*
Asynchronous Arithmetic Algorithms for Data-Driven Machines

“Carol L. Bridge, P. David Fisher, and Robert G. Reynolds

%

Michigan State tniversity; E. Lansing, Michigan 48824

ABSTRACT

With data-driven machines a statement associ-
ated with a given processing element fires the

moment its input operands become avai]ab]e.] In
order to take full advantage of this computer
structure and achieve maximum throughput, the pro-
cessing elements themselves should also be asyn-
chronous; i.e., instruction execution times should
be data dependent to minimize overall delays. Five
general procedures are described that may be used
to design self-timing processing units: task com-
pletion prediction, task completion detection,
operand preprocessing, pre-estimation of input
operand values, and significance control. Analysis
and simulations suggest that the greatest potential
for speed improvement over synchronous counterparts
comes with self-timing algorithms for both division
and the evaluation of special functions.

INTRODUCT ION

A paradox exists with instruction-driven ma-
chines: While performing a scientific or technical
computation, the machine may be compute bound, yet
its arithmetic unit may be idle a significant per-
centage of the time. This paradox is due in part to
the sequential nature of the arithmetic algorithms
executed at the operation level. One approach to
solve this shortcoming is through the application
of data-driven machines 1in which asynchronous
arithmetic wunits execute data-dependent algo-
rithms.

To understand how asynchronous arithmetic
units (AAUs} improve data-driven machine perfor-
mance consider the example in Figure la. Nodes
and arcs in the graph represent processing elements
(PEs) and data paths, respectively. Tokens may be
placed on the arcs to denote the instantaneous
status of the machine with the presence of a token
indicating that data are available on that data

*This research was supported in part by the
National Science Foundation under Grant No.
MCS79-09216.

%The first and second authors are in the Department

of Electrical Engineering and Systems Science;

the third 1is in - the Department of Computer

Science.

CH1630-3/81/0000/0056$00.75 © 1981 |EEE

56

path. So, the current state of the machine illus-
trated in Figure 1b, as indicated by the token
plqcemgnt, is: division has been completed, multi-
p1!cqt10n is in progress, and the summation unit is
waiting for its second operand. Instructions are
exeguted when the necessary data operands are
ava11ab1g; there is no need for a system clock to
synchronize either inter or intra-processing ele-
ment operatiens. Consequently, throughput may be
1mproveq by using asynchrenous rather than synchro-
nous arithmetic units in the PEs.

b c d
\/ TN -
a*b c/d

System
Function
PE-K) pata (NO4)

Paths
(Arc)

PE-1

(a) Graph illustrating the inter-
connection of three processing
elements, PE-I, PE-J, and PE-K.
In {b) these three processing
elements are programmed to per-
form multiplication, division,
and addition, respectively, to
yield g = {a*b + ¢/d). The solid
circles on the arcs indicate the
presence of valid data on the
data paths. PE's need not be
limited to elementary arithmetic
operations; moreover, they may

be dynamically reprogrammed to
execute new operations.

Figure 1.

This paper investigates the potential of using
asynchronous instead of sequential arithmetic units
as processing elements in data flow machines.
First, we present an asynchronous model of computa-
tion for these processing elements. Then w~e con-
sider specific methodologies for implementing both
standard arithmetic operations and special arith-
metic functions in asynchronous arithmetic units.

AAU COMPUTATIONAL MODEL

Three axioms establish the general performance
characteristics of the asynchronous arithmetic unit
{AAU).

* Axiom I -- An activity commences without delay
within an idle AAU whenever the input informa-
tion necessary becomes available to it.

* Axiom II -- When an activity is completed
within an AAU, the results are immediately made
available as inputs to downstream PEs. Then the
AAU goes into the idle state unless new input
operands are available.

* Axiom ITT -- AAU Tatency must be minimized for a
given set of standard hardware constraints,
€.g., power dissipation limits, chip area con-
servation requirements, and inherent gate propa-
gation delays. By latency we mean the time
interval between the moments when an AAU activi-
ty commences and when the AAU returns to the
idle state.

Based upon these three axioms,
dures may be specified which lead to improved PE
throughput. Each of these procedures takes advantage
of input or output data dependencies; these proce-
dures are illustrated in Figure 2 and described be-
Tow:

five general proce-

* Procedure A -- monitors the current activity in
the system function unit (SFU) and detects when
the activity is complete, i.e., the SFU is no
longer busy. The SFU performs the required
arithmetic operation as part of the PE‘s hard-
ware structure.

* Procedure B -- predicts concurrently when the
system function unit activity will be completed
while the system function unit is busy operating
on input data.

* Procedure C -- uses the previous data operands--
a(k-1), b(k-1) and c(k-1)--as an initial esti-
mate to the system function unit of the next
operands--a(k), b(k) and c(k).

* Procedure D -- preprocesses one or more of the
input data operands before they are made avail-
able to the system function unit. In Figure 2, a
and b are transformed into a* and b*, respec-
tively.

* Procedure E -- utilizes a significance control

output data path to control the number of sig-
nificant digits generated within the system
function unit.

The procedures are not all indepgndent since ?hey
must often be applied in combination. The applica-
tion and general usefulness of these five procedures
are explored in the next sect10ns.. The resu!tant
algorithms are compared with conventional data inde-
pendent algorithms. For purposes of our d1scuss19n,
we will not consider either 1nter—system-funct1on
control or system function programming.

57

[e=t

la lb a b
y /

Systgm Completion
Func@1on Prediction
Unit Unit
y 6
Completion System
Detection Function
Unit Unit
; /
M Output U Output
> Queue > Queue
usy BUSY

r. y.

PROCEDURE A

ia(k) ‘b(k)

PROCEDURE B

1_j¢ la lb
—
CapY Scratchpad Operand
Memory Preprocessing
Urit
a(k} b(k)
a(k-1)c(k-1) B{k-1)
a* b*
/ y)
System
Function System
—d Unit F“Bi?;“"
c(k)
M ~ Output —UT Qutput
BUSY Queue — > Queue
BUSY
‘c(k) ¢
c
PROCEDURE C
PROGEDURE D
Significance
Control
o
System
Function
Unit
1_3? Qutput
Y Queue
Yo
PROCEDURE E
Figure 2. Block diagram of five data-dependent

procedures that may be employed to
reduce the latency in asynchronous
arithmetic units {AAUs).

ADDITION, SUBTRACTION AND MULTIPLICATION

Data-dependent algorithms for FXP addition and
subtraction can be considered simultaneously, except
for one algorithm refinement that is used when the
subtrahend arrives before the minuend. For this
special case, it is possible to use Procedure D to
process the subtrahend. Specifically, the subtrahend
may be complemented as soon as it arrives at the AAU's
input. If this precomplementing takes place in a
controlled add/subtract circuit comprised of XOR
gates, then a savings of three gate delays (3Ag) can

be realized, where A To put

this savings into proper perspective, we must recog-
nize that a two-level, 32-bit carry-lookahead adder

(CLA) has a total latency of 12Ag.‘2 Thus, a 20 %

speedup is possible by preprocessing the subtrahend,
since the 32-bit adder/subtractor unit is comprised
of a controlled complementer followed by a CLA. With
reference to Procedure D in Fig. 2, if a and b are the
minuend and subtrahend, respectively, the, a* = a and
b* = -b. The controlled add/subtract circuit will,
therefore, reside in the operand preprocessing unit,
while the system function unit will contain the CLA.

The longest carry propogation length determines
the length of time required to perform binary addi-

tion. Reitweisner‘,3 among others, has shown that the
average maximum propagation length is 1092 p, where p

is the number of bits to the right of the radix point.
The ability to take full advantage of this fact to
speed up the addition process depends upon the addi-
tion algorithms implemented in the system function
unit.

Gilchrist, et al., utilized Procedure B to de-

sign an asynchronous data-dependent adder.4 Their
system function unit and carry completion unit were a
ripple-carry adder and a carry propagation unit,
respectively. The carry propagate unit predicts when
all of the carries have finished propagating. For a
40-bit adder, they found this algorithm to be 8-times
faster on the average than the corresponding ripple-
carry adder. We investigated replacing the ripple-
carry adder in the system function unit with a CLA and
found analytically and through simulations that no
improvements in speed up can be made on the average by
employing either Procedure A or B. This is because
the overhead involved in either predicting or detect-
ing the completion of the addition operation always
exceeds the average saving realized by implementing
the remainder of the algorithm,

Similar results were encountered when we at-
tempted to apply Procedure E to binary addition.
Specifically, if p is the number of bits to the right
of the radix point in operands A and B, Procedure E
transforms p into p* through some rounding process
such that p* < p. For the ripple-carry adder case,
there exists a one-to-one mapping betweeh the reduc-
tion in the significance of the operands and the
corresponding reduction in the total add time. _For
example, a 75% reduction in significance results in a
75% reduction in add time. But for the case where the
CLA is used in the system function unit, no speedup
improvements are realized, because, as before, the
overhead exceeds the average potential savings.

With addition we found that the relative im-

g is a unit gate delay.

58

provements possible with self-timing algorithms over
their data-independent counterparts depended
strongly upon the root algorithm used in the AAU's
system function unit. And the same is true for self-
timing multiplication algorithms.

Lehman5 and others6’7 have considered a variety

of data-dependent speedup techniques for recursive
add-and-shift multiplication algorithms which use
combinations of Procedures A and B. Each of these
techniques utilizes the string recoding rule

m .
r2' =2
i=n
to reduce the number of individual add and shift
operations required. Also, in his modified short-cut
(MSC) procedure, Lehman takes into account the fact
that strings with isolated 1's and 0's can be re-
coded. This MSC procedure yields a self-timing algo-
rithm that reduces the average number of additions or
subtractions to mq/3 and the maximum number to

(mq+2)/2, the in the

multiplier. Also, this procedure reduces the average
number of individual shift operations by 30%.

But there is further room for increasing the
average speed of data-dependent add-and-shift multi-
plication algorithms. One such technique would be to
use Procedure C to preprocess the first operand that
arrives by treating it as the multiplier and per-
forming the canonical recoding operation to obtain a

new multiplier operand with minimal weight.8 This
will eliminate the need to proceed with recoding
during the recursive segment once the second operand
arrives. Also, Procedure E may be used in one of two
ways to increase the speed of recursive add-and-shift
multiplication. First, the input operands can be
rounded to the desired significance, thus reducing
the average and maximum number of adds and shifts
proportionately. Secondly, the input operands would
be recoded so that multiplication could proceed from
left-to-right using an iterative procedure like the

one used in the IBM 360 multiply um’t9 or the on-line

multiply technique proposed by Trivedi, et a].,]o
use in pipeline multiply units. In either case, the
multiplication process would terminate when the mini-
mum number of iterations has taken place to achieve
the desired product significance.

Now let us consider the prospect of using cellu-

lar-array multipliers, such as a Pezaris array,]] in
conjunction with data-dependent speedup techniques.
Specifically, various schemes fnvolving Procedures A
and B were explored. But, while some array elements
may have the correct results early, any attempt to
either predict or detect the completion of the multi-
plication process actually reduces the average speed

m+1_2n

where mq is number of bits

of the original array or involves an inordinate
amount of auxiliary hardware. Not only is there a
significant increase in the gate count, but also

there is a serious loss of regularity in the original
multiplier array structure. This greatly increases
the total length of the interconnection paths between
cells. These latter two facts result in less effi-
cient utilization of chip area. The only significant
self-timing speedup improvements with cellular-array
multipliers comes with Procedures B and E. The input
operands would be truncated to the desired precision

and then applied as usual to the array inputs. If all
truncated bits are forced to zero, then they won't
produce any carries. This reduces the Tength of the
critical path in the array by an amount proportional
to the reduction in input operand significance.
Since the critial path through the array represents
the multiplier's latency, its overall latency will be
reduced in a "predictable" fashion.

DIVISION

Division is the elementary arithmetic operation
which takes the most time and, therefore, has the
greatest potential for speed improvement using data-
dependent procedures. Let N, D, and Q be the divi-
dend, divisor, and quotient, respectively, such that

™ . M .
N=zn.2, D=1z d.27J,
i=1 =1
L
Q = N/D —ki]ng . Ni» dj’ q e {0,11.
Also, let us restrict N and D to the following ranges:
0 <N <27, 2t <o <.
So, d, = 1.

1
We may define a new parameter ¢ s follows:

§=1-0 <27, (1)

One division algorithm that is amenable to data-
dependent speedup procedures is the convergence divi-

sion aﬂgom’thm.]2 With this algorithm, the divisor
is forced toward unity, leaving the dividend equal to
the quotient, subject to some error limit, The
convergence equation is given below:

Ez<ﬂ) *(&>*<_“_1>
D D RO R]

For sufficiently large n,

Q:

.J('

.*
—~
:xl:
S

Dp = D * Ry * Ry *...* R~ 1.
Thus,
Ny = N*R, ¥Ry *lu* R 00
And since the denominator
D=1-65>2"1 and 5<2° (2)

then the Ri's are chosen according to the following:

1.
R, = 1+ 62,

0, 1,..., n.
i

i =

After the ith iteration, the denominator becomes

59

D, =D * R0 * Ry ALK R

i 1T Ry ED Ly TRy s

h]

. (3)
1

(1-s2")),

i+
Because N < 2'], 62 becomes a convenient measure
for the closeness of Ni to Q.

With synchronous convergence division algo-
rithms, the number of iterations is determined by the
worst case. This occurs when

§ = &

_ a1
max - 2 -

-m
If 2 9 is the desired precision for Q, then

2i+1

ar

(5)

n = l}ogzqu -1

If, for example, the desired quotient precision is
2']6, =16 and n = 3.

required to achieve the desired quotient. -2
But there is a 50% probability that ¢ <2°, a

25% probability that ¢ ;32'3, etc. So there is great
potential for terminating the division process early
using Procedure A. The completion prediction unit
would search for the leading zero in D and then set n.
For example, if m_ = 16 and D = 0.1110...then n=1

instead of 3 as for the synchronous case. So only
half of the number of iterations would be required.
This represents a speed up of 50%, since the deter-
mination of n can proceed concurrently with the first
iteration.

Procedure C may also be used to speed up conver-
gence division. If the divisor D arrives first, then
1/D may be computed before the numerator arrives. In
effect, the convergence division execution time is
equivalent to one data-dependent multiply time.

Procedure E may also be used to speed up the
computation, since the maximum number of iterations
required is dependent upon m_ (see Eq. 4). However,
this dependence is very weakJd The most efficient use
of Procedure E comes in performing the operation

then mq So four iterations are

D; = Dy_q *R..

Subtract-and-shift division algorithms may also
be sped up through the application of data-dependent
procedures, although not to the extent convergence
division methods can.

ELEMENTARY SPECIAL FUNCTIONS

Elementary special functions may be executed by
algarithms that reside at either the software
{(instruction) level or hardware (operation) level.
Efficient software algorithms handle iterative tasks

by terminating execution prior to the maximum number
of iterations needed in the worst case. They also
allow greater flexibility and make less demand on
nardware resources. On the other hand, hardware-
level special function algorithms generally execute
the total number of iterations for a task without
testing for early termination. As advanced computer
structures move toward taking full advantage of very
Jarge-scale integrated circuits, a decided shift from
the instruction level to the operation level will
most 1ikely occur in special function impiementation.
So it is important to carry over from one to the other
the principle of minimizing the execution time by
exploiting data-dependent termination procedures.

These techniques can make use of several of the
data-dependent procedures described earlier. In gen-
eral Procedure A can always be employed to detect
when the absolute error at the end of the ith itera-
tion is sufficiently small to terminate execution
instead of waiting for the worst-case exit time. The
operand preprocessing unit in Procedure D can contain
a ROM or logic array to provide a first estimate of
the result or to recode the input operands. Proce-
dure C can also be utilized to acquire the first
estimate of the results for applications in which the
incoming time k-1 s highly correlated with data
arriving at time k. This would be particularly true
when the data-driven machine is applied to such prob-
Jems as digital filtering, digital control, or simu-
lation of a boundary-value problem, e.g., a real-time
hydrodynamics problem. Procedure E can be used to
adjust dynamically the maximum absolute error pa-
rameters in order to meet overall speed and signifi-
cance objectives for a particular problem.

Hardware-based special-function algorithms may
be classified as either general-purpose algorithms,
such as the polynomial evaluation schemes proposed by

Tung13 and Ercegovac]A, or special-purpose algo-
rithms, such as Volder's CORDIC function 'cechm'que]5
and the convergence computation methods of Chen.]6
The latter class of hardware algorithms are based on
certain specific properties of the functions being
evaluated and are designed with speed efficiency in
mind at the expense of having only a limited domain of
application.

We will demonstrate the application of these
procedures by considering the following special-pur-
pose elementary function algoritnm: Newton's method
for determining the sgquare root Y of a number of X (Y
= VY) is specified by the following recursive proce-
dure:

BEGIN NEWTON'S METHOD

Step 1 -- Read X and E
Step 2 -- Make an initial estimate of Y

-1)
Step 3 -- Repeat Y « 2 [Y + %/Y] until
lY - x/y| <€

END NEWTON'S METHOD

For certain operation-level implementations, the max-
imum absolute error E may be fixed and only the final
yesult rounded to the desired significance.

Let us restrict our attention to the convention-
al radix number system with r = 2 and

60

m m
X -) y

_zxiZ s Y =1

i=] j=

X = Xi9 .YJE{O;]}

and, moreover, restrict X to the range

-1

-2 <x <2,

2

Application of the basic synchronous algorithm begins

with an initial estimate of Y, e.g., Y = 2'1, followed
by the number of iterations required for the worst-
case convergence. For example, if n, = 32 and we

require Y to be accurate to a precision of 2-]6, then
the worst case number of iterations would be 3. And
this would collectively involve 3 divides, adds, and
shifts.

But the following procedures can be used to
reduce the average execution time for this rcot-
execution algorithm by more than 50%:

* If the value of input operand X at time k is
highly correlated with the input operand at time
k-1, then Procedure C can be used to obtain a
better initial estimate of Y. This estimate
would be used in conjunction with Procedure A to
exit early from the computation (see Table I).
Procedures D and B can be used in a similar
manner. But here the input operand X would be
applied to the input of a ROM or gate array to
acquire the first estimate.

TABLE 1

Number of iterations required to implement
Newton's method as a function of the desired
precision, Ny, and number of leading bits, N,
known to be gorrect initially.

20 | 24

12 L O 010 o]0 |1 1 1 2 i

16 § 0 040 0106 |0 T 11 0

* Because the intermediate value of Y obtained at

the ith iteration is highly correlated with Y
obtained at the (i-1)st iteration, the division
step (X/Y) can "converge" much more quickly than

the worst case using Procedures C
Table I1). i and A (see

Through significance control, Procedures £ and B
can be_used to reduce the required number of
iterations (see Tables I and II).

TABLE 11

Number of iterations required to find the
reciprocal of y as a function of the required
precision, N), and the number of leading bits
known to be Eorrect.

N

16 | 20| 24| 28] 32

1640 |0 0 0100 1 1 T 11

* Application of the above three sets of proce-
dures always assumed that the input data X had
worst case values. In principle, Procedure A
can be used alone to test when the error crite-
ria is met. For example, if m, = 32, m_ =16,

and the initial estimate for VX is Y = 27", then
there is about a 33% chance that one of the three
worst-case iterations can be bypassed.

We have examined several other general-purpose
and special-function operation-level algorithms that
are either used or have been proposed for use in
evaluating special functions. In general, the data
dependent procedures that were applied to Newton's
method for evaluating square roots apply equally well
to other existing special function algorithms. But
there are some exceptions.

One standard method for polynomial evaluation of
special functions is to represent the function in an
infinite power series, truncate the series to k + 1
terms and then re-express the truncated approximation
in a nested form as shown below:

k . k .
ﬂx)szx)=paj*xmjn = xm*{Za.*xM]
J=o J=o
=L % 6™+ g) k" a_p) * X"

o4 a]) * My ao)]

The advantage of this formulation is that at most two

powers of the variable x, namely x™ and x" are
required; moreover, the inner loop in the iterative
procedure is quite simple--one multiply and one add.
While this formulation is quite simple for sequential
algorithms where k is chosen based on worst-case
considerations, it is not a desirable approach for
asynchronous special-function algorithms, because
there is no early termination capability.

61

The CORDIC trigonometric computing technique
represents another sequential algorithm that must be
modified before data-dependent procedures can be
fully exploited to reduce execution time. With the

CORDIC te<:hn1'que,]5 a vector is rotated from some
starting point

Y] = R]sine], X1 = R]cose].

to some final position

Va1 = KgRysin(8y 00, X Lq = K Rysin(o,+ 2)

n+1] n

where

oy = tan']Z'(i'z),

n .
+ 1 K = g [1 - 2_2(1_2)J.

T = L
Traditionally, n is fixed, so the ai's and Kn are

.precomputed and stored in ROM. So, the only decision
in moving from the initial position to the final
position 1is the sequential selection of the gi's.

The problem with directly adapting this algorithm to
asynchronous algorithm design is that if n is to be a
variable to allow early termination, then all pos-
sible Kn's would have to be stored. The second

problem with the algorithm lies with the fact that it
is a sequential search operation that requires a
rotation at each iteration. String recoding tech-
niques that would reduce the number of rotations from
n to an average of 0[1og2]n are not possible with the

current formulation of the CORDIC algorithms.

>
1

n
0
g + 5% Z.a,
n ’190 E 2%

i=2

aal
]

CONCLUSTON

This paper investigates the potential gf usjng
asynchronous instead of sequential arithmet1c units
as processing elements in data-flow machines. Five
general procedures are described that may be used'to
design self-timing processing units: task completion
prediction, task completion detection, operand pre-
processing, pre-estimation of input operand values,
and significance control. _

The potential for successfully employing these
procedures was found to be related to the granularity
of the arithmetic operation. Addition and subtrac-
tion operations cannot be improved apprecjab]y using
data-dependent procedures. Multiplication can be
sped up if add-and-shift type algorithms are to be
used but not when cellular-array multipliers are.
Division and special-function operations appear to
hold the greatest potential for speedup through the
application of data-dependent procedures. As
advanced structures move toward taking full advanpage
of very large-scale integrated circuits, a dec1qed
shift from the instruction level to the operatjon
level will most likely occur in special function
implementation. And it will be important to carry
over from one to the other the principle of minjm!z—
ing special-function execution times by exploiting
data-dependent termination procedures.)

Although these procedures were considered in
terms of their application to data-dependent ma-

chines, in principle they may also be applied to
sequential single-processor or multiple-processor
instruction-driven machines.

ACKNOWLEDGEMENTS

T. L. Chang originally suggested the operand
preprocessing procedure. He also had many other
useful comments and suggestions. The authors also
wish to thank Ginny Mrazek for typing this manu-
script, as well as Bill Pearson for preparing the
figures and tables.

REFERENCES

1. J. B. Dennis, "Data Flow Supercomputers," IEEE
Computer, vol. 13, pp. 48-56, (Nov. 1980).

2. Hwang, K., Computer Arithmetic: Principles,
Architecture, and Design, dJohn Wiley and Sons,
New York, pp. 88-91, (1979).

3. Reitwiesner, G. W., The determination of carry
propogation length for binary addition," IRE
Trans. or Electronic Comp., vol. EC-9, pp. 35-
38, (Mar. 1960).

4. Gilchrist, B., Pomerene, J. H., and S. Y. Wong,"
Fast carry logic for digital computers," IRE
Trans. on Electronic Comp., vol. EC-4, pp. 133-
136, {Dec. 1955).

5. Lehman, M., "Short-cut multiplication for binary
digital computers," Proc. IEEE. (London), vol.
10, pp. 496-504, (Sept. 1958). 6.Smith, J. L. and
A. Weinberger, "Shortcut multipiication for
binary digital computers,” System Design of Digi-
tal Computer at the National Bureau of Standards:
Methods for Hignh-Speed Addition and Multiplica-
tion, NBS Circular No. 591, Sec. 1, pp. 13-22,
{Feb. 1958).

6. Smith, J. L. and A. Weinberger, "Shortcut multi-
plication for binary digital computers,” System
Design of Digital Computer at the National Bureau
of Standards: Methods for High-Speed Addition

and Multiplication, NBS Circular No. 591, Sec.
T, pp. 13-22, (Feb. 1958).

7. Tocher, K. D., "Techniques of multipliication and
division for automatic binary computers,” Quart.
J. Mech. and Appl. Math., vol. 11, pp. 364-384,
{Aug. 1958).

8. Reitweisner, G. W., "Binary arithmetic," Advances
in Computers, vol. 1, Academic Press, New York,
pp. Z§E-§U§, (1960).

9. Anderson, S. F., Earle, J. G., Goldschmidt, R.
E., and D. M. Powers, “"The IBM System/360 Model
9]1: floating-point execution unit," IBM J. Res.
and Develop., vol. 11, pp. 34-53, (Jan. 1

10. Trivedi, K. S., and M. D. Ercegovac, "On-1ine
algorithms for division and multiplication," IEEE

Trans. on Comp., vol. C-26, pp. 681-687, (July
19777.

11.

12.

16.

62

Pezariz, S. D., "A 40-ns 17-bit dy 17-bit array
multiplier," IEEE Trans. on Electronic Comp.,
vol. C-20, pp. 442-447, [April 1977).

Hwang, K., op. cit., pp. 242-254.

Tung, C., A Combinational Arithmetic Function
Generation System, Ph.D. Dissertation, Univarsi-
Ty of California, Los Angeles, Ca., (1968).

Ercegovac, M. D., “A general hardware-oriented
method for evaluation of functions and computa-
tions in a digital computer, IEEE Trans. on
Comp., vol. C-26, pp-. 667-680, (July, 1977).

Volder, J. E., "The CORDIC trigonometric com-
puting technique," IRE Trans. on Electronic,
Comp., vol. EC-8, (Sept. 1959).

Chen, T. C., "Automatic computation of expon-
entials, logarithms, ratios and square roots,"
IBM J. Res. and Develop., vol. 16, pp. 380-388,
TduTy 1972).

