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ABSTRACT

Previous experience in implementing the
Prime Factor Fourier Transform showed that it
was much more difficult to do than the FFT be-
cause of its complicated structure. In most FFT
implementations the "butterfly" structure is the
basic arithmetic wunit implemented. It 1is much
simpler than the equivalent PFFT unit.

This paper describes a different archi-
tecture for implementing PFFT machines using
distributed arithmetic and ROM's to perform the
computations. It is found to be much simpler
and more modular than a design which uses multi-
pliers and adders. The implementation of a PFFT
processor with a throughput c¢f 104 kHz for com-
plex data points is described.

1. INTRODUCTION

One of the major factors limiting the
computation speed of the Discrete Fourier Trans-
form (DFT) has been the number of multiplica-
tions required. The work of Winograd, [1,2],
has resulted in two new algorithms which have
fewer multiplications than the Fast Fourier
Transform, currently the most popular algorithm.
These two algorithms are the Winograd Fourier
Transform (WFT), and the Prime Factor Fourier
Transform (PFFT), [3]. A previous paper, [4],
described several possible architectures using
microprocessors to implement the PFFT. The re-
sults showed that the reduction in the number of
multiplications was gained at the loss of the
simplicity of the structure of the FFT. Manag-
ing the data was much more complicated using the
new algorithms.

In this paper, we will first explain
briefly the structure of the PFFT and distri-
buted arithmetic. Then we will describe an ar-
chitecture using read only memories (ROM's) and
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the techniques of "distributed arithmetic" to
implement the PFFT. Previous work by Liu and
Peled, [5], has shown that using distributed ar-
ithmetic to do the multiplications in an FFT
butterfly unit can result in significant savings
in hardware and power consumption. We have im-
plemented the PFFT wusing distributed arithmetic
to do all of the computations in the PFFT units
instead of just the multiplications. This re-
sults in a fairly modular system and a practical
way of implementing pipelined PFFT processors.
Finally, the performance of FASTOR II, a machine
being built to compute a 50U-point PFFT, will be
evaluated, and some comparisons with FFT proces-
sors will be made.

2. THE PRIME FACTOR FOURIER TRANSFORM

The Prime Factor Fourier Transform is
described in detail in [3], but we will give a
short description here. The PFFT is based on
the use of a set of relatively prime length
short transforms to form the complete transform.
For example, a 504-point transform consists of a
seven-point, an eight-point and a nine-point
transform where 7¥8%9=504, (see Fig. 1). Each
of the short transforms is implemented using the
techniques of Winograd to minimize the number of
multiplications and to derive the constants to
be used for the multiplications. The ordering
of the data for the short transforms is deter-
mined using the indices of the data points mo-
dulo the length of each of the short transforms.
The result is that accessing the data is not
completely straight forward. The PFFT 1is com-
puted by first doing an input ordering and then
doing the short transforms in turn. The order
in which the short transforms are computed is
only important when optimizing the memory re-
quired in the intermediate stages. It is possi-
ble to begin the next transform stage without
computing all of the previocus short transforms.
There is also a stage at the end required to
correctly order the data for output.

The PFFT has several properties which
can be exploited when implementing the algor-
ithm. It is more modular than the WFT because
it computes the short transforms independently




instead cof nesting the transforms like the WFT.
It is also possible to organize the data so that
the constants used in the short transforms do
not vary if the length of the full transform is
changed. This means that it is possible to pro-
duce short transform modules and put together
the modules needed to get the full transform re-
quired.  The major change required to change
from one length to another length would be the
way the data 1is permuted. This can be done at
the input and output stages.

One of the main difficulties of imple-
menting a hardwired PFFT in the straight forward
way using adders and multipliers is the compl ex-
ity of the short transforms. The short trans-
forms require a complicated routing algorithm
for the data as the transform is being computed,
If however, the short transforms are implemented
using a table lookup, then the data routing in
the short transform is not a problem. This is
the basis of the structure for FASTOR II1.

3. DISTRIBUTED ARITHMETIC

When using distributed arithmetic it is
nNecessary to 1loock at the arithmetic operations
being performed at the bit level. At this level
it is possible to mix the operations of convolu-
tion and multiplication giving rise to the name
"distributed arithmetic". This leads to differ-
ent ways of realizing digital filters and in
this case, a different structure for implement-
ing the PFFT. Distributed arithmetic and some
of the structures suggested by its use is des-
cribed in [6].

The basic principle of distributed ar-
ithmetic is to look at the N input B-bit data
words one bit at a time, starting with the least
significant bits (see Fig. 2). Use these bits
as the operands for & linear function f and com-
pute the output which will be g word of B bits.
Then shift the input and output registers one
bit and compute the next output word. Add this
to the previous value in the output register.

Continue this cycle for each bit in the input
words. The final result will be in the output
register.

The function f can be implemented using
discrete adders and multipliers or more simply
by using a lookup table to store the precalcu-
lated partial sums. This i{s the method that we
used in our implementation of FASTOR II. The
lookup tables are used to store precalculated
values for the short transforms used in the
PFFT.

199

4. THE INPUT AND OUTPUT STAGES

One of the problems with the PFFT men-
tioned previously is the ordering of the data
required at the input and the output stages. In
FASTOR II, the permutations are done with tables
held in EPROM's which are used as address trans-
lators to find the location 1in memory where the
data is to be stored on input or read on output
(Fig. 3). The input and output stages run at
relatively slow speeds compared to the transform
stages because they only have to keep up with
the maximum sample rate of about 9.6 us per
point in FASTOR 1II. Therefore, there is no
problem with the address translation process.

With the proper ordering in memory the
transform modules can access the data using
counters. For different length transforms, it
is necessary to reprogram the EPROM's and adjust
the counters used by the transforms.

5. THE SHORT TRANSFORM MODULE

The basic structure of a transform mo-
dule is shown in Fig. 4. Assume that a word is
B bits long and the transform is N points long.
The first step is "corner turning" which is used
to arrange the input data words into slices of
bits which can be used as inputs to the ROM
lookup table. Each slice consists of one bit
from each of the input data words. The next
stage is a double buffer RAM. One side is used
to store the bit slices after the corner turning
while the bit slices in the other side are used
to do the table lookups. The pipeline latch be-
tween the RAM and the ROM is used to hold the
current inputs to the ROM while the next inputs
are being accessed in the RAM. The word select
counter selects the output point being computed.
Its outputs also form part of the input to the
lookup table. At the output of the ROM is an
adder/subtracter used to accumulate the partial
Ssums generated for each input. The output of
the ROM is held in the pipeline 1latch to allow
the next value to be accessed in the ROM while
the value just read is used by the ad-
der/subtracter. At the other input to the ad-
der/subtracter there is a shifter and another
latch. The shifter is used to shift the current
sum when necessary and the latch is used to
store the sum just computed.

The operation of corner turning required
by FASTOR 1II is shown in Fig. 5. The data is
naturally sampled or accumulated in words but
the table lookup requires the ability to read
slices of bits, FASTOR II implements corner
turning using the method shown in Fig. 6. Fig. 6
shows a B:1 multiplexer and one half of the dou-
ble buffer RAM. The figure shows 4K by 1 RAM's
instead of much smaller ones because the outputs




from the previous transform stage are stored in
the double buffer RAM, so it must be large
enough to hold these points. In Fig. 1, all 8
output points of the first 8-point transform are
stored in RAM 0 of the 9-point stage. The next
8 points are stored in RAM 1 and so on. Each of
the RAM chips stores the data corresponding to
one of the input points of the transform. For
example, RAM 0 will contain data words which
must be used as point O when computing the
transform. The data is stored in the RAM by
first enabling the chip corresponding to the
correct point and ‘then by using the counter to
select all the bits of the data word for writing
in the RAM.  When all the data has been stored
in the RAM's, then reading all the RAM's at once
will give the bit slices required.

The data representation used by FASTOR
II is composed of two 12-bit, two's compl ement
integers, one for th2 real part and one for the
imaginary part. In order to generate a real or
an imaginary part of an output point, 24 partial
sums must be accumulated. There are 12 partial
sums due to the real inputs and 12 partial sums
due to the imaginary inputs. The data is pre-
sented to the ROM in the order shown in Fig. 7,
starting with the least significant bit of the
real part and alternating with the imaginary
part, This is done so that the output value can
be accumulated all at once. This also means
that the accumulated output should only be
shifted every two cycles instead of every cycle.
If all the real bits were done first and then
all the imaginary bits, it would be necessary to
have an extra register to store the result from
the real part. This is then zdded to the result
from the imaginary part after it is computed.

The word select counter is used to se-
lect the value being computed, for example, the
imaginary part of point 3. This counter is
fixed for the 24 cycles required to compute a
word and then 1it is changed to select the next
word.

The size of the ROM is determined by the
number of points in the transform. If the short
transform length is N and the output is complex,
then there are 2N output words possible. There
are N bits of address due to the data and
llog, 2N] bits from the word select oounter to
specify the output word being computed. As N
gets large, the ROM becomes excessive and expen-
sive. Large bipolar ROM's wers found to be rare
and quite costly at the time FASTOR II was being
designed. The structure shown in Fig. 8 is a
way of reducing the size of the ROM by adding
extra adders. This method is discussed in [6].
The reason this can be done i3 because the com-
putation of the transform is a linear function.
In Fig. 8 the output point is computed by doing
three table lookups and then combining the out-
puts to get the final result. For example, the
output of ROM 0 is the value of the transform
assuming the input points N/3 to N-1 are set to
zero, Points 0 to N/3-1 are used as actual in-
puts to the ROM.

As an illustration of the difference in
the size of ROM required, consider the case for
N=G. In the first case the number of input bits
is N+[log, 2Nl = 945 = 14 bits. This means a
ROM of 16K 12-bit words is required. Using the
second method there are 3 sections of ROM with
the number of input bits being N/3+[log, 2N] =
345 = 8 bits. Therefore, only three ROM's of
256 words are required. The ROM can be sec-
tioned as many times as necessary with the tra-
deoff being a smaller ROM for extra adder de-
lays.

In order to see how the tables in the
ROM's are generated, let

N-1 nk iZW
Y W I
Xk néo xn N wN = e N (1
B-1
-7 x 20 @
’ n béO nb

(X Jk=0,N-1 is the DFT of (%) p=0,N-1
and (2) is the representation of x, in bits
where there are B bits in a word and X, is real.
Substituting,
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The inner sum of (3) is used to generate
the ROM with k and 1 other bit for the real or
imaginary part forming the word select address
and the x, forming the data input address bits.
For complex x, let

T .
X transforms to a + jb

jx; transforms to j(c+jd)

Then x, transforms to (a-d)+j(b+c). Therefore,
to compute the real part of an output point sub-
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tract the imaginary parts due to the contribu-
tions from the imaginary input bits from the
real parts due to the contributions from the
real input bits. A similar procedure 1is used
for computing the imaginary part of the output,

Equation (4) is used to generate the ROM
tables for the configuration shown in Fig. 8,
where s is the ROM number being generated. The
example shown is for the specific case of divid-
ing the ROM into three sections.

6. PERFORMANCE AND GENERALIZATIONS

FASTOR II 1is constructed with standard
TTL technology without any attempt to push the
limits of this technology. The sampling fre-
quency of 20 kHz required in an initial specifi-
cation for the machine was easily achieved. The
cycle time used in “he accumulator loop at the
output of the lookup tables is 200 ns which is
not very difficult to achieve in TTL. A complex
output point composed of two 12-bit integers is
generated every 48 cycles. This gives a possi-
ble sampling frequency of 1/(48%200 ns) = 104
kHz. This is greater than ten times the perfor-
mance of FASTOR I, [U4],

FASTOR I is z processor constructed with
AM2903 bit slices, [7], which is microprogrammed
to compute the short transforms of a 252-point
FFFT. It is attached to an LSI-11, [8]1, which
is used to perform the data manipulation re-
quired. The bottleneck in the system 1s the
LSI-11 because of the time needed to do the data
permutations. The system throughput is about 6
kHz for complex data.

In FASTOR 1II, the slowest part of the
pipeline 1is in the ROM lookup stage where a
level of addition at the output of the ROM sec-
tions has been used to reduce the amount. of ROM
required. [Fasy ways of relieving this bottle-
neck are to use larger ROM's to eliminate the
adders or by having a second ROM section in par-
allel (Fig. 9).

The basic factor limiting the speed in
this approach to implementing the PFFT is the
inherent bit serial nature of the computations.
As the number of bits used to represent the data
increases, the number of ROM lookup and accumu-
lator cycles increases in proportion. There-
fore, this technique does not appear practical
for very high speed signal processing applica-
tions, like radar, but it does seem promising
for slower applications such as speech.

One of the problems with the WFT and the
PFFT is that it is not practical to implement
large transforms using adders and multipliers
because as the lengths of the short transforms
increase, the number of additions required be-
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comes very large and the complexity of computing
the transform increases. Therefore, short
transforms greater than 16~points are impracti-
cal to implement in this way. However, using
the techniques implemented in FASTOR II it is
possible to do larger transforms because the
difficulty of computing the short transforms
does not increase when the number of input
points increases. It is only the size of the
lookup table which gets larger.

Wnen comparing the implementation of FA-
STOR II to traditional FFT processors, the first
major difference is that there is no hardware
required to perform any multiplications. The
main complexity of computing the transforms is
hidden in the generation of the lookup tables.
The arithmetic in the processor is limited to
just additions and subtractions which only re-
quire relatively cheap and simple chips. This
results in significant savings in power and the
number of chips as shown by Liu and Peled in (5]
for an FFT realization using a similar techni-
que,

One advantage of using the PFFT is that
fewer stages are required to do a transform com-
pared to the number of stages in an FFT of simi-
lar length. For example, a 512-point radix 2
FFT requires § stages of butterflies. A
504-point PFFT requires only 3 stages, consist-

ing of 7, 8 and 9-point transforms. Fach PFFT
stage in FASTOR II uses about 90 chips. It is
estimated that a 16~-point stage would require

about 115 chips with about half of the increase
being for memory and the rest being required to
increase buffer and counter sizes. In the sim-
plest implementation described in {51, about 42
chips were required to implement a computation
unit with a 2.5 MHz complex data throughput..
However, the arithmetic used in that system was
a modified floating point using an 8<bit man-
tissa and a U-bit exponent and the clock rate
was 40 ns. Therefore, the comparison is not ex-
act but the complexity of both systems is prob-
ably similar.

As mentioned before, an advantage of the
PFFT is that it is possible to arrange the data
S0 that no changes are required in the short
transform algorithms when changing the length of
the full transform. The only changes required
to the configuration of a machine are the input
and output permutations, and the size of the
double buffer memory shown in Fig. 4. The ar-
ithmetic sections remain the same. In an FFT,
changing the length of the transform also re-
quires a change in the constants used in the ar-
ithmetic units as well as the changes required
in the data ordering and the memory required.

A disadvantage of the PFFT is that all
of the data 1is required before a transform can
begin. This is unlike the FFT which ean begin
without a complete set of data.

The short transform modules are all ba-
sically the same in FASTOR II, except for the




size of the ROM's, the size of the RAM at the
inputs and the programming of some of the coun-
ters. Therefore, it is possible to consider the
design of a general PFFT chip which could handle
short transforms up to some fixed size (16
points does not seem unreasonable). The inter-
nal structure should look like the one shown in
Fig. 8, except that four sections of ROM could
be used to reduce the total amount of ROM re-
quired. A small double buffer cache in front of
the arithmetic section should be included to
make pipelining easier to do. To compute a spe-
cific short transform, the 1lookup tables and
some counters would have to be programmed. Ex-
ternal circuitry would be required to do the in-
put and output data permutations and the in-
termediate buffering. It would be interesting
to consider other applications of such a chip,
if it existed.

7. CONCLUSIONS

The work done in the implementation of
FASTOR II has shown that the use of distributed
arithmetic and ROM's is a practical way to im-
plement the PFFT. By using ROM's to store pre-
calculated values of the short transforms, the
problem of computing the short transforms in the
hardware is reduced to accumulating the partial
sums. However, performing the computations in a
bit serial manner requires the ability to do
corner turning on the data.

The major factor limiting the throughput
of the system is that the computations are at
the bit serial level. However, this implementa-
tion does show that it is practical to build
PFFT systems with throughputs in the 100 kHz
range with 1little problem. There is also the
option of using faster technclogies.

The modularity of the transforms sug-
gests that it is possible to produce a program-
mable chip which can be used to compute the
short transforms. The fact that the difficul-
ties in computing the short transforms are hid-
den once the ROM is programmed also means that
it is possible to implement transforms larger
than it was previously practical to do with the
PFFT.  Therefore, PFFT machines would require
fewer stages than similar length FFT machines.

The result of this work has shown that
the approach taken to implement FASTOR II is a
practical way of implementing the PFFT. It has
also shown that there are possibilities for us-
ing the PFFT as an alternative to the FFT for
moderate sample rates.
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