12¢8 19 36 23
10 1/36 8 /112 1/128% 21 39 28

Division Implementation

High-Radix Quotient Selection by Hardware

As noted before, the P-D plot is
symmetrical with respect to the d-axis.
By using the procedure described earlier,
in the negative half of the P-D plot where
rp > rp and Ap < 0, the dividing staircase
line for each of the Q(-j) regions can be
made to be the mirror image of its positive
counterpart Q(j). After the sign and the
magnitude of rp are determined, only the
positive half of the P-D plot will be
sufficient to describe the complete divi-
sion. (Note: For higher operational speed,
it may be necessary to implement all posi-
tive and negative q(j) areas.)

Consider the case r+16, k=2/3. The
P-D plot with all g(j) area dividing lines
is shown in Figure 5, The heart of high-
radix division implementation involves the
implementation of g(j) areas. The com-
plexity of hardware implementation for
each q(j) area directly affects the
operating speed of the division iterations.
It was shown in the last section that the
quotient selection complexity is measured
by the number of steps (I) of the dividing
line in each Q(j). Since each q(j) area
is bounded above and below by the staircase
lines, it is possible to subdivide each
q{j) area into a number of overlapping
rectangles. The total number of rectangles

in each g(j) is equal to Ij+1' The sum of

of all Boolean functions for the rectangles
in each g (j) provides the basis of hardware
implementation for each gquotient selection.
As can be expected, the total hardware
quotient selection implementation costs

are proportional to the sum of all g(j}
areas implementation. For r=16, the total
hardware costs are substantial.

Therefore, the implementor should
utilize the freedom provided in each Q(3)

area to construct the best staircase divid-

ing line within the procedure stated above

160

so that the implementation of each q(j)
area can be minimized.

There are many hardware organizations
in which high-radix division method can be
implemented. In general, the system
requirement for division speed dictates
the radix to be used in divide iteration.
Figure 6 indicates a scheme [6] which tends

DIVISOR REG.

d

GATE ~— iy

Wil Qjsqed

MINIMUM
PRECISION
ADDER

MAIN
ADOER

QUOTIENT
SELECT

Ci+y "\_.

G2

[

Q LATCH hiial

Figure 6. Suggested hardware organization for division implementation.

to minimize the delays of each divide
iteration, and the scheme has been imple-
mented in IBM high performance processors.
In this scheme, while the main adder is
carrying out the full precision divide
iteration, the truncated partial remainder
(Pi+1) is generated in the small minimum

precision adder in a parallel operation.
The shifted result (r§i+v) is used to

generate the quotient (qi+2) of the next
iteration by the procedure defined above




while the quotient of current iteration
(qi+1) is being corrected by the sign of

the iteration.

As suggested in [7], carry-save adders
can also be used instead of a propagate
adder to further increase the speed of
divide iteration. 1In both schemes, the
quotient selections are overlapped with
the main full add/subtract operation in
order to speed up the divide iteration.

High-Radix Quotient Selection by Control
Memorx

Quotient Selection by Read-Only

Memory (ROM). Since a read-only memory is
very economical and its density and speed
have been steadily improving, it becomes
quite attractive to investigate the organi-
zation and the total bit requirements for
the quotient selection mechanism (the P-D
plot) implemented in the read-only memory.

The organization essentially consists
of a two~dimensional array. As shown in
Figure 7, & is used to address the column

* st

-+ I + + = -
-+ = 4—1——'«'
—_— _f_QUOTIENT_I__.‘
ARRAY ;
-t = -+
S N R
S T
f A
[

P number row = krd» 2 €

number column = 261

Figure 7. The ROM for quotient selection.

of the array and rp addresses the row. The
location where these two addresses inter-
sect contains the correct quotient to be
used by the division iteration. 1In other
words, the two-dimensional array is the
exact replicate of the P-D plot.

The number of rows and columns is
Qetermined by the number of distinct values
in rp and 4 respectively.

Let §,e be the minimum precisions for &
and rp.

. 8-1 .
Since 2___ _ 1 <d < (1-2"6) = giﬂ
§ 2
2 26

The number of distinct values in & is

(28-1) - 2877 4y o 8

Since 0 < rp < krd, the maximum number of
distinct values in rp is (krg - 2%y,

The total number of locations
array is

(L) in the

161

A

L=d __ «rp

max max
5
- A - 2°-1 §-1
=257 o (krde2%) = 2%.kr - (—56_) 2
~ 2€+|5—1 . kr (23)

In addition, the binary coded quotient at
each location requires rlogzr1 bits.

Therefore the maximum number of bits (B)
required is

29+6—1

Blax = rlogzr1 + kx - (24)

$§nce no quotient is needed beyond rp = rkd
+1ne, the minimum number of bits required
is
1 "
Bmi.n = l°9:zr ‘ X rp
d=1/2
1
= log,r - j' TP+ d(d) - 28 . ,6
1/2
e+6 !
= logyr - 27« [ rka . gqq)
1/2
= 3/4 « log,r . pE+8=1 | (25)
Egs. (24) and (25) provide the upper and
lower bound for total bits requirement.

Table IIT tabulates these

: bounds for
different r and k.

Table I11. Bits requirement for radix r.

’ Total bice (3)

k ~ 2/
Min

Max
/1 . "%

x - ]

thdlu(!l

Max D ] nax

1730 2'8 " " 120 »*
[ (L ¢ 2l0 s . 20
1. .60 2100 5 e LRI 10 310 1.0 6.
2 313 02" gg L 210 | L g0 50 . 2’0 v . "0 .

@ 1028 . 210 gge L 10 g0 S0 023" [ el M0 |y,

A Two-Level Control Memory Implemen-
tation for Quotient Selection. The total

bits obtained in the last section may be
too large to operate at a high access rate.
The two-level guotient selection scheme
shown in Figure 8 will drastically reduce
the high speed memory requirement and can
lead to very high speed division iteration.

The P-D plot is implemented in the
second-level control memory as explained in
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Figure 8. Quotient selection with two-level control store.

the previous section. After a divisor has
been normalized, the column of the P-D plot
corresponding to @ is accessed by using the
high order bits of the divisor as the
address and is gated to a small (only omne
column of P-D plot) but fast first-level
memory or register. Because the divisor d
will remain unchanged during the division
process, the rﬁi generated at each

iteration is used as address to access the
correct quotient bits resided in the first-
level memory. Because of its relatively
small size, it is possible to make the
access time of this memory as fast as the
hardware quotient implementations. For a
given radix r, the size of the first-level

memory is rk - (logzr) - 2%, For r=4 and

k=2/3, it requires only 80 bits.

Using a two-level control memory
scheme for quotient selection, it is
possible to make the delays of the division
iteration independent of the radix. Given
a large second-level memory, high-speed
radix-16 division iteration can be easily
implemented.

Quotient Representations

As indicated before, the quotient
generated in each division iteration
includes both positive and negative digits.
The negative quotient digits must be

converted to the final positive form. Also

in each iteration, the partial remainder

(pj) can become negative., In such a case,

the selected gquotient digit must be com-
pensated. The guotient conversion and
compensation processes can be performed
either at the end of each division itera-
tion or, if the quotient digit is repre-
sented redundantly, at the end of the
divide operation.

Let qé be the final form of the

quotient digit of jth iteration. 1In
gerneral, q3 can be generated by the follow-

ing rules:

For gq. 2 0

]
if Py > 0, then g! = 95+ else q} = 95 - 1
For qj <0 '
if pj<0, then gq! =r + g, - 1, else q%
=r + g

Table IV illustrates the generation of
qé for r=4, k=2/3.

Table IV. Quotient determination

9 qé (pj > 0) q5 (pj < 0)
2 2 1
1 1 0
0 0 3
-1 3 2
-2 2 1

If qj is represented redundantly, it may
take”the following form:

43 0

Y 10

“ 11
01

! 11
00

0 11
- 10
! 00
- 01
2 00

] After all divide iterations are com~
pleted, the quotient digits (qj) for all

iterations are added in a conventional
adder with a low-order one inserted. The
results of the addition will be the final




quotient digits. The advantage of a
redundantly represented quotient is that
the quotient digits are corrected auto-
matically. However, additional registers
and extra addition operation will be
required for this mode of operation.

Conclusgion

Theories, methods,
have been discussed in éetail in this
report. It should be clear that both
direct hardware implemertation and read-
only memory implementation of high-radix
division are practical in the LSI
technology available today.
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