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Abstract

The paper presents g new iterative array,which per
forms the triangularization of adense matrix, using
the Givens rotation algorithm. Two slightly diffe-
rent arrays are presented: the first one

the factorization of a single matrix; the

performs

second
one performs the recursive triangularization. The
implementation of the cell in the array 1is based
on the on-line arithmetic, which allows us to obtain
high performances. Furthermore, the cell implemen~—
tation requires only three types of arithmetic
units (multiplication/addition, square root, divi-
sion) and shifrt registers for data buffering and
for generating the timing signals.

1. Intrcduction

Several numerical methods have been developed du-

ring the last few years regarding matrix triangula
rizations and the solution of linear systems of
algebraic equations. efforts

stable and accurate

In particular, many
have been made to obtain fast,
results with low-cost implementations. In order to
reach a satisfactory speedup, parallel processing
is necessary. On the other hand,stable and accurate
solutions of linear systems may be achieved by
triangularizing the matrix A of coefficients in
AXx = b, by means of the orthogonal
Sameh and Kuck 1,2 have proposed

algorithms which are well

The advent of VLSI technolcgy has shown

factorization.
some basic
that a
hardware implementation of complex sequences of
computations will soon be possible.From this point
of view, Kung and Leiserson have proposed 3 their
systolic arrays which carry out the L -~ U decompo~
sition and the triangular systemsolution;a highest
efficiency is also reached in this caseby carefully
pipelining data in the array.

structure which
the
trasfor-

In this paper we present a cellular
realizes the reduction of a N x N matrix A to
upper triangular form by means of Givens'
mations 4. Givens' rotations,in fact,maybe carried
out in parallel and lead to a higher stability in

the results. Our array may perform a single trian-
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gularization
In real time
a succession
before other

Or recursive triangularizations of A.
environments,suchas adaptive controls,
of reductions of A is often required
computations may start. When a new
data row is added to the previous factorized matrix,
a new triangularization is necessary. This may be
obtained by simply feeding our structure with data
rows as they are sampled by the physical system.

Modularity and regularity of communication paths
permit an easy implementation of the array even if
N is very large. Since the set of arithmetic opera
tions is heterogeneous, the on-1line arithmetic is
suitable for implementing  such an
array 5. In fact, it enables high
overlapping the operations at
the digit level. In section 2,

particularly
us to reach a
computational speed,
the algorithm imple
the
array is introduced and the operation mechanism is
presented. In section 3, the internal organization
of the cells in the array is that
on-line arithmetic is used for implementing them.
The formulas and graphics in section 4 the
advantages obtained using on-line arithmetic rather

mentation isg described, then the structure of

shown, assuming
show
than the conventional one.

2. Array structure and operation

We are interested in developing an efficient scheme
for implementing Givens' reduction method of a
matrix A of N2 elements. Generally, in fact,stable
solutions of dense systems of linear equations Ax=
=b, where A ¢ R ®¥ e obtained by triangulariza
tion of the matrix A, by means of orthogonal facto
rization tecniques. An efficient method for the re
duction of A to its upper triangular form is based
Let us consider

on Givens' transformations. two

general rows of A, with index i and i + 1 respecti

vely, for the annihilation of a . we have
1+1,1
a a, ... a. ’ s | a . a, ... a
1,1 %2 i,N ¢ i1 i2 iN

2

0

41,2 %1 n|| 7S CJ Fie1,1 41,2 %0 N

(2.1)




where

0. /2,2

%17 % (2.2a)
c=a, /P

i1 (2.2b)
= /o

%+1,1 (2.2¢)

P, ¢ and s are the basic parameters of the rotation.
With a suitable scheme of reductions it is possible

to annihilate every a,_ with i » j.-Givens ' transfor
ij =

mations, as is well known, lead to more accurate
solutions of Ax=b than Gaussian elimination - based
methods. Furthermore, rotations may easily be car-
ried out in parallel and are suitable for
operations.

Sameh and Kuck

on-line

1 have presented a carefully chosen

scheme for implementing parallel transformations

in the most efficient way. We shall introduce a
pipelined triangular array which achieves the
triangularization (or alternatively recursive tri-
angularizations) of A, by means of the Sameh and
Kuck algorithm. For this purpose, let us consider
the succession of computations involved in  every
plane rotation. A precedence graph for the opera—

tions required by an elementary Givens' transforma

tion is shown in Fig. 1.Itis obvious that products

Fig.l. Precedence granh basic Givens' rotation.
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and sums in (2.1) may be carried out in parallel
once the basic parameters of the rotation p, ¢ and
s have been computed, using (2.2 a, b, ¢).The whole
Givens' reduction may be obtained by employing a
linearly connected array of N cells, like that
shown in Fig. 2. The first cell (or "square root
cell") can compute p, ¢ and s in a time period qu.

Cells with numbers 2,... N or "multiplication cellg"
are able to carry out the product of a 2x2
U for a column vector of two elements.

matrix
In particu-
lar, the cell number j will calculate a,

. in
(2.1) by executing 141,
U[a.. cs||a,, a,,
ij ij ij
a = =1 . (2.3)
S 5 I A S ORI PO

in a time period T . On the whole,a plane rotation

will consist of the following logical steps:

a) Initialization: a, .'s for j=1,... N are
i+1,]
loaded in the array on figure 2 one for each
cell (a_+1 K is loaded in the cell number K)
L 3
f the 11 X 3
rom the line .
b) time

a,l enters the square root cell; after a

1

period T |, ¢ and s are available on lines X.
8q 1

and X_+1 of each multiplicationcel].Furthermorg
i

p has also been computed and has replaced a,+11
1 3

in the first cell.

Fig.2. A

Tire
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c) a, . '

ij
after a time period T , i ig available in the
1]

s, j=2,... N, enter the multiplication cells;

m
cell number i, while 3,
i+l,]
y..
i

appears on the line

For a more efficient use of the array, pipelining
must be employed. In this way, a further set of
bparameters p, ¢ and g may be determined while the

a .'s and the 3, s are computed.A more detailed
3 i+l,3

analysis of the operation of each kindof cell will
be given in section 3. Using several linearly con-
nected arrays we can build the orthogonally-conneg
ted structure shown in Fig. 3. Note that outputsyi
of each row of cells are tied to the inputs Xk of

the strictly subsequent group. In this situation
it is possible to triangularize a NxN matrix using
N (N-1)/2 - 1 cells (the square root cell in the
bottom row of Fig. 3 must be omitted). A recursive
triangularization of A, using N (N-1)/2 cells, may
be obtained also.

Let us examine the computing sequence for both cases.
Each data row enters the upper line of the array
and is transmitted downward, after it has been
modified. First of all, the aNj’S are introducedin

the upper cells, then the a 's, and  so on,

N~1,3
until the whole matrix A is exhausted. Cells belon
ging to the first row of the array annihilate the

a,l's; the second row annihilates the a,z's while
i i

T
T
T

7.7

~-~.- control signals
Fig.3. A triangular array for non-recursive and/or
recursive factorizations.

the cells in the last Tow are responsible for the
reduction of the aiN's when recursive triangulari-
zations of A are performed. Every group of cells
on the same line implements a Givens' rotation, in
a time period T which is the sum of qu and Tm.The

Sequence of the annihilation followed by the trian
gular array, when N=4 and a non recursive triangu-
larization is performed, is shown Fig. 4.Note that,
aij denotes the original value of the corresponding

element in the matrix A, while 4. represents the
11

result of the successive modifications of a, , per
ij -
formed by the cells in the array.

Each zero introduced during the time period T, is
marked with the integer i. While the O's appeéring
in Fig. 4 are those entered to empty the pipe.

On the whole, the entire reduction of A to the up-
per triangular form wmay be completed in 2 (N-1) ti

step 1 step 2 step 3
a1 %4 3 Ay 331 B3 B35 2y, %1 B By Ay,
a, a_ & &
- - Sa1 Paz Puy 2y, 31 %32 %33 8y,
- T - T - R
step 4 step & step 6
0o 0o ¢ o o o o o
11 %2 %13 4y
A v L 2z 3 o
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v e N e 3 v s
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Ay 2y A, 3 32 P33 %3, 22 %3 Py
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v
- -~ - - - - - - 2 4 aa3 a »
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Fig.4. Anpihilation sequence for the non-recursive
triangularization (N=4).




a, a, a, a,
me periods T. i1 i2 13 i4

Let us now consider the process of recursive trian ‘ ‘ l ‘

gularization of the matrix A (this is required,fo; 3 Py 3 3 2 3 3 3

instance, in adaptive controlsbased on LSQ me thods). 1-1,1 7i-1,2 7i-1,3 "i-1,4 11 12 13 14

After a transient condition, during which A is i1 ~ -~ - ) ~ ~
- 1

~
: . . .. a, a, a, a, a, a,
triangularized, using a scheme very similar to the i-2,2 7i-2,3 "i-2,4 i-1,2 "i-1,3 "i-1,4

previous one, a steady state is reached, where it

~ ~ ~ ~ ~

is necessary to annihilate only the subdiagonal 1-2 a1—3,2 a1-3,3 51—3,4 -1 ai—2,2 a1—2,3 a1—2,4
elements (aij's with i=j+1) at each data acquisi— . - . .
tion. This is summarized in Fig. 5. - e %i-a.3 %1-a,4 e ! %1-3,3 %1-3,4
When a new data row is obtained, N subdiagonal _ o ~ - ~
items must be annihilated; the whole procedure be- -4 -e ;3—5.3 ai—5,4 1-3 -1 ai—4,3 ai—4.4
comes recursive. It may be realized simply by fee-

ding the array continuously with data rows sampled 1-5 i-3 -1 51—6 4 i-4 i-2 1 ~1_5 4
at each time period. Moreover, as we said, the v '
lowest cell must also be employed to complete the i-6 i-4 i-2 51_7'4 i-5 i-3 i-1 31—6 4
structure as shown in Fig. 3: in fact, this cell '
is responsible for the annihilation of elements L l J l
belonging to the n-th column of the matrix. Note i-6 i-4 i-2 i

that the delay elements T inside the dotter line
of Fig. 3 are used for obtaining all the rows of
each triangularized matrix in parallel. Fig. 6 con
tains the steady state operation for the recursive

(a) (b)
Fig.6. a) initial condition of the i-th step of the
recursive triangularization.

triangularization when N=4; e ma trai W e L. .
& 3 one may straightway ve b) final condition of the i-th step of the

rlty'that t?e steady condition is reached after recursive triangularization.
2N time periods, then a factorization is completed
every T: in particular, during the period T.,, the N (N-1)/2 + (N-1)r - 1 cells are required for the
. .1 . . . .
computations started at T, N1 are terminated. We non-recursive operation, while the recursive method
i-

- ds N (K-1)/2 + N 1 ts.
have noted that the reduction of A = & X E)may be needs ( )/ roelements

obtained employing N (N-1)/2-1 cells, while recur—

. . . . . 3. Cell Implementation
sive factorizations require N (N-1)/2 cells; if we

consider the solution of Ax=bk, K=1,2...,r bk must The efficiency of the implementation of the array
B . . . presented in section 2 is strongly affected by the
also be updated, together with A.In this situation . . .
arithmetic algorithms and by the number representa
tion chosen. Using the classical number representa
tion (2's complement) and arithmetic algorithms®
and assuming a serial-parallel scheme, the imple —
mented array shows some drawback - First, the clas
sical algorithms for multiplication, square root
and division, do not process the bits of the serial

(:) <:> (:) <:> operand in the same order. This characteristic does

not allow one to overlap the operations performed

X X X X % 4 ¥ % by the arraY; for example, if the square root fol-
lows a multiplication, the latter operation cannot
start when only the first bit of the result produ-

~ ~ ~
X X X ced by former operation are available,hut
- - it is necessary to wait until the whole result of

X X the multiplication is produced before the square

root operation may begin. Hence,the pipelined array

X implemented using the conventional arithmetic has

a large latency time.
Moreover, when the system reaches its steady state,

the throughput is limited by the time required for

(Dentering element performing the slowest operation; in other words ,
X matrix element before the transformation

X matrix element after the transfcrmation
Fig.5. Recursive triangularization.

if the operands and the results are expressed using
n digits, the array presented in section 2 and im-
plemented using the conventional serial - parallel
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arithmetic cannot provide more than n digits every
2n clock cycles, since one multiplication requires
2n clock periods (including one period for the
initialization). Therefore the throughput obtained
is about one half of the maximum achievable.

Both drawbacks arising when the conventional arith

metic is used may be eliminated or lessened using
the on line arithmetic. In fact, one of the main
characteristics of the on-line algorithms is that

the operation is performed in a digitserial manner
from the most to the least significant digit; thus
many different operations may be pipelined at the
digit level, since each operation can begin as soon
as a few digit of the previous result become avai-
lable.

Furthermore, each on-line al
vide the n most significant

gorithm is able to pPro
digits of the result
using only n+8+1 clock periods, where § in the on-
line delay of the algorithm considered. The algo-
rithm for multiplication addition 7, square root 9
and division 9, show that the value of § is small,
In Fig. 7, the internal block diagram for the dia-
gonal cells in the array is shown.

The computation of p2 required by (2.2a) is perfor

med recursively, in fact, the value of a,+1 1
i+1,

equal to the value of p calculated in the previous
step of the algorithm; hence, the
value of 0% is the sum of the square values of the

is
at each step,
number previously entered in the cell.The entering

and the
is accumula-

number is stored in the A and B registers,
value of the previously calculated p?
ted in the C register.
the multiplication/addition block,
the symbol x/+,

Then the result produced by
indicated by
is passed to a block, marked by a
The output thus ob-
tained is used for computing (2.2b) and (2.2c);fq£
in the D register, since the

/T_performing the square root.

thermore it is stored

f

Internal structure of the square-root cell.

Fig.7.
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value of a],+1’1 in the

and s are fed to the other

actual value of p is the

next step. The outputs ¢
cells in the same row.

The internal structure of the cells performing the
calculations required by (2.3) is shown in Fig. 8.

The P register holds the value of one element of
the entering row, while the register holds one
of the results of the previous step, that is the

value a, .
1+1,3

are multiplication/addition networks.
In Fig. 7 and in Fig. 8, the paths indicated with
dashed lines are reserved for

The four arithmetic blocks in Fig.8

signal
which cause the parallel loading of the registers
and the reset of the arithmetic units. Note that
the loading of the P registers in the cells of Fig.
8 is delayed so that the operations begin when the
first digits of s and ¢ have been produced by the
diagonal cell. In Fig. 9, the time diagram of the

control ,

¥
Internal structure of the multiplication cell

Fig.8.

[y s

= —
3(\[ N I e .
£, i — N E—

& — —

1. — N a—

L.

Fig.9. Timing diagram of the operations of the

linearly-connected array.




is
shown. On each horizontal line, the output of one
arithmetic unit is represented. It may be

operations performed by the array in Fig. 2

noted
that there is a good overlap of the calculations,

even if the set of the operations performed is
heterogeneous.

4. Array Performance
In a pipelined system, the latency time and the

throughput are the two most interesting performan
ce indexes. In the array presentated here, the
latency time is also the operation time for the
non-recursive triangularization,while the throughput
determines the maximum frequency at which the re-
sults are provided, in the recursive triangulari-
zation. Using a radix r=2 for the redundant repre
sentation needed by the on-line algorithms, the
operation time for the non-recursive algorithm is
given by the following formula:

T =

2(N-1 +12) ¢
ol (N-1) (n+12) ol

(4.1)

where n is the number of digits used for the num~

ber representation and t _ is the clock period.
o

1
The steady state throughput of the array may easly
be derived from Fig. 9, and it is given by:

n

n+6

f 4,2
ol ( )

1
t

ol
Analogous equations may be derived, if the conven
tional arithmetic is used for implementing the ar
ray, using a serial-parallel scheme. In this lat-
ter case, the operation time is given by:
(4.3)

T =2 (N-1) (6n+6) t
c c

and the steady-state throughput for the recursive
triangularization is:

n
2n+1

f:

1 (4.4)
c t
c

where t 1is the clock period.
¢

A speed-up factor, due to the arithmetic implemen-
tation, for the non recursive triangularizationmay
be defined as follows:

(4.5)

In an analogous way, the speed up achieved for the
recursive triangularization may be defined as fol-

8 1€

20

lows:

(4.6)

The ratio t /t 1 depends on the relative speed of
c o

the two implementations.
The curves giving the speedup as a functionof the

precision required, assuming t =t _, are shown 1in
Fig. 10 for both

angularization.

. o} . .
recursive ana non-recursive tri—

The speed-up is always greater than 1; more speci-
fically, the better results are obtained for the
non-recursive triangularization, since the on-line
arithmetic produces a dramatic decrease of the la-
tency time of the array. In this case, the curve

the
array complexity, it is possible to design the on-
line arithmetic units so that t01 is from

in Fig. 10 shows that, in order to decrease

about
3 to 5 times greater than t and the overall speed
c

is about the same as for the conventional arithme-
tic implementation. Furthermcre, an implementation
using the conventional arithmetic would require com
plex units for data buffering. For example, in the
"square root" cell, between the multiplication/ad-
dition and the square root unit a double LIFO buf-
fer 2n-1 digit long must be placed.The LIFO buffer
is required since the resultof the multiplication
/addition is produced from the least to the most

significant digit, while the square root algorithm

processes the input number from the most to the
least significant digit. The double buffering is
required in order to allow overlapping of the two
operations. This fact increases the complexity of

the conventional arithmetic-based implementations.

recursive

T T T T

24 32 40

Fig.10. Speedup factor obtained using on-line

arithmetic.

o




On the other hand, the implementation presented
here, based on the on-line arithmetic, uses only
Shlft registers for data buffering and control si-

gnal transmission.

5. Conclusions

A new iterative array for matrix triangularization
is presented in this paper. It performs matrix fac
torization using the Givens algorithm, which assu-
res a good accuracy in the results obtained.

Two situations are considered leading to two
slightly different arrays. The first one deals
with the classical problem of the triangulariza—
tion of a single matrix. The second one is derived
from the problem arising in on-line system 1denti-
fication for adaptive controls. In this case a
recursive triangularization of dense matrix is re=-
quired. The arrays presented are also able to ope~
rate on an arbitrary number of loading vectors.
Since the set of the arithmetic operations perfor-
med by the array is heterogeneous, the cell imple-~
mentation based on the on-line arithmeticis chosen.
In fact, in this case, the on-line arithmetic al-
lows us to achieve large performance improvements
on an analogous implementation based on the classi
cal arithmetic algorithms. Furthermore, the de51gn
of cells is simple, since only shift registers are
required for data buffering and control signal di-
stribution.
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