Parallel idders Using Standard PLAs

Arnold Weinberger

International Business Machines Corporation
B89/707, PO Box 390
Poughkeepsie, New York 12602

ABSTRACT

PLA adders are described that add in
one cycle and require a reasonable number
of product terms for an 8, 16, or even
a 32-bit adder. A procedure is also
described for minimizing the number of
product terms for any size adder.

INDEX TERMS

Programmable Logic Array (PLA), input
decoders, output exclusive~ORs, product
term minimization, adder,
carry-look-ahead.

INTROQUCTION

Programmable Logic Arrays(PLAs) [1]
have been successfully applied to control
logic and simple functions, such as
counters, small adders, etc. Large adders
have usually been implemented on standard
PLAs iteratively, a few bits per cycle,

To implement a large adder in one cycle
required too many product terms to be
economical,

This paper describes single-cycle
adder designs for standard PLAs that
minimize the number of product terms to
acceptable levels even for 16 and 32-bit
adders. The PLAs have two features that
reduce the number of product terms:

1. 2-bit input decoders, where a pair
of inputs and their inverters are
replaced by a 2-input decoder and

exclusive-OR (XOR) outputs, where a
pair of OR array outputs are XORed.

The adder equations are expressed in
a manner to take advantage of the two
features and of various methods of sharing
product terms., In particular, a string
of several adjacent sum bits are expressed
in terms of the carry into the string,
using carry-look-ahead. A procedure is
developed to cptimize string sizes to
further reduce the number of product
terms.,

CH1412-6/78/0000-0116500.75 (c) 1978 IEEE

116

PLAs

A PLA consists basically of two arrays
in series, an AND array and an OR array,
as shown in Figure 1. The array names,
AND-OR, describe the generic logic levels
of the SEARCH-READ arrays of an
associative table [2]. The two arrays
may be implemented with other types of
logic besides AND-OR. A widely-used
logic is NOR-NOR implemented with MOS
technology.

—

AND
(SEARCH)

OR
(READ)

Figure 1. PLA (Programmable Logic Array)

The generic AND (SEARCH) array
produces an array of product terms of
the inputs to the PLA. Each product term
is the AND of the inputs, as in (1).
Each input enters the AND

(1)

in one of three states: true, complement,
or don't care. The true and complement
lines of an input intersect the AND array
at each AND with two bits which are
personalized for one of the three states.
The personalization is shown in Figure

2a when the generic AND (SEARCH word) 1is
implemented with a real AND and in Figure
2b when implemented with a NOR.

Product Term= f1(A)®f2(B)e...

The generic OR (READ) array produces
a generic OR of selected product terms
on each array output. The array is
personalized with a single bit at each
intersection of a product term with an
Output line. A 1 selects the product
term, a 0 does not. Each array output

is the real OR c¢f selected product terms

if the array is comprised of real ORs,
as in Figure 3. If the array is comprised
of NORs, each output is the NOR of
selected product terms.
A? =
A (a)
-—= PT = Fa(B)e - -
ANDs == PT = A« f(B)e ---
——= PT = A ®f(B)e -
A B -~~~
; = (b)
A _
- PT = (B b ---
NOR's S PT =R RB) -
- - - PT=A‘1me-—~
4__ 0 (Unconnected)
-#-» 1 {Connected)
Figure 2. Personalization of AND
(SEARCH) Array Using
(a) Real ANDs or (b) NORs
Xt X2 ---
= PT : .
P . X! T1+Pra +
PT2 - X2= P71y T PT3+ - -~
pT3 !
1
Figure 3. Personalization of OR(READ)

Array

It is well known that a function of
n variables can be expressed as a sum of a
subset of the minterms (or as a product
of a subset of maxterms). There are 20
minterms (or maxterms) and therefore 22n
possible subsets of minterms (or
maxterms) .

A complete set of minterms (maxterms)
corresponds to the positive (negative)
outputs of an n-bit decoder. Figures 2a
and b can be interpreted as providing a
1-bit decoder for input A: Figure 2a
provides the two maxterms A and A, while
Figure 2b_provides the corresponding two
minterms A and A.

117

The personalized 2-bit cell at the
intersection of a product term with the
1-bit decoder outputs corresponds to
selecting the subset of minterms
(naxterms) to comprise the desired
function. Figure 4 shows the four
possible functions of input A, of which
three are used. Figure 4a shows the
possible products of maxterms, each
maxterm included or not according to the
function to be personalized. A 1 is ORed
with the maxterm if it is not included

in the function, while a 0 is ORed if it
is included. Similarly, Figure U4b shows
the possible sums of minterms, each
minterm included according to the function
to be personalized. A 1 is ANDed with
the minterm if included, a 0 if not.
complement of the OR function of A is
actually shown, to correspond to the true
function for a generic AND when
implemented with a NOR.

The

A

A K
== (A} = (A+1)+(E+1) = 1+1 = don't care
P oo F(A) = (A40)e(B+1) = A1 = A
Aus co- F(A) = (A1)+(F+0) = 1K 2 F
~~= f(A) = (A+0)+(B+0) = A*K = 0 (unused)
A (a)
A
A A -
~-~ f(A) = E+0 + A<0 = 0+0 = don't care
-== f(A) = K+l + A+0 = R¢0 = A
NOR e F(A) = O TR - R < T
--= f(A) = K1 ¥ A1 = B+A = 0 (unused)
(b)
Figure 4. One-input functions using a

1-input decoder and a
personalized 2-bit cell with
(a) complement decode out-
puts and maxterm personaliza-
tion or (b) true decode out-
puts and minterm personaliza-
tion.

The number of product terms is
significantly reduced by substituting
2-bit decoders for a pair of 1-bit
decoders [3]. The total number of decoder
outputs remains the same. The product
term now represents the AND of functions
of pairs of inputs, as in (2).

Product Term= f1(A1,B1)f2(A2,B2)e... (2)
Figure 5 shows the 16 possible

functions of inputs A and B, of which 15

may be used. Figure 5a shows the possible

products of maxterms, while Figure 5b
shows the possible sums of minterms.
latter defines functions of A and B to
correspond to a NOR implementation of a
product term, as in (3).

FI(AT,BT)+F2TAZ,B2)+... .

This corresponds to Figure 4b for 1-bit
decoders.

The

(3)

Product Term=

Two-input decoders have already been
applied to a standard PLA [4] and will
be shown to be particularly useful for
adders.

Another economizing PLA feature is
using XOR outputs [5]. Pairs of OR array
outputs are XORed to produce a single
PLA output.

Figure 6 shows the PLA expanded to
include 2-input decoders and XOR outputs.

Adders

A typical adder adds two n-bit
numbers, A(AO,..., AI]--'I) and B(BO,...,
B,.1) together with an input carry Cin
to produce a sum S(Sgp,-.-r Sp-1) and an
Output carry Cout(=C.). Using single-
bit-position functions:

Gij = AjeBy, P; = A;+B4, Hi = AjV¥B;,
a carry from any bit position can be
expressed directly in terms of single-b

bit-position functions and the Cin, as
in (4) and (5).

L1

OR
(READ)

Figure 6. PLA with 2-Input Decoders and
XOR Outputs
Ci = G1
H *
Ty 0By
X (4)
+H, Mo el Teg
i n-2 n-1
+H *. * .
L
i Hn-l *Cin
= . 5
Ci I1
* Kk
L]
+H., P1+]
**. **._ (5)
+Hi ...-Hn_2 Pn_1
* %k *
+H, .., eCin

i .fH

*
where H means either H or P may be used

*

n-1

* -—
H means either H or G may be used

A B A
— —
é Tz 3& [Y S
T T
{A+3} (A+} (R4B) (A+B) H%M (A-B)(A"BY(AB)(A-B)
Sl POl b > DON'TCARE < 0)+ © 4 0)r(01 ; -
==(AeBY(L FL0) > A+B < (ABI 0)t 01+ 0 - -
_— | A+3B | -
.- | A+B t -
. | A+B : .-
. ! A | .
_— : B ‘[——
o oo A¥B ---
ANDg . : e : o KWS
- ! B ! ---
N : A : S
-—— i A-B | -
A - | A'B t U
N ! BB ' ---
e oo [}){AsE)e (48} (A43) > A'B «{ 0) (ABY+{AB)+ (AB) .-
L -~ {aeB(MB) (ReB) (AeB) > o(UNUSED) < (R BFiA-8I+(AB)7 (75 . —-—J
o) b)
Figure 5. Two-input functions using a 2-bit decoder and a personalized 4-bit

cell with (a) complement decode outputs and maxterm personalization
or (b) true decode outputs and minterm minimization.

118

Also, a sum bit can be expressed as Cﬂg+] = P
a function of the output carry from the
preceding bit position and expanded intc

i+]

' * %k
. an XOR of two entities, one of which + 1+1° i+2
| 3 includes a distant carry, as in (6) and :
| (7).
i i Ll o T
3 = = J J Y +H, e i - P
S5 Hi¥Ciq H1.¥~(G,“_]+H1.H Cj+1) i+1 J=1 73
* = ‘j J 4 ® . 6
i (H1¥Gi+1)¥(Hi+l CJ+1) (6) In a similar fashion, the output
_ =3 o] - carry can also be expressed as an XOR of
= (H1¥G%+])¥(Hi+]+cj+]) two entities, one of which includes a
distant carry, as shown in (8) and (9).
T = VT, (T end T . T+ T, Euniec
Si T MOy mH (R Py 0Ty) Cout = GHG+HY Ty, =GHY¥HYTy, (8)
g = ——j ‘j o— ‘:7 = ——J _‘j+ .
= (H W8Iy L D% (HY o Tq)) (B IR +C)
= (H¥GHT L)w(TT, . +c, — _
s 1+1)% i1 J+1) Cout = Gl+ndec, =giypdec {9)
j L ¢ 0 ~j+1-70MM0 J+1
where G1+1 = carry-generate condition for . X
bit group i+1 through j ={6YI{FI+T. }
_ (high-to-low order) 0 0 i+l
Hg+] = strict carry-propagate condi-
tion (mutually exclusive with
J
Si+1)
GH%+1 = G‘,?*_]**H‘,h-l = inclusive carry- Egs. (6) through (9) can also be expressed
sonditi as functions of the distant carry of
_ propagate condition opposite polarity. The selected forms
GY = G. of the equations provide greater
i+1 i+1] opportunities for sharing product -terms.
*
TH.I+] .G.i+2 PLA Adder Designs
; * * The adder equations can now be applied
+H1.+]'...'HJ-_]'Gj to the PLA of Figure 6.
TJ - 5.01 Addend and augend of the same bit
1+ 1 position, Ai and Bi, enter a common
* decoder, so that the intersection of an
] +H. -F,+2 AND with the decoder outputs can produce
3 ! Pl s a function of Ai and Bi, i.e., Gi, Pi,
g TS o5 Hi, or their complements. The input
’ +H1+] j-T carry Cin enters as the sole input to a
. ok decoder. (For uniformity, a 2-input
+H. H. .G, decoder will be provided for Cin with
) i+ -1 7 one input unused.)
; HY Hypq® oo ®H, o .
i+ 1+ J Sums are generated in strings, each
T = 0 + +0 string as a function of a common carry
i+ i+1 g into the string, using Egs. (6) and (7).
A positive string of sum bits is shown
3 in (10), and a negative string in (11),
GH1+] = Gi+1 The output carry of the string is

generated as a sum of products according
. to (#4) or (5). For the purpose of
+H, ,G. : counting product terms, a string includes
41 Ti+) the sum bits and the output carry of the
\ : string. The output carry of one string

* Serves as the input carry to the next
tHisre 'Gj_1 higher string.
*’ L 4
L
+H1+] Hj_1'pj

119

ERI R \
. J i+l
. Hy-1°; J
]
] f _ _ -
S 71 MitPig
+F.'Hf* P,
1 i+1 " i+2
iﬁ Wi P
i ety
U g
i "1+ J-173
tHiGy 4
*
THytH 0G4y
| .
+H'I H'i‘f‘]. .o HJ_-I'Gj y

(%]
i}

\
Sj-] = Hj-1'Pj _
¥) H,+C.
r

. J il
: +Hj-] F] J
i
T MGy)
e * L]
HiTHi "6
e
N 65 1
< = o™ . * P
K HipPy
P
. *x D
ARSI IR
: . %* % . . * % .3
TPy

\

Three string types are identified:
low-order, intermediate, and high-order.

A low-order string includes a product
term representing the input carry Cin or
Cin, the low order sum bits implemented
according to (10) or (11), and the product
terms representing the output carry of
the string according to (4) or (5). The
indexes (j=-1, j) become (n-1, in). Note
that the high order sum of the string Si
shares some of its product terms with
the output carry of the string Ci, and

¥-{H1+1+...+Hj+cj+]} (10)
¥ ‘LH1.+]+...+HJ.+CJ,H} (11)

51 shares product terms with CIi.
Therefore, it is advantageous to use the
same polarity output carry from the string
as the sum bits. Since the sum bits are
a function of the opposite polarity input
carry to the string, it is also
advantageous to alternate polarities of
strings. It should also be noted that
when sharingvproduct terms between Si

and Ci (or &1 and Ci), the common factor
Hi must be used and Pi (or GI) cannot be
substituted for it, i.e., Hi* (or Hi**)
does not apply.

The number of unique product terms
needed for a low-order string of K sum
bits and its output carry is: 1 for the
input carry, 1+2+5+,..4+(2K~1) for the
sum bits (noting that some product terrns
are shared, e.qg., HJ), and 2 for the
additional unique (non-shared) product
terms comprising the output carry of the
string. Eq. (12) expresses T1ows the
number of unique product terms of
low-order string for k>1.

Tlow =1HIT#2+84-h(2k-1)142 =242 (12)

Eq. (12) also holds for K=1, when
the low-order sum is generated acccording
to (13) or (14).

Sp-1 = HooyoCin ¥ Hpop°Cin {13)
§n_1 = Hp1°Cin ¥ F —Cin (14)

together with the opposite polarity output

carry of this string, Ch=-1 = Pn-1+Hn-1'
Cin, or Ch-] =G *H o Cip» respectively.
The two product' termd éf Sp-1 (or Sp-7)

and the additional unique product term
for C,_, (or Toq) add up to three unique
product terms for a low-order string of
one. If a low-order string of one is
used, the next string is of the same
polarity as the low-order sum in order

to make use of the opposite polarity
output carry of the low-order string.

An intermediate string uses the
product terms of the output carry of the
Preceding string to generate the sum bitg
according to Egs. (10) or (11). It also
generates the output carry of the string
according to (4) or (5), respectively.

The number of unique product terms
for an intermediate string Ti of size K>1
is one less than for a low-order string
because the input carry to the string
has already been counted as part of the
preceding string, The output carry of
the string has additional product terms
equal to L, the number of bit positions
of lower-order than the string.

Ti = K2+1+L for K>1

(15)

"

3+L for K=1

A high-order string generates the
high-order sum bits as for an intermediate
string. However, the output carry of
the string, Cop, is needed only as an
output of the adder, Cout, so that it
can be generated as in (8) or (9) as a
function of the input carry to the string.
Here, product terms can be shared between
Cout and Sj or between Cout and Sg, so
that opposite polarities are selected
and only two additional unique product
terms are needed for Cout or Cout.

121

The number of unique product terms
for the high-order string, Thi h+ 1is the
same as for an intermediate stglng without
the factor L, since the output carry is
a function of the input carry to the
string.

T K2+1 for K>1 (16)

high
Figure 7 illustrates an 8-bit adder
divided into four strings of 2 bits each.
The strings have been optimized to further
reduce the total number of product terms
to 27. Table 1 expresses the 8-bit adder
in equation form to correspond to the

PLA format used.

Optimizing Strings

Optimum string sizes are determined
differently for the different string
types. For the low-order string, it is
determined by minimizing the normalized
number of product terms needed for a
string, i.e., by determining (Tlow/K) min.

(T1ow/KImin = [(K2+2)/K]min (17)

= 3 for K=1 or 2

In other words, a minimum low-order string
is either 1 or 2 bits long.

For an intermediate string, the
minimum normalized number of product
terms,

(E/K)min

[

[(K2+1+L)/KImin for K>1,
(3+L) for K=1.

is a function of L, the number of bits
of lower-order than the string.
Successive (higher-order) intermediate
strings should therefore be increasing
monotonically. We, therefore, determine
the transition value of I, Ly, for which
string sizes K and K+1 are equally

efficient. The value of Ly for string
sizes 1 and 2 is:
3+Lt = (5+Lt)/2’ A Lt = -]

So that it is always more efficient to
have an intermediate string size of 2
than of 1. To determine larger string
size transition values,

(KB+1+L,) /K = CORR 1) EareL 3/ (ko)

Ly = K34K-1 for K>1

Table 2 shows various transition values.

TABLE 1. Equations for 8-Bit Adder

* % *k
AT A
S - T ¥_ 6 .+H * % 'H * K .H **.F
3 3 4 g Mg cHg Py
* % * k * % * % =,
P P T
R ¢, = &
2 2% \y V2 2
*Hy Gy BAPALE!

H* H or P may be used
H** H or G may be used
TABLE 2. Transition Values for Optimum

Intermediate String Sizes

K—> (k+1) | 2—> 3 | 3—> 4 | 4—> 5]---

L, s 1 | o

In other words, after 5 lower-order
bit positions, the next string size is
equally efficient at 2 or 3; after 11
lower~order bit postions, the next string
size is equally efficient at 3 or 4; etc.

The change in transition values, ALy,
in (19), shows that

ALt = Lt(K—_;. K+1) - l-t(K-l——> K) (19)

[(K-1)2+(K-1)-1]= 2K

(K2+K-1)

a pair of equal intermediate string §izes
(two K-1 sizes) are followed by a pair

122

next higher size (two K sizes) for optimum
assignment of intermediate string sizes.
In other words, a low-order string is
followed by intermediate strings of a

pair of two's, a pair of three's, etc.

An optimum high-order string is
determined in relation to the other
strings. First we note that if the
high-order string is greater than (smaller
than) the adjacent intermediate string
by two or more, the combined number of
product terms for the two strings can be
reduced by reducing (increasing) the
high~-order string by one and increasing
(reducing) the adjacent intermediate
string by one.

This leads to the following procedure
for assigning string sizes: We begin
with a low-order string of two (the larger
cf the two optimal sizes), followed by
pairs of strings of two, three, etc., If
the bit positions of the adder are
exhausted when the high-order string is
equal to or one greater than the adjacent
string, the first-pass string assignment
is final., If the high-~order string is
exactly one less than the adjacent string,
the high-order string is increased by
one and the low-order string is reduced
by one to yield a more optimum assignment.
If the high-order string is at least two
less than the adjacent string, the latter
becomes the new high-order string and
the former high-order string is deemed
a remainder to be absorbed by the
intermediate strings as follows: For
each pair of equally-sized intermediate
strings, the high order of the pair is
increased by not more than one. We can
arbitrarily choose the high-to-low order
pairs for increasing an intermediate
string by one.

Table 3 illustrates the procedure
for assigning optimum strings. The
assignment is not necessarily unique.
For some adder sizes other optima are
possible. For example, the 8-bit adder
of Figure 7 can also be implemented with
27 product terms using string sizes 1,
2, 2, and 3, low-to-high order.

Tables l4a, b and ¢ illustrate the
relevant parameters for: 8-bit, 16-bit
and 32-bit adders, using 27, 74 and 211
product terms, respectively.

CONCLUSION

PLAs have been shown to be capable
of economically implementing one-cycle
multi-bit adders. Economy is achieved
using a special adder algorithm which
permits a large amount of product term
sharing as well as efficient use of
2-input decoders and exclusive-OR outputs.

Ao Ay A2 A3 Ay As Aw A Cin — — —_
BOLB,l52l53l3vi35i3b137l,v Cur S0 S S2 83 S S¢ Se 5
Y Y VY VYV VI vy by ¥y Y D A A 4 A A 4 A

24 INPUT BECODERS XOR XOR| X0R| XOR|XOR|X0R | XoR [x08 | 108
Cin [|- 1N
Hy — 1] 2
He | Gy > I 3
G > ! | } W
(o { He| G| |+ RN 5
*E T A
. He H» Cln] } | 7]
Hg | —>1 1 n
Hy | Pg — } 8
Py -~ T a
— Hy | Pe - 1 [10
Cy Hi| HE| P, o 10K "
He| HZ HG[Bal 1 i 1
R EEARL = 11 /3
3 =) H! 14
| H2las > I s
Ga = 0| i) n
Hil 63 >) | 1 9
HIlHI| Gy — Ll b i 8
¢y HI| H3| Ha| 6 —{ 11 1] |1)
Hi| Hi| Ha| HE| Ge = (D h 20
HI|HY HE HETHE Gnl = T T a1
AL B3] HE W I 51 Cmb 1]] 22
Hi — (1 (1) 23
Ho P - ! 24
Ho! P —{1] |1 PYy
P | 2¢
AND Array OR Array

Figure 7. 8-Bit Adder

123

TABLE 3. Illustration of Procedure for
Optimal String Assignment

First-pass string Final string ass:ign-
assignment (Nos. ment
are string sizes)
54433222
no change
44433222
34433223 44433221
3433223 4433221
2uu33%22 4443322
2433522 443322
ru4%3222 4443222
7833222 443222

above numbers marks strings to be in-
creased by one
above numbers marks strings to be de-
creased by one

/ through numbers marks remainder to be
absorbed
TABLE 4. Number of product terms for

a)
c)

8-bit, b)-16~bit and
32-bit PLA adders

’01[23]45!67 Cinl Bit position

21 2] 2} 2 <+—K(String size)
41 2§ - «—L (Number of lower-order
bit positions)
51 91 71 6 «T (Number of product
terms)
@ Product terms
(a)
11111411
0123(45671789{01]23|45 Cin|
[3 3 2] 21 2 K
9 6 41 21 - -1
17 119 |16 91 71 6 -—T
7Q)Product terms
(b)
l t 11111 1111112227222 22122133
01234] 56789101234 {5678}9012]|3u45[67[83|01 cCin|
5 5 5 4 i 3 21 21 2 -K
22 17 13 9 6 41 2 -~ -L
26 48 43 30 26 |16 3] 7] 6 T
"N,
2 1>Product terms
vy

(c)

REFERENCES

W.N. Carr and J.P. Mize,

"MOS/LSI Design and Application."
McGraw-H1ill Book Co., INc., New York
1972,

M. Flinders, P.L. Gardner, J.F.
Minshull, R.J. Llewelyn, "Functional
Memory as a General Purpose System
Technology,"

IEEE Computer Group Conference, June
1970, pp. 314-324,

A, Weinberger "Functional Memory
Using Multistate Associative Cells,"
U.S. Patent #3761902.

J.C. Logue, N.F. Brickman, F. Howley,
J.W. Jones, W.W. Wu, "Hardware
Implementation of a Small System in
Programmable Logic Arrays,"

IBM Journal of Research and Development,
Vol. 19, No. 2, March 1975, pp.

110-119.

J.W. Jones, "Array Logic Macros,"

IBM Journal of Research and Development,
Vol. 19, No. 2, March 1975, pp.

120-126.

124

