CONYERGENCE GUARANTEE AND IMPROVEMENTS FOR A FAST HARDWARE
EXPONENTIAL AND LOGARITHM EVALUATION SCHEME

Celia Wrathall* and Tien Chi Chen

IBM San Jose Research laboratory

San Jose,

In one iteration, Chen's algorithm for
evaluating exponentials and logarithms
advances by 2 bits on the average, yet
may not advance at all. Analysis reveals
that the no-advance situation actually
paves the way for sizable advance in the
next iteration, and the guaranteed
advance, after a one iteration overhead,
is one bit per iteration.

Two new schemes raise the guaranteed
advance to 1.5 bits per iteration, after
a two-iteration overhead, while

maintaining the original requirement ‘of

ore stored constant per operand bit.
of

Adopting as a figure merit the

following quantity

advance per iteration

Q:
memory words per operand bit
for the steady-state iterations, the new
schemes appears tc be better than other
methods heretofore proposed.
1. Introduction
Chen's hardware-oriented scheme for
evaluating exponentials and logarithms
<1> has the merit of conceptual
simplicity, small table size, amd good
average performance. It has been

installed on at least one computer <2>.

For many realistic computing
environments, a guaranteed performance is
called for. The performance of Chen's

scheme, however, is strongly dependent on

the bit pattern of the input operand.
Though an iteration brings the
intermediate result two bit positions
closer to the final answer on the

average, it also may produce

no visible
advance at all.

* Current address:
Mattematics, Oniversity of
Santa Barbara,

Department of
California at
Santa Barbara, California.

CH1412-6/78/0000-0175$00.75 (c) 1378 IEEE

175

California 95193

An analysis shows, surprisingly, that
this temporary standstill actually paves
the way for 'a subsequent sizable advance.
Further investigation shows the
possibility of improving the gquaranteed
convergence rate by 50% without inflating
the table size, at a small added cost in
processing complexity.

The convergence analysis
search for improvements are
of this communication.

and the
the subject

2. ‘Chen's schenme

Chen's algorithm involves the
co~transformation of a number pair
(x(k) ,Y(k)), using a parameter m(k) found

by examining x (k) . It drives x(k)
tovards a known goal, and concurrently
Y(k) to the desired functional value. An
"end-play" replaces half of the
iterations by a truncated Taylor
expansion, costing either an add (for
logarithms) or a half-multiply (for
exponentials).
Let
T{m,s) = - ln (l+s.2%*-n)
be the possible pre-stored tabular
values, also the signed fraction
u(k) = xi(k) for computing exp x
= 1 - x(k) for computing log x
We have
ufk) = g(k) . (2**-m(k) + p(k))
with s, g(k) = +1 or -1
m, m(k) = positive integers

0§ p(k) < 2%%-m (k)

In Chen's method, s and g(k) are always
positive, and m is chosen to match m(k).

The aim of the iterations is to drive
u (k) towards the value zero. A
convenient measure of the magnitude is
m(k), the position of the 1leading 1-bit
of the magnitude of u(k), counting
rightward from the binary point. If

u(k)=1/2, its 1leading 1l-bit position is
m(k)=1. An important measure of the
efficacy of an iteration is the gain in
leading 1-bit position, called the
advance of the iteration.

A(k+l) = m(k+1l) - m(k)

When the leading rN/21 bits are zero,

mk) »1 + [n/2]

u(k) is said to equal h, where
[h} < 2%*%- N/2

At this point an "end-play" based on a
truncated Taylor expansion can be used to
obtain the final result.

The iteratiomns
and 1ln(l-u) for the
below.

for evaluating exp(u)
fraction u are given

e e et e e e e o oo 3k A e ook ks s ok ok sl 3ol ok ok ol ok kokok ok ook ok

THE EXPONENTIAL CASE

exp u(0) = w.exp (u{0))

v (0).exp(u(0))

(Y (0) . (142*%*-m (0))) .exp (u(0) -
-ln (1+2%*~p (0)))

¥y (1) .exp(u(l})

(v (k) . (1+2%*-m (k}).exp (u(k)~
-1n (1+2%%-n(k))

Y (k+1) .exp (u(k+l))

tton

kb.. exp h
f) + . b

witk a relative truncation error measured
by (h*%2) /2 < (2%*-N) /2.

2 nomn

THE LOGARITHM CASE

In(1-u(0)) = w + In(1-u(0)
= y(0) + 1n(1l-u(0))
(¥ (0) ~1n (142%%-p (0))) +
+1nf(1-u (0)) . (1+2%*-n (0))]
y{(1) + 1ln(l-u(l))
(7 (k) -1n (142#%%-m (k))) +
+1nf(1-u (k)) . (1+2%*-n (k))]
y(k+1) + 1n(l-u(k+l))

H

woaon

2 iy i

yi) + 1n (1-h)
ym - h
with an absolute truncation error

measured by (h*¥*2)/2 < (2*%~N) /2.

e e o e e oo e e ok e ok ol ook ok e ok ek ok e de ek Rk ko ok dok K

3. Convergence analysis of Chen's schenme

Chen has found the
his method to be 2.

average advance of
For some iterations,
however, there may be no advance at all;
curiously, the method seems +to work even
better after such a standstill.

3.1 Deliberate undercorrection

the quantity wu{k+l) depends on u(k),
but not on y(k). Hence the convergence
of Chen's scheme is seen by examining the
transformation of u(k) alone, as shown
below.

a. Exponential case:

u(k+l) u(k) - In (1 + 2**%-m(k))

p(k) + RE (k)

witth
RE (k) = 2%*-m(k) - In (1 + 2%*-n(k))
0 < RE (k) < 2%#*-(2m(k)+1)

b. Logarithmic case:

a(k+1) u (k) - (Z**-m(k))

p (k) + RIL (k)

{1- ui(k))

with
BRI (k) = u{k).2%*-n (k)
G < RL (k) < 2%%(~2m(k)+1)

176

In both situations the
u(k), with a magnitude of 2**-m(k), is
singled out for destruction; the
iteration destroys that bit, leaving the
leftover bit pattern p(k) plus a positive
definite correction term (RE or RL, to be
called R below) bounded by 2%*(-2m(k)+1).

largest bit in

The scheme undercorrects
u(k), making u(k+l) positive also. As
long as the u(k)'s remain positive,
Chen's method never needs the tabular
entries T (m,s) with negative s.

for positive

The one-sided convergence means
the arithmetic unit need never
any subtraction during iteration; this
advantage is minor in view of the rapid
progress of LSI electronics.

that
per form

3.2. No advance brings good advance

The undercorrection also
anomaly of zero advance. This is seen in
Fig. la, where both m(k) and m(k+l) egqual
6. Such an anomaly occurs when p(k), the
left-over bit pattern, has a value very
close to 2**-m(k). The second order term
(RE or R1}, being positive, adds to p(k)
to create carry ripples, resurrecting the
leading bit in wu(k) after the initial
cancellation.

leads to the

This standstill is actually a blessing
in disgquise. The rippling of carries
necessarily leaves a long trail of zeros

behind (Figure 1b). The next iteration
will destroy the m(k)th bit, producing a
very small result with about 2m (k)
leading zeros. This loose discussion can
be made rigorous by the following

THEOREM 1. If m(k+l) = m(k), then
n(k+2) > 2m(k)-1.

PROOF. We have

u(k+l) = 2%*%-p (k+1) + p(k+l)
= 2**-n (k) + p(k+l)
But u(k+l) = p(k) + R(k)

< 2%*-m (k) + R (k)
hence p{k+l) < R(k) < 2%* (-2m (k) +1)

g Now u(k+2) = 2%*%-m(k+2) + p(k+2)
: but u(k+2) = p(k+1l) + R(k+1)
| < R(k) + R (ktl)

< 2%%(-2m (k) +2)
Thus 2%%-m (k+2) < 2%% (-2m (k) +2)
hence n(k+2) > 2m(k) - 2

by taking logarithms of both sides. As
m(k), m(k+2) are both small integers, the
strict inequality means

o(k+2) » 2m(x)-1. Q. E. D.

COROLLARY 1.1. If m(k) > j > 2, then

either
m(k+r) > j + r
or m(k+r) = j + r - 1
but wm(k+r+¢l) > 25 + 2r ~ 3

COROLLARY 1.2. 1If after k iterations,
m{k) 2 3 » 2, then for N > J 2 j we have
®(k-j+J+1) > J. 1In other words, n, the
minimum total number of iterations to
vield m(n) > J, is no greater than
(k-3j+J+1),

In Chen's method, the end-play is
invoked when m(n) >[N/2+1], whether N is
even or o0dd. The number of iterations
needed to reach this point is bounded by
Tk-j+3,/2427.

Standard function-evaluation
techniques map floating point numbers
into the range [0, 1n 2) for

exponentials, and the range [0.5, 1) for
logarithms. wm(n) is bounded by [N/Z]for
bott cases, as shown below.

THEOREM 2. For N > 8, using Chen's
method for the exponential function with
x (0) in fo, ln2y, the number of
iterations needed to reach m (n) ;rN/2 +]]
never exceeds rN/2 .

PROOF. It .suffices to show that

m(k) 2k+2 for some k£2. For then j-k=2,
and n = [k-j+n/2+2] = (n/2].

177

Detailed examination shows that there
are only three processing patterns

a. m(0) > 2
b. m(0) =1, m(1) > 3
c. m(0) =1, m(l) = 2, m(2) >4

hence m(k)=k+2 for k=0,1,2 respectively.
Q. E. D.

THEOREM 3. For N > 6, in the
evaluatiion of 1n x starting with x(0) in
[0.5, 1), the number of iterations before
the end-play is no more than [N/2].

PROOF. Here 0<u(0)=1-x(0)<0.5, and
already and m(0)2»2 for all cases but one.
The lone exception is u(0) = 0.5, for
which m(0) = 1, but m(l) 2 3. Q. E. D.

We observe incidentally that roundoff
error will not invalidate the results, as
the above theorems are protected by ample
safety margins. Theorem 2 is valid for x
as large as 0.7536, and Theorem 3 is
valid for x as small as 0.3456.

4. The search for a better algorithm

The performance of Chen's method shows
wide fluctuation; the above bound on
total advance is only half of the
expected average advance.

The next challenge is to find
alternative methods with the same table
economy as Chen's schenme, yet with
stronger convergence guarantee. Despite
the seeming lack of extra freedom, the
answer turns out to be in the
affirmative.

To obtain faster guaranteed
convergence, the undercorrection in
Chen's method should be replaced by a
measure of overcorrection. But this
latter tends to change the sign of u (k),
which calls for both +types of table
entries, T(m,+1) and T(me,-1), for
exponentials in the reduction of u(k),
and for logarithas in the
co-transformation of y (k). Since Chen's
method wuses T(m,+l) exclusively, the
addition of T(m,~1) could double the cost
for table storage.

It turns out that there need be no
table-size increase, if one merely
changes a portion of Chen's table of
T(n,+1l), to the alternative form T(m,-1),
such that over a small range of m, both
types of table entries are present, but
not for the same m. This way a need for
a given type of table entry will be
satisfied, though the entry of the
desired type may not match the desired
m (k) exactly.

We now assume both positive and
negative values for u(k):

u(k) = g(k). (2**-m (k) + p(k))
The table entries will be taken as
{T(m)} ={-1n (1 + s{(m). 2%%-n)}

The magnitude of s(m) is 1 in all cases,
but the signs are to be decided later.

4.1 A first-order theory

An iteration using the signed u(k) can
be written as

u(k+l) = u(k) - s(m).2%*-mp +
+ 0 (2%%-2m)

.Y first-order theory, based on
ignoring the second order 0 (2%%-2m)
terms, makes the problem vastly more
tractable: an iteration has the simple
effect of adding a signed bit to u(k) at
a known offset.

The design of the best scheme (to
first order) consists of choosing the
T(m)*s which cancel bits in u(k) nmost
effectively.

We have limited our choices to the
cases with s(k)=s(k+q) for small integer
9. All cases for q up to and including S
have been studied to first order; the
most fruitful one being with g=3, which
is examined below.

4.2. The cancellation of octal digits.
For the case of 4g=3, it is nmost

convenient to comsider u(k) as a sequence
of octal digits, thus

u(k) = U(k).2%*(3-37)
= g (k). (D (k) +P (k)) . 2%* (d-37)
with 0 < D(k) €7
0 P(k) <1
where 4 = 0, 1 or 2 is an integer

indicating the displacement of the octal
digit boundary. The simple choice 4 = 0
turns out to be adequate.

For s(k)=s(k+3), there are only the
following nontrivial cases, plus cyclic
pPermutations already allowed for by 4.

s(l), s(2), s{(3)
= +1, +1, +1 (the "ppp" schenme)
= +1, +1, -1 (the "ppn" schene)
= -1, -1, +1 (the "nnp" schenme)
= -1, -1, -1 (the "ann" schenme)

The ppp scheme is Jjust the unmodified
Chen algorithnm. The nnn scheme handles

positive u(k)'s poorly, and needs extra
work to preserve the negativity of the
latter; it will not be discussed further.
The ppn and nnp schemes can be treated
together; the former operating on U (k)
has the same first-order behavior as the

latter operating on -U (k). We assume
zero displacement unless stated
othervise.

One can now take the bit pattern of U (k),
and examine the effort required to cross
out the nonzero bits, by adding one
signed bit at a time. The result for
nonzero P(k)'s are shown in Table I, and
a graphical view is given in Fig. 2. It
is clear that two iterations at nost,
will clear an octal digit to first-order.
The case of P(k) = 0 occurs rarely, and
need not be considered in the first-order
theory.

Assuming all 16 cases to be equally
distributed, a total of 48 bits are
cleared in 22 iterations, for an average
advance of 2.18 bit positions per
iteration. This average advance is only
marginally better than Chen's original
method. The guaranteed sustainable
advance, however, is fully 50% better.

2. Guaranteed convergence of the new
algorithm.

We have made an extensive study of the
ppn, nnp schemes. The analysis resembles
that for the Chen algorithm, but requires
more details Dbased on an expanded
notation. The results are stated as
theorens without proof. Zero
displacement is assumed throughout.

THEOREM 4. The ppn scheme clears D (k)
in no more than three iteratious.

THEOREM 5. For j»2, if the ppn scheme
requires three iterations to clear D(k),
then it takes no more than one iteration
to clear the next octal, namely D(k+l).

THEOREM 6. Using the ppn scheme for
exponentials with x(0) in [0, 1n 2), or
for logarithms with x(0) in [.5, 1), then
it takes no more than 2+2.[N/67
iterations to clear the first [N/27 bits.

THEOREM 7. Using the nnp scheme for
exponentials and logarithms, it takes no
more than three iterations to clear an
octal digit.

THEOREM 8. For j>2, if it takes three
iterations to clear D (k) using the nnp
scheme, then the next octal digit is
autematically cleared by the third
iteration.

THEOREM 9. Using the nnp scheme for

logarithms with
exponentials

is

equivalents)

EO.

rl.

E2.

E3.

E4.

E5.

is

The ppn

for
it

x{0) in
with x0 in

l:-5,l) v OL

[0,-1n 2),
takes no more than 2+2. [N/6literations to
clear the first [N/2] bits.

&. The Fast ppn Algorithm

scheme for =zero displacement
below. The hardware (or
consists of

given

a table of [N/27 words,

with s(m) = -1, when 3 divides m
= +1 otherwvwise;
an adder (which can add and subtract);

a multiplier (perhaps shared);

a shifter which can
select the leading nonzero octal
and also note its position;

an octal position register J;

data registers X, Y;

short temporary registers:
M (N/2 bits, for table address nm)
D (3 bits, for octal digit D(k))
S (one bit, for sign of fraction).

K 0 o R e e ok ok A ok o o e ol ok ok ok ok s o sk ok ol 3K ok ok ok o o ok ok ok ok o ok

THE ppn LOGARITHM ALGORITHN

Load the input x into X,
set C(Y) to O.

Fetch C(X), find u=1-C(X),
put sign of u in S,
locate the leading octal digit of u,
store its position (3j) in 4,
and put digit in D.
L2. TIf c(M) » N/2 + 1,
go to Step LN for end play;
else
if C(D) »+3,
if +3>C(D) 2+1,
if -13>c (D) >-3,
if -3>Cc(D),

subtract 2 from M

subtract 1 from M
leave M unchanged
subtract 3 from M.
L3. Fetch a copy of C(X),

right shift by c(m),

change sign iff S is negative,

add to C(X) to become new C(X).
L4,

Use C(M) as address m to fetch T (m).

L5. C(Y) + T(m) becomes new C(Y)

L6. Go to Step Ll.

LN. (End play)

C(Y) + (1 - C{X)) gives the answer.

32 ok ok ok ok e ok sk o sk ok o s ook ok ok ok ok ook ok ko ok ko ek ok ko ok ok ok

T(m)=-ln (l+s(m).2%*-pm)
TFE ppn EXPONENTIAL ALGORITHM
Load the input x into X,
set C(Y) to 1.
Fetch C(x),
copy its sign into S,
locate the leading octal digit,
store its position (33) in M,
and put digit in D.
If CM) > N/2 + 1,
go to Step EZN for end play;
else
if C(D)2+3, subtract 2 from M
if +3>C(D)>+1, subtract 1 from M
if -1>C (D) >-3, leave M unchanged
if -32c (), subtract 3 from M.
'se C(M) as address m to fetch T(m).
C(X)+T(n) becomes the new C(Y).
Fetch a copy of C(Y),
right-shift by m positions,
change its sign if S is negative,
result + C(Y) becomes new C(Y).
Go to E1.
(End play)
C(y) + C(Y).C(X) gives the answer.
The algorithm is more complex than
Cher's scheme, but then the performance
under much Dbetter guarantee. Also,
nany alternatives to the one

there are
above,

The latter is chosen mainly for

clarity of exposition.

characteristics
found
steady-state
iteration.
was used

the
Chen's
algorithms
bits per

7. Summary and Concl usions

examined the

of Chen's

have convergence
method and
it can guarantee the
advance of one bit per
Essentially the same analysis
to study improvements, keeping
size of the table the same as in
method. The new ppn and nnp
guarantee an advance of 1.5
iteration, with an overhead of

that

179

two extra iterations. The hardware
scheme in the new rethods are more
complicated, but the reward, in terms of

guaranteed convergence, is much higher.

The theorems developed here have not
allovwed for roundoff error, and may not
hold strictly for some machines if m(k)

is too close to N; this problem is always

solvable by using guard digits. The use
of end-plays also confines m (k)
essentailly to the 1left half of the

fraction.

We now consider briefly the relative
merit of the methods. 1In the new LST
world, the cost of arithmetic is rapidly
dropping, so is the cost of amemory. We
note, hovever, that hardware can often be
shared with other equipment, but the

table of logarithms needed for
exponentials and logarithms is seldon
needed elsewhere. For fraction lengths
of about 50 bits, the size of the table
is about 25 words, a little more than a
thousand bits. This 1is still not a
trivial amount of memory. For high
performance, this table should be
permanently installed in high-speed
read-only memories, carrying a fixed
cost. In any case, the memory cost
appears to be the only tangible cost
accountable.

The performance of a
function-evaluation algorithnm is
intimately connected to the amount of
memory used. As an outrageous example,
2*¥*50 table entries can evaluate any
50-bit function in one memory operation.
To allow for the variation in
word-length, the nmemory cost can be
expressed in the amount of memory used
for each bit of the operand.

An adequate measure of performance is
the advance per iteration, as defined in
Section 3. In the steady-state, the
gquaranteed advance per iterationm is unity
for Chen's original method, which uses a
table entry for each bit in the frontal
half of x. The new schemes has a 50%
higher guarantee.

De Lugish <3> uses two memory words
per bit of operand, for an average
advance of three bits per iteration. He
guarantees a one bit per iteration
advance; the actual advance in the

180

His scheme involves iterations for the
entire fraction length, and does not use
the end-play, but the latter clearly can
be installed without any difficulty.

Using as a figure of merit

advance per iteration

memory words per operand bit

for the steady-state, a brief comparison
of the three methcds are given in Table
II. It is significant that for the ppn
and nnp methods, Q9 1is guaranteed to be
1.5, and is 2.2 on the average. We are
avare of no other approaches with
comparable advantage.

l. T. C. Chen, "Automatic Computation
of Exponentials, Logarithms, Ratios, and
Square Roots," IBM J. Research Develop.
Vol. 16, 380-388 (1972).

2. T. H. Kehl and K. Burkhardt, "A
minicomputer Microprogrammable,
Arithmetic Processor," Proc. Third
Symposium on Computer Arithmetic, Dallas
Texas, Nov., 1975, pp.174-178.

3. B. G. De Lugish, "A Class of
Algorithms for Automatic Evaluation of
Certain Elementary Functions in a Binary
Computer,” Report No. 399, Depart of
Computer Science, Uriversity of Illinois
at Urbana-Champaign, Urbana, 1Illinois,
June 1970.

TABLE I.

THE CANCELLATION OF AN OCTAL DIGIT

(-1 is represe

e e
| T(m,s) = (7,1 1 T)
+ —————————————————————
| U(c) = -111.
| -1110.
| -101.
| -100-.
| -011.
| - 010 .
| -001.
[-000.
[000 .
{ 001.
| 210 .
l 011.
| 100 .
| 1r01.
| 110.
| 111,
+ ——————————————————————

e ———

|

PO e ———

| Guaranteed

| Advance

e

| Average

| Advance

o e

| Memory Words

| per Bit

N

| Guaranteed

{ Merit

e e

| Average

| Merit

o e e

nted by T; 0 < P=P(k) <1, Q =1 - p)
_____ +_..-.___-________-—_+--_______-__-_-.-+.._-____
| ITERATIONS i REMAINDERS | COUNT

————— e e e e e e e
P = (T,000) I +000. ¢ | 1
P = (T,000) + (010) { -000 . P | 2
P = (T,000) + (010) | + 00 O . Q i 2
P = (T,000) + (100) | - 000 . P | 2
P = (T,000) + (100) | + 000 . ¢ | 2
P = (00T) + (00T) | - 00 0 . P | 2
P = (00T) | +000.0P | 1
P = { - 000 .UP | 0
p = . I +000. P I 0
P = (010) | =000 . 09 | 1
P = (010) { + 000 . P | 1
P = (100) I -000.0 | 1
P = (100) I + 000 . P | 1
P = (100) + (010) § -000 . @ { 2
P = (100) + (010) | + 000 . P | 2
P = (100) + (100) } - 000 . @ i 2

————— +———-—4--———-———--—-————*—————.——————--————+—-~—-————

TABLE II.

COMPARISON OF THREE SCHEMES
(Steady-state performance)

e R e DT Fo e e +

| Chen I De Lugish | ppn or nnp |

o e e o e o ——— o +

| | | |

[1 - 2 [1.5 |

L e e e et e +

| { | t

| 2 i 3 [2.2 |

Rl o e o e -+

I ! | |

| 1 { 2 I 1 |

R it U T, e e T, +

| { I |

! 1 | 1 } 1.5]

R it o o +

| | | |

! 2 { 1.5] 2.2 |

o R bt TP . o e +

181

VYV VTV VYV
.0 0000111111 1100¢0
-x + 111

u (k)
change (k)

[

101160 ...
. 11100 ...

a. Recreation of destroyed 1-bit.
m(k) = m(k+l) = 6.

o (k+1)

"\
.00000X000000010¢010
change (k+1) +11111

X

010 ...
100 ...

b. limited carry on re-iteration.

b
;
;
b
3

b u(k+2)

1}

.00000000000011006106010 ...

c. No advance leads to good advance.
m(k+2) = 12 > 2m(k) - 1.

1 FIGURE 1. The standstill case in Chen's schene.

7(k) = -8-7-6 -5-4-3-2-1 0 1 2 3 4 5 6 7 8
LS it it s LG At ik Sy --;;2¢——+—»+--+—-+-—
/

~. N\ N

~. ' I~/ 1
~. . ~
LRSI
| Vo
B bt B e A R s (s -7 Bl e e e e St
|. [

N A A B4

WAV /

. Y l‘/

/

O T e S R e il Lt et AR N S R e e 3

FIGURE 2. The cancellation of an octal digit by ppn iterations.

