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Abstract

This paper discusses longstanding problems
in the probabilistic error analysis of numerical
algorithms when they are performed in floating
point arithmetic.

Local roundoff error in floating point addi-
tion is characterized and its mean and variance
are approximated. We apply these results to find-
ing distributions for the roundoff error accumu-
lated in sums and long inner products.

We state theorems which resolve questions
left open in Bustoz et al. [5] and Hamming [11].
These theorems are proven in [3].

1. Introduction

There are two significant purposes for the
discussion of accumulated roundoff error in com-
puter arithmetics., The first is to analyze the
error performance of the arithmetic systems them-
selves, and the second is to analyze the error
performance of numerical algorithms. In the case
of floating point arithmetic, we describe methods
to do both.

For example, if we let s* denote the result
of one floating point operation on two floating

point numbers a, and 32 and let s denote the

exact result of the operation, then
s = s*¥(1+p) = (ayop a))(1+p) (n

where op is the floating point
one of the questions

approximation of

&
= o

+y o=y .y
The error analysis problem is to characterize
p which is

s - s¥
—F

p = (2)

If s = xBE and s* = x*BE (the case where s and

* The work in this paper was supported by the
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s* have different exponents is discussed in [3])
where B is the base of the floating point

number system and x,x*€ [1/B,1) are the fractional
parts of s and s* respectively, then

x - x¥
(3)

x*

A distribution for p can be found by assuming
a distribution for x* and a distribution for
€ = x - x¥ and performing a transformation.

We assume that the distribution for x* is
closely approximated by the reciprocal distribu-
tion which has the density function

r(x*) = 1/(x*nB) if x* [1/B,1). (4)
The use of this density for real fractions x is
justified empirically in [4] and by its theoret-
ical properties in [7], (15], [16]. Thus the
reciprocal distribution is only an approximation
of the distribution of floating point fractions
x*, The above justifications are summarized in

(21, [13], and {14].

When the operation is multiplication or
division € is assumed to approximately follow
a uniform distribution whose density function
is

u(e) = 1/(d-c) 1if {e,d) d>c (5)
where ¢ = 0 and d = B_t when chopping is used
and ¢ = —1/2 B° and d = 1/2B"° when symmetric

rounding is used on a machine with t-digit

fractions. We justify the use of this distri-
bution and generalize results from Goodman and
Feldstein [6], [8], [9] and Bustoz et al. [5].

If the operation is addition or subtraction
the uniform distribution is not a good approxima—
tion of the distribution of €. We do have enough
information from our distributions for trailing
digits to find approximate means and variances
for € under addition and subtraction.

The effect of repeated operations on the
distribution of real fractions, and hence approxi-
mately the effect on floating point fractions
is discussed by Adhikari and Sarkar [1] and




Hamming [11]. Hamming left open gquestions about
the effects of repeated multiplications and divi-
Sions on floating point and real fractions. We
resolve those questions in this paper.

We apply our results to the problem of
finding confidence intervals for the error from
sums and long inner products.

2. Multiplication and Division Reinforce
the Reciprocal Distribution

Hamming (1970) showed tnat if a and b are
a*b with a = th ,

b = yBF , and ¢ = zp" , and x,y,z € {1/B,1) with
densities f(x), g(y) and h(z) respectively, then
h = lM(f,g). where

random real numbers and ¢ =

1 z f(x)
L(f.g)(z) = 3 J"L,B ——(; g(z/Bx)dx (6)
1 £(x)
+ ! JX‘—'g(z/x)dx
2 X
If ¢ = a/b then h = ID(f,g), where
1 z
I (f,g)(z) == F x fx)g(x/z)dx €7)
D 2
z 1/8
1 1
+ = I x f(x)g(x/Bz)dx
Bz’ z
Hamming also showed:
(1) Iylt,rz) = IpEm(z) = r(z)

regardless of what f is when r is the reciprocal
density defined by (4).

(ii) If we define the distance functional
D{f} = sup MZ)_'AQL (8)
x €71/B,1) r(x)
then
D{IM(f.g)} < D {g} (9a)
D{ID(f.g)} < D {g}. (9b)

As new results we show that under minimal

restrictions on f and g:

1) The inequalities (9) are strict.

2) r(x) is the only density for floating point
fractions that is preserved under multipli-
cation or division.

3) Repeated multiplications and/or divisions
force densities satisfying these restric-
tions to the reciprocal density.
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The lemmas necessary for proof of these
cesults are stated. The proof is in | 3].

For simplicity we consider the domain for
our probability density functions f and g to be
{1/B,1]. Since we also assume these density
functions are bounded, the assumption x € [1/B,1]
instead of x e [1/B,1) has no influence on the
distributions associated with these densities.

Lemma 1. If f and g are bounded on [1/B,1]
and g is continuous* on that interval, then
IM(f,g) and ID(f,g) are bounded and continuous.*

Lemma 2. If f and g satisfy the hypothesis
of Lemma 1 and if hM = IM(f,g) and hD = ID(f.g)

then for some z,, z) € [1/8,1]

M

‘hM(zM) - r(zy)l

r(zM) =D {hM}

and

h (z) - r(z.)
vk M 14 B
r(zD) D

respectively.

Eb§orem 1. Let f and g satisfy the hypothesis
of Lemma 1; let f(x) > 0 a.e. on [1/B,1]; let
IM and ID be defined by (6) and (7) respectively

and let r be given by (4). If g% r then

(a)
(b)

D{IM(f,g)) < D{g}
D{ID(f,g)} < D{g}

We conjecture that Theorem 1 is the strongest
theorem with the weakest conditions we can
derive. 1If f(x) = O over a measurable part of
[1/B,1], then the conclusions of Theorem 1 do
not hold in general, as is shown in [3].

Corollary 1. If f and g satisfy the hypothesis

of Theorem 1 and IM and ID are as described by

(6) and (7) then r is the only continuous density

on [1/B,1] that is a fixed point of IM and/or ID.

Corollary 2. If f satisfies the hypothesis

of Theorem 1; IM and ID are described by equations
and

(6) and (7) respectively; and {gn}n
{h

=1

n}n—l are sequences of continuous density

functions on [1/B,1] described by g = hl = f

with 8,1 ° IM(f.gn) and hn+l = ID(f,hn) for n

= 1,2,3,... then

* Left continuous at 1 and right continuous
at 1/B.




lim g (x) =lim h (x) =
n=w n->w

The proof follows immediately from Theorem 1.

r(x)

The Distributiton of the Intermediate and
Trailing Digits of Floating Point Fractions

3.

OQur assumptions for the distribution of
discarded digits in the four standard operations
is determined by the following theorem.

Theorem 2. Let xBE be a real number where

x € {1/B,1) follows a probability distribution

F with continuous density f(x) = F'(x), satisfying
the Lipschitz condition

lex) - £(p i< Klx - y| ¥ x,y€01/B,1). (10

Let x'BE be xBE truncated to t digits. Define

t+k —k
= - x# - p
At- L{x x*)B" | B [.xt+l t+k] and let
Qk(A) be the probability distribution of A. Then

eeeX

lim Qlt(A) = U(A) + 0(B™H (11a)
ke
Lim Qu(8) = LaBN B = uca) + 0(87H) (11b)
tox
0 if A<O
where u(a) = A if A€ [0,1)
1 if A > 1.

Here k is the number of discarded digits and t
is the number of digits in the computer word.
In multiplication k = t and in division k = =

S0 we approximate Q; (A) by U(A). In addition

and subtaction k varies greatly and tends to be
small more often then large [17]. Therefore we

approximate QE(A) by LABﬁ B"k when dealing with

error from these two operations.

4. Floating Point Arithmetic

Using the assumptions of this paper, [12]
and [18] derived density functions hc( ) and

hR( } for p of (2) and (3) when chopping and sym-

metric rounding respectively are used.

For chopping

1 el (12)

(B-1)8 /B if p€[0,B°%)
hc(o) =

(=B

0

yAnB  if pe (BT, Bl"t)
with first and second non-central moments
B™% (B-1)/(24nB)

Eb(o) = (13a)

E (0% = B2 (F-1)/6tnB). (13b)
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For symmetric rounding

()
(B-1)B""YanB ir |p|€r0,1/2 B7YH

1 t-
(ET;T-—B ]7/LnB

hR(p) =

if |plerti28 ™ 1/28°Y)
with first and second moments
Ep) = 0 (15a)
E(p)) = Var(p) = B 2NB-1)/2ummB).  (150)

If the operation is addition or subtraction
the assumption that ¢ = x - x* follows a continu-
ous uniform distribution is inaccurate. The
reason for this is that the number of discarded
digits varies greatly in addition and subtraction.

From Section 3 we may assume that the dis-
carded digits approximately follow a discrete
uniform distribution. Suppose we are adding

E E

1 2
al = xlB and a2 = xlB o*

E1 - E2 is large then the continuous uniform

where El 2> E If

distribution is a good approximation to the

distribution of ¢ = x - x*, but if E] - E2 is

small which is more often the case [17] then the
continuous uniform distribution is an inappro-
priate model for the behavior of e .

Unfortunately, there is no good assumption
for the distribution of the exponents. For that
reason we make no such assumption. We let k be
the number of discarded digits, and assume that
it is known and non-zero. There are two cases
regarding B, which must be treated separately,
namely when B is even and when B is odd.

When B is even it is assumed that the method
of symmetric rounding which rounds to the nearest

even fraction in case of a tie is employed. Then
¢ follows the distribution with density
(16)
-k i
B if ¢ = =——,i=0,4+,...,+B -1
+ 3 r D L
p(e)= Bk t
-k +1
1/2B " if e = =
2BE

Therefore, for a fixed x*, the relative error
o =e/x¥ follows the conditional density h(p|x*,k)
given by

an
BKr o =—tiete, 120,41,...,41/28 1
* - x*B - -
hio|x*,k)= X ‘1
17287% i 5 =% .
2%x*BC

By symmetry E(olx*,k) = 0 so E(p) = 0.




var(o |x*,k) =% 02 n(plx*,k) (18)
()
k
4B 5 2
"I 2 (et
1=0 **B 2x*B
1 1 1
. (i, L
(eey2plt 127 K
1 .
dx*
- * ——
var(p[k) -J’UBVar(plx K nn (19)
Sk, 1-]13'2“]1 dx*
= "7k 3
127,55 65 1B (x4) 03
B2 %) (L1
4nB 24 6B2k
If k = 0 then p=0. Thus Var(p|0) =o0.

If pg = Prob(k = 0) then Var(p) can be bounded
by

(20)

inf (1-p YVar(olk) < Var(p) < sup(1-p JVar(plk)
kko 0 < Var(p) < sup(1-p pVar (o |

Since Var(olk) is decreasing with increasing k,

=2t, 2 2n
sup Var(o'k):Var(p|1)=B t,r(lg 1)[2%+ 1 2].
(k) 12B
and
=2t , 2 (22)
inf Var(o[k) = limvar(p|k) = BB 1)
Kk#0 kb o 244nB
Therefore
- (23)
(1-p)B" (5%.1)
YA < Var(p)
(1-p.)B 2t (82-1)
< 0 __.[;L + __i_ ]
= 1B 24 12B2

po can vary greatly depending upon the source

of additions and subtractions. Note the k = 0
occurs only when adding or subtracting numbers
with equal exponents and there is no overflow.

In base two, this occurs only when subtracting
numbers with equal exponents. Sweeney [171, p. 41
from a sample of 250,000 additions and subtrac-
tions found Py for base two to be approximately

.153. Thus for a base two 22 bit floating point
computer

-15 ~-14
var(p) €[8.683 x 10 ", 1.302 x 10 & 1].
The mean and variarnce for o when B is odd

is derived in [3].
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5. Extended Operations in Floating Point

Arithmetic

Let

8, =2 (24)

n
1:

i~

ay
1

where the a; are floating point numbers. Let

s; be the machine computation of s, and let

s = sn The computational recursion

n
equation is

- s¥,
n

k=2,...,n=1 (25)

St O+ Beyp) = sfeayy

where s¥*

H is defined in (1) with op =

+ and s :52-

It follows that

S TV WOt (26)
B T S SPLE LR NRE
Solving the recursion relation we get
n
ASn Ekz=;251:pk. 27

Because the Py are the result of independent

machine operations they are independent and
identically distributed which implies
YE(p) (28a)

E(Asn) =

2
(£ g
Koz

n
Vars,) = (L (%) )Var(p). (28b)
k=2

By the Central Limit Theorem from probability
theory

Asn

0$%)

- EQ@ 8,)

where c(Asn) = (Var(ASn))l/2 is approximately

normally distributed with mean zero and variance
one for reasonably large n.

Thus an approximate 100 w$% confidence
interval for Asn is given by

[(E(as ) - qwoo(Asn), E(as ) + qwoo(Asn)J (29)

where
T 5.7}
3 (qwo) Ty =75 W € (o,N
1 v 2,
and 3 (y) =EI et “’dt.

If instead we let sn denote the inner product




n
Sp =3 ajby
k=1
and let ¢, = a.b, then
i ivi
* . ok
sy =c} (30)

s¥ (10 )E shee ) k=1,2,..0,0-1 (31)
where

ct(h_algsc k=1,2,...,n (32)

and Uk is the relative error from the floating

and b, .

point multiplication of a, K

The recursion relation forAs is

n

S s WS RIS R (33)

= sk*°ﬁ+fyk+l+sﬁ+lpk+l' k=1,2,...,n=1.
The solution of (33) is

n n
Z cta + 2 s¥p, .
Klge KK

As_ =
Tog=1
Therefore
n n
E(Asn)=(§3 CMIE(@)+( 2 SHE) (34a)
k=1 k k=1
0 2
Var(8s )=( 2 (c*)")Var(p) (34p)
k=1 k

L 2
+ (é;l(s;) yVar(p)

where @ is the relative error from one
multiplication and ¢ is the relative error from
one addition.

As with sums

as, - E(Asn)

G(Asn)

is approximately normally distributed with mean
zero and variance one, and hence an approximate
100 w% confidence interval is given by (29).

1.

104

References

Adhikari, A. K. and B. F. Sarkar,
Distribution of Most Significant bigit in
Certain Function whose Arguments are Random
Variables," Indian J. of Statistics,
Series B, 30, Part 1 & 2 (1968), 47-58.

Bareiss, E. H. and J. L. Barlow,
"Probabilistic Error Analysis of Computer
Arithmetics," Northwestern University DOE
Report C00-2280-37, (December 1978).

Barlow, J. L., "Probabilistic Error Analysis
of Floating Point and CRD Arithmetics,"

Ph.D. Thesis, Northwestern University, (June,
1981).

Benford, F., "The Law of Anomolous Numbers,"
Proc. Amer. Phil. Soc., 78 (1938),
551-572.

Bustoz, J., A. Feldstein, R. Goodman, and
S. Linnainmaa, "Improved Trailing Digit
Estimates Applied to Optimal Computer
Arithmetic," JACM, Vol. 26, No. 4, (1979),
716--730.

Feldstein, A. and R. Goodman, "Convergence
Estimates for the Distribution of Trailing
Digits," JACM, 23 (1976), 287-297.

Flehinger, B. J., "On the Probability that
a Random Integer has Initial Digit A,"
Amer. Math. Monthly, 73 (1966),

1056-1061.

Goodman, R. and A. Feldstein, "Effects of
Guard Digits and Normalization Options on
Floating Point Multiplication,” Computing,
Vol. 18 (1977), 93-106.

__» "Roundoff Error in Products,"
Computing, Vol. 15 (1975), 263-273.

Grau, A. A. and E. H. Bareiss, "Statistical
Aspectd of Machine Rounding," Northwestern

Univeristy ERDA Report C00-2280-34, (August
1977) .

Hamming, R. W., "On the Distribution of
Numbers,” Bell System Technical Journal,
Vol. 49, No. 8 (1970), 1609-1625.

Kaneko, T. and B. Liu, "On the Local Round-
off Error in Floating Point Arithmetic,"
JACM, Vol. 20 (July 1973), 391-398.

Knuth, D, E., The Art of Computer Program-
ming Vol. 2: Seminumerical Algorithms,
Addison-Wesley, Reading, Mass., (1969).




15.

17.

18.

Nathan, L. H., Probabilistic Distribution
of the Most Significant Digit in Computer
Represented Numbers and' Its Behavior Under
Iterated Fixed and Floating Point Opera-
tions, M.S. Thesis, Northwestern University,
Evanston, Illinois, (August 1973).

Pinkham, R. S., "On the Distribution of First
Significant Digits," Ann. Math, Stat.,
32 (1961), 1223-1230.

Raimi, R. A., "On the Distribution of First
Significant Digits," Amer. Math. Monthly,
T4, No. 2 (1969), 342-348.

Sweeney, D., "An Analysis of Floating Point
Addition," IBM Systems Journal, Vol. 4,
No. 5, 31-42

Tsao, N., "On the Distribution of Significant
Digits and Roundoff Errors," CACM, Vol. 17,
(May 1974), 269~271.

Acknowledgmeng

The author would like to express his

gratitude to his faculty adviser, Professor E. H.
Bareiss, for his eritique of an earlier version
of this paper.

105




