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Abstract

We present a formal proof of correctness of
the on-line division algorithm specified in an ear-
lier paper [1]. We also derive two radix 4 on-line
division algorithms, with non-redundant and redun~
dant operands respectively.

By on-line arithmetic algorithms we mean those
arithmetic algori:thms in which the operands as well
as the result flow through the arithmetic unit in a
digit-by~-digit fashion, in order of significance
[1]. It is assumed that § initial digits of the
operands are needed to produce the first digit of
the result. Thereafter, one digit of the result is
produced upon receiving one digit of each of the
operands. Here § is a small positive integer,
called the on-line delay.

m

Consider an w-digit radix r number N = n, r 'L

i=1

In the conventional representation, each digit ny

can take on any value from the digit set
{0,1,...,r-1}. Such representations which allow
only r values in the digit set, are non-redundant
since there is a unique representation for each
(representable) number, By contrast, number sys~-
tems that allow more than r values in the digit
set are redundant. Redundant number representa-
tions are often useful in speeding up arithmetic
operations [2], [3]. It is not difficult to see
that the use of redundant number representation is
mandatory for on-line algorithms. If we were to
use a non-redundant number system, then even for
simple operations like addition and subtraction
there is an on-line delay of 8=m due to carry pro-
pagation. If we allow redundancy in the number
representation, then it is possible to limit carry
propagation to one digit position. On-line algo-
rithms for addition, substraction, and multiplica~
tion have been developed with &=1 [1], [3], [4].
In this paper, we develop two radix 4 on-line
division algorithms with 8=3 and §=5 respectively.
In general, the value of § for an on-line division
algorithm depends upon the radix and the proper-
ties of the digit set employed.
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The concept of on—line arithmetic is poten-
tially useful in variable precision and multi-pre-
cision arithmetic, in significance arithmetic [S],
and in digitally chained [6] and pipelined [7]
arithmetic units. It also facilitates the modular
design of an arithmetic unit. Detailed study of
arithmetic unit architectures which exploit the
features of on-line arithmetic algorithms is a
topic of future research, although some initial
work has been done [8]. Ercegovac [9] has develop-
ed a general on-line method for computing a large
class of functions. Ercegovac [10] has recently
developed an on-line square-rooting algorithm.

In reference [1], an on~line algorithm for
binary division was specified. A procedure for de-
riving a higher radix on-line division algorithm
for redundant operands was also specified. Irwin
[8] has studied higher radix ocn~-line division with
non~redundant operands. She allowed the partial
remainder to be in a redundant format so that
carry-free addition could be utilized in each
interative step.

The reason for considering higher radix arith-
metic operations is a possible gain in efficiency,
since the use of a higher radix causes a corres-
ponding reduction in the number of iterations re-
quired (although at the time the complexity of each
individual iteration is increased). For a dis-
cussion of conventional higher radix division al-
gorithms see [2,11,12,13,14].

The purpose of this paper is twofold. First,
in sections 1 and 2, we describe and give a formal
proof of correctness of on-line division. Secondly,
in sections 3 and 4 we derive two radix 4 on-line
division algorithms, with non-redundant and redun-
dant operands respectively.

2. The On-Line Division Schema

The following schema for on-line division was
first given in [1]. ©Note that this schema defines
a class of division algorithms. This schema pro-
duces an on-line division algorithm only when
given an interpretation by specifying the repre-
sentations of N, D, P, and Q, and by specifying
the selection function SELECT.
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SCHEMA OD [On-Line Division] correctness. Note that the while loop in the
schema is executed a fixed (m) number of times.

: 2 - ° 4 Thus if we can show that the function SELECT always
Step 1 [Initialization]: Py « :Z nro i Dy e ZZ AT s I terminates (as we will show in a subsequent sec-
i=1 =1 tion), then we can conclude that schema OD will al-
ways terminate.
Step 2 [Loopl: while (j<m) do Next consider the second aspect of the cor-
rectness of schema OD: whenever it terminates, it
begin m
-1
o generates the quotient Q = :E: qr which is an
Step 2.1 [Selection]: qj+l + SELECT {er, ]:Ij):; i=1
. . m-digit approximation to N/D, where the divided is
Step 2.2 [Recursions}: I:j+1 « Dj + dj-'5+1 r—]_é-l; m m
' -i - . -i
P - D . +n -t N = >n.r = and the divisor is D = :}: dir .
S e S L L st
i=1 i=1
3 1 §
- (:E 9 dipser™ Formally, the desired output assertion is
i=1
-m )
Al :{Q=N/D~-0ar ", 1/2 < a < 1}
Step 2.3 [Increment]: BRI R
end We desire to show that

true {SCHEMA 0D} A

The value of r is the radix, and 6 represents

the assumed on-line delay of algorithm. The func- To achieve this desired result, let us define the
tion SELECT in step 2.1 represents the quotient loop assertion
digit selection procedure. In step 1, we accumu-~ - 1
late the § leading digits of the dividend in . j+é bl i+
- iy At JPA = Z a7t - Z q e Z 4,7t 3.1
PO and 6§ leading digits of the divisor in DO. After 2 IJ L L & i & i
i= - i=
appropriately selecting the quotient digit qj+l in L

step 2.1, we proceed to insert (in step 2.2) the

newly arrived digit of the divisor into the current Lemna 1: true {step 1} A_ A (j=0)
1 : 2

approximation Dj+1 to the divisor. The new digit

Proof: By substituting j=0 in the assertion A., we
of the dividend nj+6+l is simp>y placed in the B0 y su v & J 2

. -j-8- 8
appropriate place (i.e., with the weight r 7 6 l). A -i
X . o et, P = :E: n.r . But this coincides with the
The formation of the next partial remainder Pj+l get, ¥y i
: . . P i=1
is more complex than in conventional division,
since we have to account for the newly-arriving first assignment in Step 1.

digits of the operands. The last term on the right
- Lemma 2: A2/\ (3 < m) {Step 2.1; Step 2.2; Step

2.3} A2

hand side of the formula for Pj+1 accounts for the
interaction of the new digit of the divisor with
the previously emitted digits of the quotient.

The condition test (j<m) of the whilg»loop assures
us that we will generate the quozzént to m-digit
precision. We note that it is possible to extend
the above schema to handle the case where the

dividend and divisor are available to m1 ~digit

and m, -digit precision, respectively, and the Lemma 3: A, {Step 2} 1 (j < m) A A,

Procf: (follows by direct substitution of the re-
cursions of Step 2,2 and simplification).

Now using lemma 2 and the rule of iteration from
Hoare's paper [15], we can prove the following

quotient is generated to my ~digit precision. From the rule of composition from Hoare's paper

[15], and Lemma 1 and 3, we can prove

3. Correctness Of The Schema Lemma 4: true (SCHEMA OD} T1(j <m) A A,.
Now we proceed to prove the correctness of
the schema OD. We will follow the notation as in In fact, upon termination of the schema, we have
[15]. First consider the termination aspect of G =m A A2’ or
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~ i

L= [ R
R -i -1 -1 ]*
P _ m n,r i q. T ?d;r [
w r 4: b \ * I
i=1 \i=1 bi=1 i

If we assume that N and D are padded on the right
with § zeros, then the above gives us:

™ [¥ - QD]

t

m

or

Q = N/D - r'm(ﬁm/n) (3.2)

This will imply the output assertion A, provided

R 1
that (Pm/D) can be bounded.

We therefore define the additional loop assertion

A3 to be:

A, {|§j < a D}

3
Following Robertson [2], we require that 1/2<a<1,
Note that the value of o is determined by tha pro-
perties of the number system employed [2]. It is
clear from the above discussion that the following
lemma holds:

Lemma 5: AZ/\A3 /A G=m) D Al'

To complete the proof of correctness of
schema OD, we need to prove the following two
lemmas:

Lemma 6: true {Step 1} A3 A (G =0).

Lemma 7: A3/\ (j <m) {Step 2.1; Step 2.2;
Step 2.3} A3

Lemma 6 can be satisfied if we assume that
the range restriction implied by assertion A“ is

initially enforced by appropriately preshifting
the dividend. Lemma 7 gives the input-output
specifications for the selection function SELECT
and will be satisfied in the course of deriving
the selection function for our two examples of ra-
dix 4 on-line division. We can now prove the fol-
lowing theorem.

Theorem 1: Any interpretation of the schema OD
results in a correct on-line division algorithm
provided that a selection function is definec.
which satisfies the conditions of Lemma 7 anc pro-
vided that the initial preshifting of the dividend
is carried out so as to satisfy the conditior of
Lemma 6,

Proof: Using lemma 7 and the rule of iteration
[15], we conclude that

A3 {Step 2}y (3 < m) A Ag.

Then from the above and lemma 6, we have

true {SCHEMA OD} =1 (j < m) A As,

by the rule of composition [15]. Combining this

with lemma 4, we have

A AL

true {SCHEMA OD} ~7(j < m) A A, 3

In fact, upon termination of schema OD, we have

(3 = m) A A2 A A3.,

Then from lemma 5 and the rule of consequence [15]
we conclude that

true {SCHEMA 0D} Ay

which was to be shown.

4, Radix 4 Division with Non-Redundant Operands

We give the division schema OD an interpreta-
tion as follows, Let r=4, and let 0 di

e {0,1,2,3}. Let q € {2,1,0,1,2}. The input as-
sertion for the selection function is that the

partial remainder Pj satisfies the range restric-

tion specified by assertion A3. It is necessary

to derive a selection function which will produce
the quotient digit qj+l e {2,1,0,1,2) such that

the resulting P (after the execution of Step

i+l
2,2) also satisfies the range restriction of asser

tion A,. Now if we can arrange for P to satisfy

the aszertion A3 (by appropriately prgshifting the
dividend), then by induction, the assertion A3
will be satisfied for all values of j, 0<j<m.

This will then imply that ]ﬁm/DlSa which in turn
implies that the algorithm derived from schema OD
produces the quotient Q to m-digit precision.

Our approach to deriving a selection function
satisfying the above properties parallels the
standard reverse approach [2,14]. Assuming

~

Pj+l must satisfy the afsertion A3, we obtain the
corresponding range of Pj for each possible value
of qj+1. This range of value of ﬁj is called the
qj+l selection region, and is conveniently repre-

sented on a so-called P-D plot[14). The actual
selection function is then derived from the P-D
plot.

Unlike the case of a conventional division
algorithm, deriving the qﬁ+] selection regions for

on~line division is quite difficult if approached




directly due to the complexity of the recursion for

Pi+l' We follow an interesting indirect approach

to this problem as in [1]. We assume that a simu-
lation of a conventional division algorithm (derivw
ed from the following division schema CD) is being
performed synchronously with the execution of the
on-line division algorithm. This simulation does
not actually occur; its only purpose is to ease the
derivation of the selection function. Indeed, this
simulation could not be performed in an on~line en-
vironment even if desired, since it requires that
all of the digits of the two operands be available
in advance.

We postulate that after a quotient digit is
selected in Step 2.1, we execute Step 2.2 of the
simulated conventional division algorithm. Assum-
ing that the initial value of Pj (in the simulated

algorithm) satisfies assertion A3, we require that

3 We
note that determining appropriate qj+1 selection

the resulting Pj+1 also satisfy assertion A

regions for Pj is relatively easy [2], Since Pj is

not known, we derive a relation between Pj and
Pj and then transform each qj+1

P,
J

selection region of

into a selection region for Pj.

541
Therefore, we consider the conventional divi-

sion schema, some of whose interpretations yield

SRT division, restoring division, and non-~restoring

division.

SCHEMA CD[Conventional Division]

Step 1 [Initialization]: PO « N; j < 03
Step 2 [Loop]: While (j<m) do

begin
Step 2.1 [Selection]: qj+1 « SELECT (er,D);
Step 2.2 [Recursion]: Pj+1 <« er - qj+lD;
Step 2.3 [Increment]: 3 <« j+1

end.

Using induction cn j, we derive the following
loop invariant for the conventional division
schema.

~ . A
| 3 V&
! -1 - -1i
F] = ] I Z VR Z QT : (z d;r l) (4.1)
D i=1 i=1 Jli=1 /
— -
From (3.1) and (4.1) we get
- -
| a J \ o
. ; -1 . 4
Pj-Pj =) Z T - (z ar 1)( Z e 1) (4.2)
i=j+i+l 1=1 P\ 154541 7
-
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Since L di ¢ {0,1,2,3} and q; = (E,I,O,l,z], we see that
. . | Ll . ] [ w 7,
P.-P, < rd -1 -i AP ;
575 r ] Z 3r + Z 2r ( z Ir 1) i (4.3)
' i=34341 =1 R e
. -
and
~ o
i N m \
Pof < —pd ! -1 i
57F5 < -r I 2r (/_ 3r (4.4)
I\ i=1 1=346+1
.
Letting m » = in (4.3) we set
1
. -8-]
. el
i3 S
|
J
<
Now letting j = =,
PP, sS4 L .78
i 3
-8
£ {1+ 2/3 r (4.5)
Subjecting (4.4) to similar manipulation, we obtain
S 2 =6
Pij 2-=5r (4.6}
Therefcre,
5 5 -6
2 =8 < P,-P, ¢ 24 )
-5 i 3T (4.7)
Now from Robertson's paper [2] we know that the range
restriztion on J is:
~-ps<cp ¢ 2 (4.8)
3 35 30 ’
Therefore, the range restriction on Pj is:
2 2 -6 1 2 4.9
-—=D+-S=r <P <-4 Dp- (-9
3 3 j 3

From [2,14], the selection region for a quotient
digit qj+1 = i for the conventicnal division

schema is defined (in our example) as:

D

+ i D <P, <

3 < TPy 3 (4.10)

Therefore, using (4.7), the selection region for

~

rP, is given by:

J
.2 I R 2,
( 3+i)D+ 3t < szs(—T+1




Assume without loss of generality that D>O0,
and that while the representation of D is with res-
pect to radix 4, the normalization of D is with
respect to radix 2, Clearly the minimum value of
D is 1/2. The P-D plot of the selection regions is
shown in Figure 1. Note how the adjacent selection
regions overlap. This is due to the redundancy in
the representation of Q, and is the reason why we
can make correct choices for quotient digits based
upon limited information about D (which is arriv-
ing digit by digit).

In particular, we require overlap of selection
regions over the entire permissible range of D,
i.e., the interval [1/Z, 1]. The overlap region
for = is:

o] qj+l 1
/ -
(_<%-+1 D+ 247 s—%b —f;A

\

-6+1

Clearly the worst case is at D = 1/2. To ensure

overlap at D = 1/2, we have:

2 2 -5+l 2 5 -
(<—3»+1)D+Ta < 3[) 34

1, 2, -6kl 25 -t
T t3e < R 34
1, =6+1 1
E +
RS
14
$-1 = 2
§ = 3

A similar analysis holds for the overlap region for
qj+l = 2. The other cases are symmetric to these
two cases.

The slanted lines of the selection regions
mean that, in general, full precision comparisons
of r and D will be required during quotient digit

selection. For the sake of efficiency, we cdesire
to replace these slanted lines with horizontal
lines representing limited precision comparisons.
Clearly in Figure 1 a single horizontal line is im-
possible, so we compromise with a series of steps
in each selection region, as illustrated in Figure
2. Computing these steps is straighforward, and
produces the following selection function.

I
n
L
A
,N

[

3
~
[
w
~
—

- 25 s -9 i
37 S MH < 35 1
) 25 -
4p, < - 22
SR :
31 -
3 S APJ 2
11 31

A
'’
oo
n
-

w
~
o
w
~

19 23 - 5 11
37 D= 35 33 S 4P 53y 0
-3 SA; gii 1

w
~
[
w
S

32
2. :
&g el 1
%% D %% _%% < aﬁj s %% 0
_%% < Qéj :'%% 1
A%s —%% 3
8. 2
%% < 4%,5 %% 1
%% < D o< 1 %% < a% < %% o
_% E Aé] < -% 7
e .§§ 2

Note that while 8§ = 3, this is three radix 4
digits, and thus we have 6 bits to work with in
the selection function comparisons.

To conclude this section, an example of radix
4 on-line division with non-redundant operands is

given.

N: 0312002231230022

D: 2212331032320231
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5. Radix 4 Division With Redundant Operands

Let the radix r=4, and let

N = nir—1 (dividend)
i=1
m
D = dir“l (divisor)
i=1
m
~i
Q = z qr (quotient)

[
L}
-

where g, di’ and q € fi,i,O,l,Z}. Thus =2 and

K= (p/r-1) = 2/3 (the degree of redundancy) .

From Robertson's paper [2], we have the fol-
lowing bound on Pj (for the convertional division

schema).

2 . 2
3 D < Pj < 3 D

we also have equation (4.2)

A (3]

imj+iel

Because of the fact that the quotient and operands
are redundant, it is easier in this case to derive

a bound on the quantity P s ldj],

- ﬁ,. Since fn.|
J 3

3

and |qi! < 2, it can be shown that

u

Z r\.r_i < 2
1

i=j+8+1

r-J-o-l—:rﬂn—l

-1
r

PV1“
O
o
.
)
kA
16Y
(%3
-
"
)
o
1
K
]
d
H
A
)
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Edr-iSZ £
. i l-r_l
{=f+6+1
[

Hence

R ) -i=6-1__-m-1 o1 g1 | -j-6-1__-m-
|P—P|sZrJ tj - - rl-rjl) er]'-rml
i -1 1-¢7! J 11

4 -3
-

after substituting the value 4 for r.

Using (5.1) and (5.2), we derive the following
range restrictions on P,..

2 2
--<£p4 - .
3 ( (3 * 9)“

Using (4.8) and (5.2), we derive the range for the
selection region of quotient digit qj+l =1 in

terms of P,,

Assume without loss of generality that D>0.
Also assume that D is standardized as described in
Atkin*s thesis [14]. This means that the first
digit of D is greater that 0. Clearly in our
example the minimum value of D is the following:

m
- L 2y, 1
Dmim T oor + Z 2)x
i=2
ey
T4
i=1
> L
-12

The P-D plot of the selection regions is shown in
Figure 3. The fact that the quotientdigitsqi are

redundant provides the overlap of adjacent selec-
tion regions, and we will exploit this fact to
derive a selection function which allows us to
make correct quotient digit selections based on
limited information about D.

As in the previous section, we wish to com-
pute steps inside each overlap region to serve as
the basis for limited-precision comparisons in our




selection function. But where in the previous
section it sufficed to ensure non-zero overlap at
the minimum value of D, an additional protlem sur-~
faces in this case.

Suppose in our limited precision comparisons
in the selection function we use the B most signi-

ficant digits of D and Pj. Since we wish to output

the first quotient digit after the first & digits
of D have arrived, clearly B < §. The error Ad
between the real value of D and the limited preci-

sion (B-digir) version of D (denoted D) which we
use for comparison is
m
N, -
ladls > ar™
ya
=g+l
since for i = 1,2,..,,m, di < 2, It can be easily
shown that
lad|< -—§— rB

A similar analysis shows that Ap, the error between
the real value of ﬁ. and the limited precision
(B~digit) version of ﬁj (denoted Rj) used for com-
parison also has the form

lap|< % B

Due to the errors Ad and Ap, we see that for
any value D0 of D, the corresponding point on a

step of the selection function really represents a
height 2Ap and width 2Ad centered at this point,
and this rectangle must lie completely within the
overlap region to guarantee correct quotient digit
selection (See Figure 4). With this criterion in
mind, we can compute the proper value of § to en-
sure sufficient overlap,.

Recall 6 = B + 1 and K = 2/3 is the degree of
redundancy. Clearly the worst case occurs at the
minimum value of D, in this case 1/12. Trivecdi [1]
has shown that if B and § satisfy

ol

then sufficient overlap will result. From the
above, it can easily be shown that B = 4, and hence
§ 2 5. Now we can compute our selection steps, as
depicted in Figure 5. These steps define the se-
lection function below.
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6.Conclusions

2% < 4P, 2 e
312 . We have presented two algorithms for radix &
194 R 491 on~line division, along with a proof of their cor-
G BV L rectness, The second algorithm (radix 4 on-line
division with redundant operands) is of particular
2298 o, o 364 194 Ag o 194 3 interest because it possesses two advantages.
512 512 512 i 512 First, it has the property of closure, that is,
. both the operands and the quotient have redundant
BLos s, 5ot [ repr tatio Any machine implementing such a
51 f 551 presentation. ny chine imple g
division algorithm could be based entirely on re-
ap. < - 491 5 dundant representation of numbers, and costly con-
! o1z version from redundant to non-redundant format
could be avoided (except, of course, before an out-
put operation). Secondly, the redundancy of the
%%g < “;i ) dividend, divisor, and guotient digits means that
the partial remainders Pj are also redundant. This
%ﬁ? S 4Ry = %%% L means that the basic recursions of Step 2.2 of the
algorithm can be computed using carry-free addi-
364 D < 447 238 R 238 tion, On the other hand, the selection .function
312 12 517 < By 5 5 ) for this algorithm is more complex than either the
first algorithm (radix 4 on-line division with non-
602 A;}g _ 238 i redundant operands) or the algorithm for binary on-
512 i 512 line division with non-redundant operands [1].
4, s - 002 7 . . . . . . :
j 512 Topics which remain to be investigated in this
area include (a) comparison of the performance of
on-line division versus conventional division
740 - algorittms, (b) the development of on-line algo-
51z 5 4 2 rithms to compute the trigonometric, nth root, nth
power, log and exponential functions, and (c¢) the
%%; < 4p, < 180 1 study of new arithmetic unit architectures to ex-
‘ 1 312 pleit such on-line algorithms.
gi; < D s 1 N %%% s 4y s %%% b}
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To conclude this section, we present an ex-
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operands.

[2] J. E. Robertson, "A new class of digital di-
vision methods," IRE Trans. Electron.

ComEut. vol EC-7, pp. 218-222, Sept. 1958.

N: -1-1-2001-1-10110-1001 [3] A. Avizienis, "Signed digit number representa-

tion for fast parallel arithmetic," IRE
Trans. Electron. Comput., vol. EC-10, pp.
389-400, 1961.

p: 20120101-1-111-1+-22 -1

gj a, [4] J. 0. Campeau, "Communications and sequen-
’ A tial problems in the parallel processor," in
0. 3437 e Parallel Processor Systems, Technologies, and

Applications. New York: Spartan, 1970.

[5] N. Metropolis, and R. L. Ashenhurst, "Signi-
ficant Digit Computer Arithmetic,'" IRE Tranms.
Electron. Comput., vol. EC-7, pp. 265-267,
1978.

[6] R. M. Russell, '"The Cray-1 Computer System,"
Comm. ACM, vol. 21, ne. 1, pp. 63-72, 1978.

[7] T. C. Chen, "Overlap and Pipeline Processing,
in Introduction to Computer Architecture,
H. S. Stone (ed.), Science Research Associa-
tes, Chicago, 1975.




(8]

[91

[10]

[11]

(12]

[13]

114]

o>

M. J. Irwin, "An arithmetic unit for on-line
computation,”" Ph. D. dissertation, Dept. of
Comp. Sci., Univ. of Illinois, Urbana-
Champaign, IL, 1977.

1

M. D. Ercegovac, "A general hardware-oriented
method for evaluation of functions and com~
putations on a digital ccmputer," IEEE
Trans. on Computers, vol. C-26, no. 7, July
1977.

M. D. Ercegovac, "An on-line square rooting
algorithm," this Symposium.

S. K. Nandi and E. V. Krishnamoorthy, "A
simple technique for digital Division,"
CACM 10, pp. 299-301, May 1969,

E. V. Krishnamoorthy, "On a range transfor-
mation technique for Division," IEEE Trans.
Comput. €-19, 2(Feb. 1970), pp. 157-160.

C. Tung, "A division algorithm for signed
digit arithmetic," IEEE Trans. Comput. C-17,
9 (Sept. 1968), pp. 887-889,

D. E. Atkins, Ph, D.. dissertation, Dept, of
Comp. Sci., Uniy. of T1l. Urbana, June 1970,

Fi ¢ B-
| Bure Ii P-D plot for radix 4 su-line divisiog \
: with non-redundane Operands
t
i | i I | | | ! ! ! Loe
s 0.5 0.7 c.8 ¢ b

173

OVERLAP
/ REGION

= i+]

Figure 2: Computing selection steps for
radix 4 or~-liase division with
non-redundant operands

a
Figure 3 P-D plot for radix 4 on-line division
with redundant operands
"i.0 ! | i 1 ! | | ! ! [
0.0 0.2 0.4 n.& n.8 1.0




o>

3
] / OVERL4P
1 REGION
3 3 .
-
SELEC"ION
STEP
\
I
g
= i+l
e T\ i
o~ |
Gga1 T F /
/J(//” |
P |
}
1 T
Dy
Flgure 4
A

D_.
min

— = Lelection steps

- = - = Lines computed to ensure that
reccangles lie in overlap region

Figure 5: Computing selection steps for
radix 4 on-line division with
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