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ABSTRACT

This paper is concerned with the operation
of division in residue number systems. Residue
codes are introduced and the basic residue arit-
hmetic operations are defined. Previous results
on residue division are outlined. A well-known
integer division algorithm is used and adapted
for residue division. A new method is proposed
for choosing an approximate divisor, approximate
dividends and the partial quotients. The pro-
posed method yields correct quotients faster than
the existing methods and is general in its app-
lication i.e., it is not restricted by the
choice of moduli as long as thay are relatively
prime.

1. INTRODUCTION

Residue Number Systems (RNS), though known to
ancient mathematicians, ’“ were not exploited for
machine computation until quite recently. The
characteristics of RNS have been under investiga-
tion for use in computer arithmetic since late
1950's. >~ The inherent "carry-free" property of
residue arithmetic makes the study of RNS attrac-
tive from the point of view of high~speed arith-
metic unit design. A major drawback of RNS is that
the operation of sign detection and the related
operations of division, relative magnitude compar-
ison, and additive overflow are complicated and
slow. 1In this paper, we consider the problems
associated with the operation of division, and we
propose a simple and efficient algorithm to perform

* School of Computer & Systems Science, Jawaharlal
Nehru University, New Delhi - 110067.

Currently, Visiting Professor, Department of Comp-
uting and Information Science, University of
Guelph, Guelph, Ontario N1G 2Wl,

This work was supported by the National Science
and Engineering Research Council of Canada, Grant
#18306.

CH1630-3/81/0000/0158$00.75 © 1981 IEEE

KIN 6N5

division.
1.1 Residue Codes

Let M = {ml, LR mn} be an ordered sct of

positive integers, where mizZ, for 1 = 1,2,...,n.

The mi are called moduli or radices, and the corro-

sponding ordered set (xl, Roreons xq} of least pos-

itive residues of a natural number X, with respect
to the moduli, forms the residue code of X. The
residue code of X with respect to m, is denoted by

]Xfmi = %,. For example, if M= {2,3,5} and x=14,
then [14|2=o, |14!3=2, and |14|_=4. Thus, residuc
code for 14 in this RNS is (0,2,4) .

In order to avoid redurdancy (unless redundan-
¢y is desirable for some reason) the moduli of a

residue system must be pair-wise relatively prime,
that is, the greatest common divisor of each pair

of moduli must be 1. In this case, the number of
integers that can be uniquely coded is given by
M = i%lmi' In the example, therefore,

a total of 30 integers can be represented uniquely.
These can correspond to the numbers 0O through 29.

1.2 Residue Arithmetic

Let (xl,xz,...,xn) and (yl,yg,...,yn) denote

the residue codes for X and Y respectively in the
RNS defined by M. Let (zl,zﬁ,...,zn) denote the
<

residue code for Z, the result ot an arithmetic
operation on X and Y.

Addition or Multiplication:

The ith digit z; of the result is given by

zi = ]xi*yi|mi, where * denotes either addition or

multiplication. The fact that z; depends on xi& v,

only, implies the absence of any carry from one
residue digit position to another, and thus addit-
ion or multiplication with respect to different
moduli can be performed in parallel. Furthermore,
multiplication does not require any partial
products.




Subtractioq:

Subtraction in RNS is defined as:

Z, = |X,-y, = (%, +y', where y', = m,-y.
i i yllmi i Yy m, Yy 1Y

Thus subtraction is also a carry-free operation.
Division:

This is one of the most difficult operations
in residue arithmetic and forms the subject of this
paper; it will be discussed later on.

1.3 Mixed Radix Conversion and Base Extension

Mixed radix conversion is a very useful pro-
cess for performing division and is briefly discu-
ssed here. It converts a residue number into its
representation in a mixed radix system, where the
positional weights are products of moduli.

A number X can be represented in its mixed

di &s: = ‘e +...+ m,+
radix form & X rnmlm2 mn_l rznl rl

(1.1)
where r. are called the mixed radix digits, and

Oiri<mi. The weight associated with any mixed ra-

dix digit r, is mlmz...mi_1 (note m0=1). Such a

system has the same range of representation as a
residue system M = {mﬂﬂb,--u mn}. We note that
1

[X]ml =x = r. Hence, the first mixed radix dig-
it isXE¥e same as the first residue digit,
r, = - from eq. (1.1). Division by my is

“ 1 m2

actually multiplication by the multiplicative inve-

rse of m with respect to m, . By successively sub-

tracting r. and dividing by m, all the mixed radix
digits can be computed.

Example 1.1: Let M = {2,3,5} and x= 7.
responding mixed-radix expression is:

X = r3(2x 3) + r2(2) + r . We now find the mixed-

The cor-

radix digits as follows:

Moduli: 2 3 5
Residue Representation of X 1=r1 1 2
Subtract rl=l _}____i 1
X—rl [¢] 0 1
multiply by 5 =z 3
i
X—rl O=r2 3
2
Subtract r2=0 _ 0 0
X—rl ) 0 3
2 2
multiply by 4 2
3im, -
i
X-r . l=r,
2 2
B
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Hence the mixed-radix representation of X is

<1,0,1> and one obtains X = 1(2x 3) +0(2) +1 =7,

Extension of Base

It is frequently necessary to find the residue
digits for a new set of moduli, given the residue
digits relative to another set of moduli. Usually,
the new base will be an extension of the original
base. The procedure consists of one mixed-radix
conversion with an additional final step. For M =
{ml,mz,...,mn}, the range of definition is 0 to

2 mi—l. If another modulus mn+l is included, the
i=1 n+l

range of definition becomes 0 to s

mixed-radix expression wi%l be of the form:
n n-

mi—l, and the

m ™
m, + r . m, + ... +rm + r_.
rn+l i=1 i n i=]1 1 271 1

In performing mixed-radix conversion to find
’X,mn+l we use the fact that for any number in the

original interval of definition, r will be equal

7 n+l
to zero.

2. DIVISION OPERATION

In this section, we consider the problem of
division in RNS. Since a RNS is not a weighted
number system, the operation of division which in-
volves magnitude comparison of two operands is not
straightforward. We first discuss the existing
methods of division and their limitations, follow-
ed by our proposal method discussed in Sec. 3.

2.1 (Categorization of Division

The operation of division in RNS can be cat-
egorized into three distinct types.

Category 1: Division Remainder Zero

In this category7 the dividend is known to be
an integer multiple of the divisor and the divisor
is known to be relatively prime to M. This cate-
gory is of restricted use, since it must be known
a priori whether its prerequisites are satisfied in
order to perform the operation. For this algorithm
the following theorem applies.

Theorem
If y divides x without remainder and the
G.C.D. of y and m. is 1, then |x = i (2.1)
Y m, ¥ m,
i i

is the multiplicative

for all m. where
1) y|m

i

inverse of y modulo mi. If y does not divide X,

. X . . :

the quantity ; 1s not an integer, and 3— is not
m,
i

defined. Consequently, (2.1) has no meaning.




Cateogry 2: Scaling

In this category7, the dividend is arbitrary
and the divisor is any factor of M which is a pro-
duct of the first powers of some of the moduli.
This division is analogous to division by a power
of 2 in binary arithmetic, in the sense that div-
ision by the defined restricted set of numbers is
faster than that by an arbitrary divisor. Div-
ision in any integer number system is defined by
X = [f]y + ixiy , where x is the dividend, y the
divisor, [X] the integer value of x over y (quot-
ient), and fxf is the (least positive integer)

remainder. The object of the scaling algorithm is

. X , .
to find [=] for restricted y values.

Hence the residue representation

,x—[x[ x—[ny

Y

’

o]
h
il

.
wn
—

m

Y 1

N M, , ...y

2
x—}x’
— ), where the values of -

m o m,
Yy n Y i

are

integers. If y is one of the m.'s or the product
i

of the first powers of some of the moduli m
x|
Yy

division remainder zero category, for all i for
which the G.C.D. of m. and y is 1, one obtains:
i

then

can be found. Then by the thecrem used in

.(X—ley)imi . This

equation expresses the residue dijits of [?ﬂ for

all digits for which the G.C.D. of m,

i
The remaining digits may be found by the base
extension method.

sists of two steps: 1) Division Remainder Zero,
and 2) Base extension.

and vy is 1.

Thus the scaling algorithm con-

Category 3: General Division

Both Catecorv 1 and Category 2 are concerned
with special cases and are not appilicable when
both the dividend and the divisor are arbitrary
integers; Category 3 represents the latter case.

A mwethod for approximating the quotient by
another integer has been described in literature.
This method consists of choosing some product of
moduli approximation for the divisor, and
applying the scaling alcorithm to obtain either
the greatest integer less than or equal to the
quotient, or the integer nearest to the quotient
(that is, the quotient rounded-off to the nearest
integer). Since the approximated divisor vy is not
equal to the given divisor y, an error is introd-
uced in the quotient which is iteratively reduced
to zero. The basic assumptions made are that both
the dividend x and the divisor y are positive and
that a value for y can be found such that y<y<2y,

as an

We note that:
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where ;Ais a permissible divisor under the scaling
algorithm,

The first step in the algorithm is to compute

by the scaling algorithm, zl=[§i. Once z, is
v

found, this quantity is used in the recursive
relationships: x.,=x. _-yz., x =x, and
P 1T -1TYRy KgTR

*i-1
z. = L =] to obtain z_, z_, ...,
i y 2 3

iterative procedure is continued until either z =0,

etc. This

or x.=0. If this occurs on the rth iteration,
“hen
r-1
X
z=[=1=.2. z. +z!' (2.4)
y i=1 1 “r
if z #0 and x =0 (2.5)
r r
z; = if Zr=0 and xr_lZy for any y#y (2.6)

otherwise (2.7)

The validity of this algorithm hinges on
three premises:

1. Either z, or x, becomes zero after a finite
i

number of iterations.

r-1
2. The series I

z, +z' must be
. ir
1=1

equal to

(.

this y can be
found.

Due to limitations of space, we will not con-
sider an example showing the applicatian of thig
method. The main drawbacks of this method are:

1} It requires a table look-up wherc the size

of the table for n meduli is 2 -0,
2) A Y must be found such that
requirement cannot be satis
set of moduli; for example, for the oo

with m]=9, m7=ll, the condition

v This

Tor

Gvery

is not satisfied for y=4.

This method will henceforth be roferrod o) G
the Tanaka algoy. +hm.

THE PROPO.

‘le now propose two methods which overcome the
drawbacks f the Tanaka alanritim. The mator
advantages of these two methods are:

1} They are more general, that 18, tiu

approximate divisor nced not be a product
of the moduli and the relation v
attomatically satisfied.

2)  They are faster than the existing methods.

VEVEDy 1w

/ The mathematical proofs for our m-othods are
given in the Appendix; for the onlv
the first two termination conditions arc proved
(the third termination condition has not been

found) .

second method,




3.1 Proposed Method 1

In this method, we start with both an approx-
imate dividend and an approximate divisor. Since,
in the general case, the dividenéd and the divisor
are not equal to our approximate dividend =znd
approximate divisor, respectively, an error is

introduced in the quotient. This error is then
iteratively reduced to zero.
3.1.1 The A_gorithm
Let xi_] be the dividend and y be the divisor
in the ith iteration, i=1,2,...
Approximate Dividend: Let x, 1 ba denoted in its
i-
mixed radix representation as:
. —<0,0,...,a ,q - ;0> where o is the mos
*i-1 AR e S KA ] o BSER ¢

significant ron-zero mixed radix coefficient of
X5 - The approximate dividend Ei-l is then

sen  to be: %, = N .
cho. o be . WU o
Approximate Divisor: If the mixed radix digits of
y are assumed to be: yF+<O,C,....82,82_1,..-,81>,

where BQ is the most significant non-zero mixed

radix coefficient of y, then the approximate

divisor is chosen to be §5(81+1)m1m2.‘.mﬁ_A

Approximate Quotient: The approximate quotient zi

in the ith iteration is determined by the inter-
relationship between k and ¢.

Case 1: k=_

X, amm_...m
In this case, z. = f% = F;%_i;_f‘_ﬁv%:._l__
* o A R R
Lok
T
(82 1)
Case 2: k={+1
- (kalm2 P "mg—lml ~ m,Q
z, = ; - =0
i (£ﬂ+l)mlm2' Sy (BQ 1)
Case 3: k>A+1
Y‘ ! ..
B T A N T L )
i v k (By+1)

Recursive Relationship: We use the approximate
quotient z; in the follewing recursive relation-

ships to iteratively reduce the error in computing
the quotient.

X, = vz, X =

5 xi—l_ 5 o x (given dividend) (3.1)

and, z, = (3.2)

We first find Zl' and use relations (3.1) and

(3.2} repeatedly to obtain 22,z .., etc. 1This

3"
iterative procedure is continued until either
zi=0, or xi=0. If this occurs in the rth

iteration, then relation (2.4) and conditions
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(2.5)-(2.7) can be used to obtain the quotient z.

3.2 Table Look-ups

We need two types of table look-ups to per-
form our algorithms. One is of the form
mR+lm2+2"'mk-l and the other is of the form

i T S e ¥
B+ ' (By+l) " B, B,

3.2.1 Table Look-ups of the Form ml+lml+2"'mk~1
For k>%+1, (%=1,2,...,n-2) and (n-1)
(k=2+2,2+3,...,n), there are (n-2) ——~

integers of the form m All such

(R NSRRI
products of moduli are stored in a table and for a
given value of k and 2, the corresponding product
is read out. .

3.2.2 Table Look-ups of the Form

R

+1) 7 +1) !
By 7 Bprn) 0 B, 9 E
Normally, such a table would contain

m xm entries where m is the largest mod-
max m max
ulus. However, the table would contair 0 entries

for the cases ak<62+l, and Gk<82' These 0 entries

need not be stored, reducing the number of entries
(m_ +1)
in the table to —o Max
It should be noted that the proposed
algorithm computes quotients that are exact.
Furthermore, for the examples considered, the
total number of operations required is, on the
average, less than that required by the Tanaka
algorithm. Approximately 500 residue division
operations were performed using randomly selected
dividends and divisors with 10 different sets of
moduli. For each set of selected moduli, 50
dividend-divisor pairs were chosen and it was
found that our algorithm is not only faster, but
it also computes the quotient without any error
for the entire set of 500 division operations.
Over the 500 experiments, 18,209 basic operations
were required by our algorithm and 21,000 by the
Tanaka method. Thus the average saving is
(21,000-18,209) /500=5,82 operations per division.
Another advantage of our method is that it is
applicable to any set of moduli, as oppesed to the
Tanaka method which must satisfy the condition
y§§22y. The method for choosing the approximate
divisor y in the Tanaka algorithm does not assume
that this condition would be satisfied for all
moduli, whereas our procedure for selecting it
automatically ensures that this condition is
satisfied.

3.3 Speed-up Procedure (Method 2)

A modification to Method 1 further reduces
the number of basic operations required, thus
providing a further speed-up compared to the
Tanaka algorithm. This procedure is essentially




similar to Method 1. The difference lies in the
selection of the approximate divisor and in the

computation of zé (see relation 2.4). The approx-
imate divisor for Method 2 is chosen as:
§¥82m1m2...m2_1, where BR is the most significant

non-zero mixed radix digit of y. The stopping
conditions and the corresponding values of z; are
given as follows:

2y, then z'=1

1. If z =0 and x
r r-1 r

2., If z_=0 and y>x 20, then 2'=0
r T r

-1
When a third condition, zr%O and xr<0, with
xr l>O is encountered, we were unable to obtain

a suitable correction factor zém It was found

empirically that for scme set of moduli, setting

z; to -1 when this condition is encountered, would

produce the correct quotient. It is, however,
suggested that Method 1 be used when this con-
dition is encountered in order to ensure that the
computed quotient is correct.

For the set of 500 randomly selected operands
and different sets of moduli, Method 2 resulted in
an average saving of 8.14 basic operations as
compared to the Tanaka algorithm; compared to
Method 1, there was an average saving of 2.32
basic operations.

For the residue system
M={23,19,17,13,11,7,5,3,2}

which is a particularly "good" system for the
Tanaka algorithm since the condition y<y<2y is
satisfied for all possible divisors, it was found
that Method 2 computes the quotients (for the 50
cases tried) without any error; the Tanaka algor-
ithm produced an average error of 29 per cent for
the same cases.

CONCLUSION

We have proposed two methods for division that
are, in general, faster than the existing methods.
Furthermore, our algorithms are not constrained
by the set of moduli as long as they are
relatively prime.

APPENDIX

We provide here the complete mathematical
proof for Method 1 and partial proof for Method 2.
For Method 2 we are unable to obtain analytically
the correction factor for termination condition

(2.7). We want to show that the iterations
xi=xi_l~-yzi where X =% (3.1)
X, .
i-1
and, zi=[ =] (3.2)

r-1
converge to yield the quotient zm[§]=AZ_ z, +z' ,
y  i=l i r

where z; is obtained using conditions (2.5)-(2.7).
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The first part of the proof consists of
showing that either Zi or xi becomes zero after a

finite number of steps. Let us suppose zi#O for

all i, Then we would how that xixO for some 1i.

This follows from the fact that a) xiZQ for alli,

and b) xo,x ’ e ;... 1s a strictly decreasing

L X,
1 Ti-1
sequence of integers.

We will prove a) by mathematical induction.
We note that x0=x>0 (by assumption). Now, let us

assume that X, lZD. Then from (3.1) we get

X . _
i-1 = i-1 ince v<
= ~y [—=>x. .~ = , since y<y (proved
¥ vl v i-177 y
later) and [I]<I for any I. Hence x >x, -%. 20,
- 17 i-1 Ti-1
which proves assertion a).

To prove assertion b), we note that
xi=xi_l—yzi<xi_l, since y>0 and zi%o (by
assumption). We have Ei_lzp and y>0. Therefore,

E
z,;[fé——]zp. But zi#O by assumption. Hence,
1 y
zi>0. Therefore, xl<xo,x2<xl,...,xi<xi_l i.e.,
XO'xl'XQ""'xi"" is a strictly decreasing

sequence of integers. This proves that xi=0 for

some i.
Since xo,xl,...,xi,... isastrictly decreasing
sequence, it is clear that for some i, x. l<§.
some i-
Since x, .<x, ., it is obvious that
i-171i-1
-1
z =[-=""]=0. Therefore, either x. or z.L becomes
1 Y 1 i
zero after a finite number of iterations.
r-1 x
Next, we will show that ,I. z +z'=[7].
il i "r 'y
From (3.1 we have: x_=x -yz X . ZX =VZ_,4.0.
.1, 10T Ry KT YRy
X = -yz X =X -yzZ . Adding e have:
r-1 -2 V1 X T TY ing, we have
r-1

=x -y{.L + . i = :
xr xO y(i=l zi zr) Since xo X, we get

x r-1 X x r-1 X

== .3 z.+z + =~ . Hence [Z1=.Z. z 4z +[-—%]

y i=l "1 "r oy y i=1 i "r 'y
r-1 X

L. z.+z' , where z'=z +[~£J. To complete the
i=1 i r r r 'y

proof, we will show that z; can be obtained using

conditions (2.5)~(2.7).
Case 1 z_#0 and x =0
_— r r
r-1

Then (X1=.I. z +z i .
y  i=1l 1 ¢ r'r

(2.5)




Case 2 2z =0 and x 2y (2.6)
— r r-1
X X
- r-1
Since zr=0, we have | ; l]=0 or = <l. There-

fore, ;; l<y. Now, we will show that ;; W<§-and
xr‘lzy implies that xr<2y. Let

X =.mom_...m, +0, +...4+0, m_ 4+t
271 71

r-1"5™M, 3-17 31 M
=Q . +0, where
SRR R °
o, =0, celML 4L 40 m b . imi .
3 j-lmlm2 mj—2 Zml al Similarly, let
= - B, B = nm, ... +..
YEBmmy e emy i #By . where B Beaa™ ™y
+82ml+81.
First, we will show that j=k. Since xr lZy, we
have j>k. Suppose, j=k+l1. Since E;_l<§} we get
o.mm_... <(B. + m_o...m c
3T My B Dmm, Tye-q OF
Q. . < + . e y
k+lmlm2 mk (Bk l)mlm2 mk—l Therefore,
o . <1. +
ka1 M1 (B 1) (al)
But, ak+121 since it represents the most signif-

icant non-zero mixed radix digit of x 1 Also,
r-

meBk+l since OSBkSmkml. Therefore,

‘m >1- - radi
ak+l mk_l (Bkil), contradictory to (al).

Similarly, we can show that
tradiction fecr any n>1.

Jj=k+n leads tc zon-
Hence, j=k.

N ) - a =B . x <
ext, we shall show that ak Bk X <Y

i 11 . < + NP
implies o, m m m (3k 1)rr1 m

12 k-1 k-1"
Therefore, ak<8k+l' (A2)
Suppose ak=Bk~i, i=1,2,... . xr_lZy implies
ukmlm2...mk_l+akzﬁkmlm2...mk_l+ék or
(Bk'i)mlmz'""k-1+a£ZBkm1m2“'mk—1+é£ °or
_imlmZ"‘mk—liéazgk (A3)
We have ak:ak—lmlm2""mk-2+"'+a2m1+al

i(nk‘l—l)mlmz...mk_2+..m+(m2—l)ml+ml—l

1. Hence & <m m_.
k 12
This means the left-hand side of relation (A3) is
less than zero. However, the right-hand side of
A(3), B is nonnegative. Therefore, relation (A3)
is impossible. Hence, upgﬁk This together with

- IR

Ty k~1"

relation (A2) implies that ak:Sk.

mn +0Q,

We now have 1"'Ik—l X

X = m
r-1 "k

...m B, -

+2
1 k-1 But

2y=2Bkml...m = 20 m

k-1 k k
a><m m

KMy, (by

e : <2y. Si =0,
mk—l. Hence xr—l vy ince zr ¢]

assumption), Xr=xr Iz Therefore, we get
X X

r r .
y<x <2y or 15§— <2. Hence [;—J=l=z; , which

shows the validity of condition (2.6).

= <y.
Case 3 zr 0, and xr—l Yy

X
-1
These conditions imply z£:O+[ §

1=0. This proves

the validity of condition (2.7).

To prove z<§?2z
= - ... B y=(B. + ..
y=Bmy.om ) B m+By s y= (B Bmgeoom o

2y=2 Ve +.o..4 +2B8_ . T efore
Y Bkml ™ 282ml Bl her ]

-y=(B - .. +... + . ;
2y-y: (Bk l)mlm2 mk_1 +262ml 281 Except for

the case Bk=l and 3i=0, for 1<i<k-1, we have
2y-y>0 or y<2y. The case B,=1and B,=0, 1<izk-1,

represents a special divisor (product of moduli).
In this case the scaling method should be used to
obtain the quotient,

= e + - ;Y= e +3_ .
y=Bemm, . om MM My f YBmm oo 8

It is easily shown (as in the case of &#) that

Gk<mlm2...mk_l.

For Method 2,

Hence, y<;.

it can also be shown that

xo,xl,...,x,,... is a decreasing sequence. There-
1
fore, for some i, xi_l<y or zi=0.
Case 1: 2z =0 and x 2y for some r.
r r—l‘y
;;-l - -
Then z = 1=0 => x <y<y. Also
i r-1
X =xr_1£2§'_l<2y. Hence, we have y£xr_1:xr<2y;

X x
or 1<% <2. Therefore, z!=0+[-2)=1,
5 r v

Case 2: z =0 and y>x >0
E— r r-1
*r
Then xr=xr_i(y, or [;—J=O. Hence z£=0.
Case 3:

0, <0 >0

Zr# HptPe ¥ -1

We are unable to analytically obtain a value for
z; for this case.
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