Low-Cost Residue and Inverse Residue
Error-detecting Codes
for Signed-Digit Arithmetic*

Algirdas Avizienis

UCLA Computer Science Department
University of California, Los Angeles
Los Angeles, California 90024

Abstract -- Low-cost residue and inverse residue codes
for errcr detection in signed-digit arithmetic are defined
in this paper. Checking algorithms are presented for
both digit-serial and parallel computation of the resi-
dues. Residue digit operations are defined for two-
operand addition, multi-operand addition, multiplica-
tion, conversion, and reconversion algorithms. All algo-
rithms employ the same Arithmetic Buiding Element
"ABE" that has been previously developed for signed-
digit arithmetic.

1. Introduction: Background and Scope

An immediate detection of the appearance of
faults is an essential prerequisite for the introduction of
effective fault-tolerance into computing systems. Array
processors and distributed svstems in which several
communication and computation functions take place
concurrently depend on the presence of multiple local
fault-detection algorithms that continuously check the
messages and the results for fault symptoms. Recovery
must be initiated before the effect of faults can spread
through the system and cause extensive mutilation of
stored information.

A second constraint to be observed is the cost of
fault detection. Duplication (or even triplication) for
fault detection is an obvious, but very costly solution
that may be unacceptable in large array processors or
extensive distributed systems. Fault detecrion by means
of error codes is a much less costly alternative. A judi-
cious choice of an error-detecting code may detect 95%-

99% of the most likely faults at a cost of 10%-30% in-
crease in complexity. Arithmetic error codes are an
especially attractive choice because they can be used to
check storage, transmission, and computing functions
using the same low-cost checking algorithms: the com-
putnl]g of modulo A residues of messages, operands and
results.

* This research has been supported by ONR Contract No. NOGO14-
79-C-0866 (Research in Distributed Processing)

CH1630-3/81/0000/0165$00.75 © 1981 |EEE

165

A general approach to the cost and effectiveness
study of arithmetic error codes 1as been presented in
[AVIZ 71a)l. This paper summarized the results of a
long-term study (1963-1971) of the application and
effectiveness of arithmetic error codes and introduced
the concepts of inverse residue codes and of multiple
arithmetic error codes. The concept of repeated-use
faults was presented and the effectiveness of various ar-
ithmetic codes with respect to both determinate and in-
determinate repeated-use faults was established. An
especially important result is the proof that inverse resi-
due codes can detect the "compensating" determinate
repeated-use faults that are not detected by ordinary
residue codes. The modulo 15 inverse residue code was
applied in the JPL-STAR experimental computer [AVIZ
71b]. Further results on determinate faults were
presented in [PARH 73], [PARH 781, [AVIZ 79].

Signed-digit (S-D) arithmetic is of interest be-
cause of an addition/subtraction algorithm that is carry-
free and requires the sarme time for operands of any
length [AVIZ 61]. It also allows variable-precision
operations with the most significant digits of the results
being generated first [AVIZ 62]. S-D arithmetic opera-
tions are performed by arrays of one-digit radix 2¢ (or
radix 10) Arithmetic Building Elements "ABE" suitable
gor_i LSI and VLSI implementation [AVIZ 70], [TUNG

0].

The present paper defines a signed-digit form of
residue and inverse-residue error-detecting codes suit-
able for the checking of S-D arithmetic operations as
well as of the transmission of S-D operands. ABE-based
algorithms are defined for serial and paraliel execution
of the checking operation that generates the residues of
operands and results. Residue operations using ABE
units are defined for the sign change, two-operand addi-
tion, multi-operand addition, multiplication, reconver-
sion, and conventional input algorithms previously
derived in [AVIZ 70].

2. Residue Encodings and Checking Algorithms

A variable-precision radix 2¢ (b > 2) or radix 10°
(c > 1) S-D number X consists of k digits. Each digit
X, assumes the values N
{z,..,1.0.1,....a}
with
(22-1) > a > (2*'+1) and
(10°-1) 2 a > (1 +10/2)

In the subsequent discussion the minimal redun-
dancy representations with a = 142! and a =
1 +10°/2 will be used unless explicitly otherwise stated.
The Arithmetic Building Element "ABE" and the algo-
rithms of the ABE were described in detail in [AVIZ
70]. The input-output diagram of the ABE is repro-
duced here as Figure 1. All examples of checking will
be applied to the radix 16 (a=9) illustrations of the
same reference.

DIGITS ZERO LINES
BORROW-OUT [T t 1 BORROW-IN
[l
manseen %S ¥ s U0 W gie—soutrn
— 0 GATING
ALGORITHM Ms ABE Gore— ANG
SELECTION | —={FO Cije—) ALGORI
—=RSpy ¢I D] ¢j Dw Cm SF[w—' MODIFIERS

(RS EEE

DIGN LINES AND SIGN LINES.

Figure 1. Arithmetic Building Element

The Signed-Digit Residue Code (S-D) RC) is
formed by attaching the modulo 2¢-1 (or 10°-1) residue
digit X" (@ < X" < a) next to the least significant digit X,
of the radix r = 2¢ (or r = 10°) S-D operand X:

X'=(-DIX or X'=Q0°-1|X

The Signed-digit Inverse Residue Code (S-D
IRC) is formed by attaching the additive inverse ¥~ of
X" to X, where:

X' =0-X", or X'+X'=0

It should be noted that the residue digit
X" (or X*) itself is a redundant representation of the
modulo 2°-1 (or 10° -1) residue. For example, with
1=16 and a=9, the modulo 15 residue values
9,8,7,6] have the second valid representations
6,7,8,9 respectively, while the values
5,4,3,2,1,0,1,2,3,4,5) are represented uniquely.
With r=10 and a=6, the modulo 9 residue values
{6, 5, 4, 3} have the second representations (3, 4, 5, 6}
respectively, with {2,1,0,1,2) remaining uniquely
represented.

The advantage of this redundancy is that the ABE
algorithms are directly applicable tc perform residue di-
git operations and the checking algorithm. Any disad-
vantages that may occur are avoided when tests for
equivalence of two residue digits ¥* and Y" are carried
out as the zero test of the modulo 22-1 (or 10¢-1) sum
of X" and —(r"). An equivalence is indicated by the
result

QQ-DIX'~Y)y =0

For example, given r=16 and a=9, the four
results 15/(9-9) = 0; 15/(9-6) = 0, 15/G-9) == 0 and
lSr’T(@—G) = 0 will always indicate the equivalence of resi-
due digit values 9 and 6.

166

The Serial Checking algorithm that computes
the value (2°-1)[X uses one ABE (Fig. 1) set for the SS
(Simple Sum) algorithm [AVIZ 70, p. 735]. One digit
X, is entered at a time (beginning with the most
significant digit X,_,) on the inputs D1 and D2. The in-
puts D3 and D4 are originally set to zero. The sum di-
git on output S is returned to the inputs D3 and D4 for
the subsequent addition of X,_,. After the last digit X,
t(las b)eten added, the output on S represents the residue

25-1)IX.

The algorithm can be stated (for j=0,1,....k-1) as:
SU+D = [SG) + Xy 1= (r=Dg;

where S(0) = 0, S(k) = x* and the value of g is deter-
mined from K, = [S(j) + X,_;_,] as follows:

1 ifK;>a
g =11 if K, <a
0 fora<K;<a

Example 1: The Modulo 15 residue of the radix
16 s-d operand X = 9076 is obtained as follows:

S(1) = (0+9)-1501) = 6
SQ) = (6+0)-15(0) = 6
S(3) = (6+7-15(1) = 2
S(4) = (2+6)-15(0) = 4 = 15X

The Parallel Checking algorithm uses one ABE
unit set for the MS (Multiple Sum) algorithm [AVIZ
70, p. 736]. All digits X, (0<i<k—1) are summed at
once to produce the two-digit result

k-;]
X =+ S
(=0

The two output digits 7, and $, are summed modulo r-1
in an ABE/SS unit as described for the Serial Checking
algorithm:

(2°~DIX = [1- + S]] = (r=1)g,

where the value of g, is determined from [r,_,+S,]. If the
number of digits exceeds the capacity of one ABE/MS
unit, two or more ABE/MS units are used at once; their
output digits are summed in another ABE/MS unit.

Example 2: The residue computation of Example 1 is
performed in parallel as follows:

2 X = (5+0+7+6) = 16(0)+4 = r1,_, + §,
15X = (04+4)-15(0) = 4

The checking algorithms for the radix 10° (¢>1)
S-D representations that generate the modulo 10¢-1 resi-
dues are obtained by an obvious modification of the ra-
dix 2% algorithms.

The effectiveness of S-D residue cbdes can be as-
sessed by noting that undetectable errors are caused
only by faults that change the value of the S-D number
by a multiple of 2¢ -1 (or of 10°-1). Such changes are
generally unlikely; for example, given r=16 and a=9, a
single _digit must be changed as follows:
9—6, 87, 78, and 6+~9.

A detailed study of effectiveness requires the full
knowledge of the internal (binary or other) representa-
tion of digit values and an analysis of the effects of
repeated-use faults when they may affect the operand or
the result. A detailed study, following the methodology
applied to conventional arithmetic [AVIZ 71a], [AVIZ
791 will be published separately.

3. Residue Digit Operations for S-D Arithmetic Algo-
rithms

The modulo 26-1 (or 10°-1) residue arithmetic
operations that are performed on operand residuz digits
to generate residue digits for the results are defined
here. Note that the same ABE units (without any
modifications) are suitable for the residue arithmetic.

Additive Inverse (one operand): The chenge of
sign of an operand X requires that the sign of the resi-
due (or inverse residue) digit also should be changed.
(X;x") = (5076:4) will ~ be transformed to
-(X:x") = (9075: 4) to get the additive inverse of X.

Simple Sum "SS" (two summands): The residue (or in-
verse residue) digit for the SS algorithm (addition of
two operands X,Y) is formed by executing the ABE/SS
Serial Checking algorithm (described previously) letting
S(0) = X and X, = ¥". The result S(1) is the residue
digit for the SS result X +Y. For example, adding (X,
X) = (9076:4) and (Y,r") = (8953;3? will yield
(10643,7).

Multiple Sum "MS" (m<r+1 summands): The rasidue
digit for the result of the MS algorithm is formed by ex-
ecuting the Parallel Checking algorithm with the residue
digits of all summands serving as the inputs.

Product "PD" (one digit ¥, times an operand Y): The
PD algorithm is specified in [AVIZ 70, p. 736]. The
residue digit for this product is obtained from X, and the
residue digit ¥* (of Y) as follows: Using one ABE (Fig.
1) in the PD mode, enter X, on DI, and apply the resi-
due digit ¥" to the three inputs D2, D3 and D4. The
output (on S) is the modulo 2*-1 residue of the S-D
result X, Y. The residue digit for the result of a com-
plete multiplication XY is obtained by summing the PD
residues the same way as for the MS algorithm. An in-
dependent check may be obtained by also directly com-
puting the product residue digit from the residue digits
Y" and X" in the same manner as the PD residue digit
for X, and Yo, replacing X, with X',

Reconversion "RS" (one operand): The algorithm
reconverts S-D digits to conventional digits of the same
radix, using digit ("one’s" or "nine’s") complemernt for
negative operands [AVIZ 70. p. 737]. The residue digit
is converted separately, using a single ABE in ths RS
mode and an "end-around horrow" or “eob” {(connecting
B¢ to BD). For example (given r=16 and a=9). the
residue digit 1(=T6+15) is converted to 15-]1 =- 14,
since the 16 causes the "eob". Similarly, the residue di-
git 9(=16+7) is converted to 7-]1 = 6, etc.

Conventional-Input Modification "CI" [AVIZ 70, p.
738]: This requires that the conventional operand
should be encoded with a modulo 2¢-1 (or 10¢-1) con-
ventional residue. The residue is accepted and the

167

specified operation is performed within the ABE that
performs the operation on the residue digits.

4. Alternate Approaches to Residue Encoding and
Checking

The encodings defined previously employ only
one residue digit for an entire k-digit S-D operand.
While this minimizes the cost of encoding, it may be in-
convenient in variable-precision operations that generate
the most significant digits of the results first [AVIZ 62]
and that are "chained", executing further operations on
high-significance digits of an intermediate result X even
before the lower-significance digits become available.
The Serial Checking algorithm that computes (2¢-1)X is
completed only after all digits of X have obtained and
the residue digit X is then computed and compared to
(2°-DIX to test for the presence of an error.

An error indication requires the cancellation of all
results that have used at least one digit of X. The can-
cellation must reach k-+3 digit levels downstream in the
chain and identify all potentially erroneous results. Two
solutions may be applied to shorten the "span” of the
cancellation that must follow an error indication : (a)
the segmentation of operands into check segments, and
(b) single-digit encoding that employs a checking ele-
ment within each ABE unit that performs single-digt
operations.

Segmentation divides the k-digit operand into
check segments of p digits length each and attaches one
residue digit to the right end of each check segment,
rather than using one residue digit at the end of the en-
tire operand. The cancellation span is reduced to p+3
digit levels downstream in the chain. Furthermore, er
ror detection effectiveness in the case of repeated-une
faults may be increased because of the shorter length of
the segment being checked. The cost of segmentatinn
consists of the extra time and storage required by thc
proliferation of residue digits. The ABE structure
remains unchanged, and all algorithms described in sec-
tions 2 and 3 above remain applicable to each check sep-
ment and its residue digit.

Single-Digit Encoding appears most suitable for
VLSI-implemented ABE units that can execute the ABE
algorithms for digits of S-D representations with rela-
tively large radices, such as r=2% r=212 r=103, or even
greater values. Here each individual S-D representation
digit carries its residue digit modulo (+"-1), where:

rt =29 when r = 2%, and b = kg (g=2)
r" =109 when r = 10¢, and ¢ = kq (g=1)

The internal structure of the ABE is modified to include
a checking element. The main body of the ABE carries
out the radix r S-D algorithms on the input digits (radix
r). The separate checking element computes the radix
s residue digit result for the specified ABE algorithm,
then executes the Paraliel modulo (*-1) Checking algo-
rithm on the radix r result, and finally performs the test

for an error cond_iti(_)n within the self-contained ABE. A
test for errors thhm‘ the input digits may also be per-
formed as a preliminary operation, using the same

Parallel modulo (r'-1) Checking algorithm. Self-
checking or morphic logic design is needed for the criti-
cal parts of the checking logic within the ABE.

The single-digit encoding approach is an exten-

sion of the segmentation concept, treating each digit of

the radix r = 2% (or 10¢) representation similarly to a k-
digits long segment of the radix 2¢ (or 109) representa-
tion that is checked by one modulo 2¢-1 (or 109-1) resj-
due digit. For example, r = 256 and " = 4,1 =22 and
r'=16, r = 1000 and r' =10 are potentially effective
choices. The evident advantage of this approach is the
pinpointing of the error to the single ABE unit.

5. Conclusion

The results of this paper demonstrate that
error-detecting codes of the residue class can be
effectively adapted for the checking of signed-digit arith-
metic. The residue is represented as a single digit in the
same signed-digit form as the digits of the operand and
is fully compatible with the previously developed con-
cepts of signed-digit number representations [A VIZ 61],
[AVIZ 62]. Generally, (wo or more digits can be used
to represent residues for larger moduli, such as two ra-
dix 16 digits for the modulo 255 residue.

The research has shown thal the same universal
Arithmetic Building Element ABE that was previously
developed for signed-digit arithmetic [AVIZ 70] is fully
suitable for the execution of residue-digit arithmetic and
for the checking algorithm, i.e., the computing of the
residues of signed-digit numbers. It is concluded that
checked signed-digit arithmetic units of any desired
complexity can be implemented using only one type of
building block - the ABE or its more advanced succes-
sors.

6. REFERENCES

[AVIZ 61] Avizienis, A. "Signed-digit number
representations for fast parallel arith-
metic," IRE Trans. on Electronic Com-

puters, EC-10: 389-400, 1961.

[AVIZ 62]

[AVIZ 70]

[AVIZ 71a]
[AVIZ 71b)
[AVIZ 79]

[PARH 73]
[PARH 78]
[TUNG 70]

Avizienis, A. "On a Flexible Imple-
mentation of Digital Computer Arith-
metic," Information Processing 1962,
(Proc. IFIP Congress 1962), Pop-
plewell, CM., ed., North Holland
Publishing Co., Amsterdam, 1963, p.
664-670.

Avizienis, A., Tung, C. "A Universal
Arithmetic Building FElement (ABE)
and Design Methods for Arithmetic
Processors," IEEE Trans. on Comput-
ers, C-19: 733-745, August 1970.

Avizienis, A. "Arithmetic Error
Codes: Cost and Effectiveness Studies
for Application in Digital System
Design," IEEE Trans. on Computers,
C-20: 1322-1330, November 1971.

Avizienis, A., et al, "The STAR
(Self-Testing-And-Repairing) Comput-
er: An investigation of the Theory and
Practice of Fault-Tolerant Computer
Design," IEEE Trans. on Computers,
C-20: 1312-1321, November 1971.
Reprinted in Besr Computer Papers of
1971, L. Petrocelli, ed., Auerbach
Publishers, 1972, p. 165-185.

Avizienis, A. "A Study of Techniques
for Concurrent Arithmetic Error
Detection in Array Processors", Techn-
ical Report to NASA Ames Research
Center, January 13, 1979,

Parhami, B., Avizienis, A. "Applica-
tion of Arithmetic Error Codes for
Checking of Mass Memories," Digesr
of the 1973 Int. Symposium on Fault-
To7leranr Computing, p. 47-51, June
1973.

Parhami, B., Avizienis, A. "Detection
of Storage Errors in Mass Memories
Using Low-Cost Arithmetic Codes,"
IEEE Trans. on Computers, C-27: 302-
308, April 1978.

Tung, C., Avizienis, A., "Combina-
tional Arithmetic Systems for the Ap-
proximation of Functions," AFIPS
Conf. Proc., (1970 Spring Joint Com-
ggt%’]Conf., Atlantic City, NJ), 36:

