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Abstract Such an array is composed of a signed multiplier
and an adder circuit, so that the whole computa-
tion is performed recursively. The array accepts
operands expressed using the 2's complement nota

The paper presents a new fast arithmetic array,
suitable for VLSI implementation, which computes
the inner product of two vectors. The operands and

X ' tion and produces the result using the same re-
the result are expressed using the 2's complement
nptation, which is the most general and flexible
one. Cells performing the 2x2 bit full multiplica
tiocn are used for obtaining a reduction of the
operation time.

A particular pipelining scheme,with different

presentation. The 2's complement multiplication
is performed using an algorithm, presented here,
which is derived from the Baugh and Wooley algo-
rithm’,

In order to achieve an high speed implementation

. . . . of this signed multiplication algorithm,the same
degrees of latching, is used in order to implement £ P & >

parallel computations with a moderate cost in-
crease. Graphs showing the characteristics and the
advantage domain of the proposed array are pre-

approach, successfully used for pipelined unsi-
gned multipliersB, is applied. The basic cell
(macrocell) used for implementing the array per-
forms the 2x2 bit rather than the 1x1 bit full

sented. An IC implementation of the proposed array .. .
multiplication.

could have a speed from 5 to 10 times greater than
the multiplier-accumulator circuits currently
available.

Combining the use of macrocells and the pipeline
technique, the implementations presented in this
paper achieve a very high speed, without a dra-
stic cost increase, because of the particular pi

L. Introducti
—~ —ntroduction pelining scheme adopted This fact allows one put

The evaluation of the inner product of two vectors the array presented here in a single VLSI chip.

is one of the most important arithmetic computa — The evaluation of the array performance in based

tions in the field of digital signal processing. on the total cost G , the operation time T and a
T

In fact, both non-recursive digital filters and

. . . global parameter N, called efficiency and defined
correlators require an arithmetic processor per-

as follows:

forming the ianer product. Since the speed of

such processors affects mainly the bandwidrh  of 1

the signals which may be processed, a great deal n= a—; )
of attention has been devoted to the study of ef-~ t

ficient hardware implementations of  arithmetic A comparison with some arrays previously presen-
circuits performing signal correlation and non- re ted in the literature shows that the macrocellu-
cursive digital filtering. In particular,the works lar array is suitable for implementing inner pro
of De Mori2 and Peled and Liu’ regarding non-re- duct processors having an operating speed not
cursive digital filters should be mentioned. achievable using other implementations.
Actually, some integrated circuits performing the In section 2, the 2's complement multiplication
multiplication-addition function are available on algorithm and the internal structure of the ma-
the marketl; on the other and, the rapid develop- crocells are presented. In section 3, the pipe-
ment of the large scale (LSI) and very large scale liring scheme is described and formulas for eva-
integration (VLSI) technologies will enable to luating the arrays characteristics are derived.
put in a single chip arithmetic circuits faster In section 4, the arrays presented here are com-
and more complex than those actually available. pared with two analcgous arrays previously pre-
In this paper, a new arithmetic array, performing sented in the literature.

the inner product of twe vectors, 1is presented.
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2. Basic array
e "

The computations required for evaluating the in-
ner product of two vectors M elements long are
defined by the following formula:
M
S=I X Y (2)
p=1 P P

The equation (2) may be computed using the fol-
lowing recursive procedure:

S =§ +X Y p=l,...,M (3)
P p-1 P P
with
S =0 and §=s (4)
[¢] M
The arrays presented in this paper are able to
perform the calculation required by one step of
this procedure, so that the final result may be
iteratively computed, applying to the inputs M

pairs of operands at different time intervals.The
refore, the arrays must compute one signed multi-
plication and one addition with the previously ac
cumulated result.

In this paper, both the operands and the
results are represented

partial
2's
most

using the symmetric
is the
flexible and widely used number representation in
digital systems. Moreover, it assumed that both
the operands are represented using n bits, while
the partial and final results are expressed using
2n-1 bits.
Let (x , x
o

complement notation, because this

., d ST e b
Xp-1) an o, 7y Vo1 ¢

e n-1
the 2's complement resresentation of two factors

X and Y , respectively, the following relations
p p

hold:
n~1 .
-1
X ==x + I x, 2 = -xo + X (5.2)
p o |
i=1
n-1 .
-1 B
Y =-y + 1 y., 2 =~y + Y* (5.b)
P o i & 0
i-

where x and y are the sign bits (o for positive
o o

numbers and 1 for negative ones) and n-1 bits are
and Y™ The sign bit
is considered negative, so that the signed 2's com
plement representatior gives the actual value of

the number. Using this representation,the product

used for representing X*

208

of two numbers is given by the following formula:

XY =(~x +X*) (_y +Y*)= Xy -y X:r_x ¥ +X* Y *(6)
PP o o o"c "o o

From (6) it may be deduced that the product of two
signed numbers is obtained by multiplying two unsi
gned numbers X* and Y¥ , then the result is correc
ted using an additive term C, defined as follows:

C=xy x Y -y X¥=xy +C (7
0’0o o o oo 1

Since the 2's complement notation is used, the fol
lowing two equations also hold:

7l i +1
. o - - -n+l
~YF =271y 2+ 2 " (8.a)
i
1=1
n—-1 .
- -1 -n+]
- X" ==2"+ % x, 2 + 2 (8.b)
i
i=1

Hence the corrective term C1 defined in (7), is ex

pressed by:
n n
o -
C=—(x +y )2 + L Xy, 2 + 2z y x, 2 +
1 o o

n+l

(9)

+ (x +y ) 2“
oo

Since the magnitude of the factors and of the re-

sult is less than 1, we are not interested in eva-
luating the bits having a weight greater than 29
therefore the result of the signed multiplication

is given by the following formula:

n-1 .
. oow T -~ 0 - -1
KY=X" Y™ +/x y +(x Dy ) / 2+ xvy. 2 =+
0’0o o o' — . o1
1=1
n-1 .
- - -n+l -0+l
+ X y x, 2 +x 2 +y 2 (10)
. o1 o o
i=

The matrix of the elementary products, defined by
1,
The basic block of the multiplying subsct of

(10), is shown in Pig. for n=6.

the
inner-product arrays presented in this paper 1s &
cell (macrocell) bigger than a gated full-adder.The
macrocell performs the 2x2 bit full multiplicaticn.

With this choice, the number of cells in the array
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Fig.1l. Matrix of the elementary products geverated by the 2's complement multiplication algorithm.

decreases and the opera:ion speed increases, if
the macrocell and the gated full adder have the
same delay. On the other hand, the complexity of
2 macrocellular multiplying array is greater than
that of an array using gated full adders.

The basic block of a cellular multiplier is a mxm
full multiplier, that is a cell performing AB+C+
+D, where A,B,C and D are numbers expressed using
m bits (m < n).

A straightforward implementation of a 2x2 bit full
multiplier, using two gate levels, leads to an
expensive circuit, because the most significant
bits of the result produced depend on a large num
ber of input variables. The macrocell implementa-
tion used in this paper is represented by the
diagram shown in Fig. 2, where a cross represents
an elementary product of the matrix in Fig.1l, and
a dot represents an additive input or output. In
Fig. 2 the macrocell logic symbol is also shown.
It may be noted that the macrocell is partitioned
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Fig.2. Lonic symbol and diagram of the arithmetic
function performec by each macrocell.

into two independent arithmetic circuits: the first
one processes the least significant addends; the se
cond one processes the other addends. The carry ge
nerated from the first circuit in not passed to
the second one but is fed to a successive macrocell,
using an appropriate output.

The matrix of elementary products, shown in Fig.l,

is partitionned in several blocks; the blocks are
chosen so that only two pairs of factor bits appear
in each block. However, it may be noted that there is
no uniform rule for generating the elementary pro-
ducts appearing in each subset.

In fact, there are some blocks, where the factor
bits always appear uncomplemented, and there are
some other blocks, where some factor bit
complemented. Since each block of elementary pro-

appears

ducts must be generated by a macrocell, three ty
pes of macrocells must be used to perform the si-
gned multiplication.

The arithmetic functions defining the first type
(M1) are:

1 o o
2 2 = + + 2 11.
w1,2 +w0 (Vo u0 xi—lyj—l) ( 2)
: 1 2
w. 2 tw_ 2 +w 27=x,y.2 +(x. y.¥x.y., _+
3 , 173 i-1 73 i7j-1
+ + + 2 b
Vi, 0ty (11.5)

for i=2,4,..., n~2 and j=2,4,..., n-2.
The arithmetic functions defining the second type
(M2) are.

1
w 2 4w 2O=(x y. _+tu +v )2O (12.3a)
o 17i-1 o o

1,2
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(12.b)

with j=2,4,..., n-2; using this same cell and chan
ging the roles of the input factors, it is possi-

ble to generate the blocks, where the x, (i=1,...,
n-1) bits appear complemented. *

The third type of macrocell (M3) is defined by the
following pair of equations:

1 o o
2 4y 2% +u oty ) 2 13.
Wi,0 TR GGy e ) (13.2)
3 1 2 - -
27+ 2+ 2= 2+ + +u_+ +
yt iy 2wy 2TXY Ry r Xy
1 (13.b)
+ 2
vi,2)

In Fig.3 the whole array in shown, the signed mul-
tiplication is performed by the sub-array outside
of the dashed line. It should be noted that the
result of the signed multiplication is represented
using a redundant code. In fact, two bits are ge-

. 2t+1
nerated for every weight 2 (£=0,1,...)

greater than the weight of the least significant
bit of the product.

In order to obtain the result represented using
the 2's complement notation, the bits having the
same weight must be added.
so required by the equation (3), the array is pro-
vided with a final row of additive cells (A), per-
forming the sum of the previously accumulated re-

times

Since an addition is al

sult (expressed using the 2's complement notation),
and the result calculated by the multiplying sub-
array (expressed using the redundznt notation pre-
viously described). The additive row is shown in
Fig. 3, enclosed by the dashed lire. Fig. 4 shows
the logical symbol of the A cells and the dot dia-
gram, describing the arithmetic function performed.

3. Pipelined array characteristics

The pipeline technique is a useful tool for increa
sing the operating speed of a system, without a
drastic cost increase. In particular, this techni-
que gives better results, when the flow of data and
the operations performed in each section of the sy
stem are deterministic, as happens in the arithme-
tic circuits. Hence, in this section, several ar-
rays are presented; they are derived from the ar-
ray shown in Fig. 3 using different degrees of pi-
pelining, that is, the pipelined arrays considered
have a different number of cell levels (K) in each
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Fig.4. Logic symbol and dot diagram of the arithme
tic function performed by

cell.

each additive

stage in the pipe.

Fig.5 and Fig.6 show the Pipelined Macrocellular
Arrays (PMA), having K=1 and K=2, respectively.

It is worth noting that in both PMAs, shown inFig.
the
pipelining are placed only on the additive connec

5 and Fig.6, the memory elements required by

tions.Therefore, the last row of the multiplier
does not produce the product of a pair of factors
for each clock period. However, the final result
is correct. In fact, we are interested in compu-
ting only the final result, which is obtained sum
ming M matrices of elementary products, like that
shown in Fig. 1, disregarding the order of this
summation. In the PMAs considered here, when a
the
whole matrix of elementary products is generated
and it is added to the bits, stored in the memory

new pair of factors enters into the array,
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Maximally pipelined macrocellular
(K=1).

array

Fig.6. Pipelined macrocellular array having K=2.

elements, which have been obtained by the previo-
usly generated matrices. After M clock periods,
N-1 pairs of zero factors (N is the number of sta
ges in the pipe) are introduced into the array,

so that the bits stored in the memory elements,
required by the pipelining, are added to the ac-
cumulated number in order to obtain the correct
result. Using this latching scheme, a considera-
ble latch saving may be achieved.

The cost of a pipelined arithmetic array is obtai-
ned summing the cost of the unpipelined array, GC,
and the cost of the memcry elements required for

pipelining it,G1 Since the implementations, using

two gate levels, of the M1, M2, M3 and A macro
cells require 82, 83, 81 and 95 gates, respective
ly, the number of gates required for implementing

the pure combinational array, considered in this
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paper, is given by the following formula:

2
G =82 (n_-1) +2(n ~1) 81+83+2n =+ 95 (14)
c r r r
where n = r;/i}.
r
The number of gates required by the memory ele~-

ments is dependent on the implementation chosen.In
many previous works about pipelined arithmetic ar~
the Earle latch®
pipelining an arithmetic circuit. This latch may

rayss‘g, has been considered for
be implemented using 4 gates, on two gate levels.

The number of latches embedded in the array depends
on the value of K; the following formula gives the

value of the number of latches in a PMA for any va

lue of K:
N-1

Nl(K)=(2n—1)+ b £(d*K) (15)
d=1

where N= r-(an)/ﬁw + 1 and the function f is de-

fined as follows:

5n b =1

r
£(p) = D71 b =2 (16)
£(2)-2 b= 3
£(b=2)~5 5 > 3

Finally, the total number of gates required for im
plementing a PMA, for a given value of K, is:

G (K) =G + 4, N

T c 1 )

(17)

At the beginning of this section, it has been out-
lined that the calculation of the inmner product of
two vectors, M elements long, using the arrays pre
sented here, requires M clock periods, during which
the M pair of the vectors elements enter into the
array, plus N-1 clock periods required in order to
empty the pipe. Note that, given the particular
latching scheme adopted, the first result appears
on the outputs of the multiplying subarray before
the N-th clock period, as it happens in almost all
the pipelined systems. However each of such results
is not equal to any Si. Since each clock period in

a pipelined system cannot exceed the maximum delay
of a stage in the pipe, D, the total time required
for performing the calculations defined by (1) is:

T(M,K)= [M#N(K) -1 -D(K) (18)




The dependence of N on K has been previously shown.
The delay of a stage is K times the macrocell delay
plus the delay of the memory element placed at the

end of the stage. Assuming the single gate delay

as the time unit, the following equation gives the

value of T for any value of K:

TOLK) =] MeN(R)-1T] « (2K+2) (19)
Finally, the efficiency, of the arrays, n, may be
calculated, once the values of T and GT have been

computed, using the equations presented in this pa
per.
4. Array comparison

In this section, the formulas presented in the sec
tion 3 are used to compare the characteristics of

the arrays presented here with some results pre-
viously presented in the literature.
Fig. 7 shows the diagram of the total cost GT ver-

sus the number of bits used for representing the

vector elements. In this figure the curves for the
PMAs having K=1,2,
2

and for the implementation pro

posed in“ are drawn. It may be seen that the arrays
proposed here are cheaper than the De Mori array.
Furthermore, by wusing (14), -t is possible to
show that the difference between G, for K=1,
and G is small; this fact shows that the pipe-
linedcscheme presented in section 3 leads only to
a moderately increased cost compared with the un-
pipelined array.

Athough the cost of a PMA

is smaller than that of

ot

50000,
=1
40000, DEMOFI k=2
30000, !
/
/
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/
20000
10000,
18 24 32 « n

Fig.7. Total cost vs. the number of bits used for

representing the operands
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the De Mori array, the former is faster; in fa-t,

looking at Fig. 8 where the values of T are shown,
for n=32, it may be noted that the PMA obtained for
K=1 has a better operation time for all
tical values of M. As would be expected, the PMAs

the pra-

have higher values of the n; Fig. 9 shows the cur-—
ves of n versus M for n=32.

For K=1, PMA is more efficient than De Mori array
for all the pratical values of M; whereas, for K=2

"—\'0-‘_2? - 7—753 T |(I)3 7"7\50 ;
Fig.8. Operation time vs. the length of the two
vectors.
4
)
4
3
2 Jont
! .
DEMORI :::::::::::
—
——
\(172'0 o VV*VSB T 100 150 ﬁ
Fig.9. Efficiency vs. the length of the two victors.




and K=3, the PMAs give large advantages for M<100,
and they shcw small
Another implementatiorn, based on gated full ad-

disvantages for M > 100.

ders, of a correlator array (GFA) has been presen
tedA.
racteristics are:

The formulas giving the array cha-

11 n2+ 18 n + 3

G = (20)
N=2nN +2(N~1)-0.5KN (N ~1) (21)
1 a a a a
[2n-1]
N = + 1 22
A " (22)
T = (M+N ~1) (2K+2) (23)
a
It may be observed, from (23) and (19), that the

PMAs allow one to implament arrays faster than the
corresponding GFAS.The percentual time saving de-
creases when the value of M increases; hence, the
PMAs seem to be more suitable than GFAs for non

recursive digital filtering, which requires some

tens of multiplications, rather than for signal

correlation, which may require some hundred of
multiplications.
Fig. 10 shows the operation time T versus K of

the PMAs and GFAs, for n=32 and M=20. The PMAs
perform the inner product at a speed from 257 to
the
the

30% higher than the corresponding GFAs. On
other hand, the PMAs are more complex than
GFAs, as shown by Fig. 11.

T M=20 n=32 GFA.
400
PM.A.
L
ol //
e
2
200.
}//
100 |
>
1 2 3 4 5 s 7 k

Fig.10. Operation time vs. the pipelining degree
for GFAs and MPAs.
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Fig.1l. Total cost vs. the pipelining degree, for

GFAs and PMAs.

The curves of the efficiency versus the pipelining
degree are drawn in Fig. 12, for n=32 and M=20.
Both curves show a maximum value, the PMA reaches
the maximum efficiency for K=2 and the GFA for K=4;
these values are the optimum degrees of pipelining
for the two implementations, respectively.

However, if some constraint is imposed on the ope-
ration speed, the optimal implementation cannot be
derived from Fig. 1Z. For example, if T < 300 is
needed, from Fig. 10 it may be seen that only K=1

M=20 ne32
n
(0”)
2

//__—-\\‘\\\\\\\\\G£k
15

1 PM.A
os

1 2 3 K H [ 7 f

Fig.12. Efficiency vs. the pipelining degree for

GFAs and PMAs.




leads to an admissible implementation, using GFAs,
while the admissible set of implementation, using
PMAs, includes the values of K from 1 to 5. There-
fore, the optimal GFA implementation requires K=1
and the optimal PMA implementation requires K=2;
from Fig. 12 it may be seen that the optimal PMA
implementation is more efficient than the optimal
GFA implementation. On the other hand, the PMA ar-
ray is cheap enough to be implemented in a single
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