CADAC:

AN ARITHMETIC UNIT FOR CLEAN

DECIMAL ARITHMETIC AND CONTROLLED PRECISION *

M. Cohen, V.C. Hamacher and T.E. Hull

Departments of Electrical Engineering and Computer Science
University of Toronto
Toronto, Ontario, Canada, M5S 1A4

ABSTRACT

This paper describes the design of an arithmetic
unit called CADAC (Clean Arithmetic with Decimal
base And Controlled Precision). A brief indication
of programming language specifications for carrying
out "ideal" floating-point arithmetic is given.
These specifications include detailed requirements
for precision control and exception handling at the
level of a programming language such as Fortran.
CADAC is an arithmetic unit which performs the four
floating-point operations add/subtract/multiply/
divide on decimal base numbers in accordance with
the language requirements. A thres-level pipeline
is used to overlap 2-digit-at-a-time ("double
digit") serial processing of the partial products/
remainders. Although the logic design is relative-
ly complex, the performance is efficient and the
advantages gained by implementing programmer-—
controlled precision directly in the hardware are
significant.

1. INTRODUCTION

There has recently been increased interest in
the detailed specification of floating-point arith-
metic {1]. The goal of such work is, or at least
should be, to make scientific computing convenient
from the point of view of the ultimate user. It
should be powerful and flexible enough, efficient,
and at the same time simple and easy to use. It is
therefore appropriate to begin by specifying the
needs of the user, and then determining the extent
to which these needs can be met, in an efficient
way, through the development of suitable software
and hardware. In this paper, we are especially
interested in the hardware implications of such an
approach.

One view of the user’'s needs in terms of pro-
gramming language specifications has been given in
[2]. Much of the motivation behind those proposals
was to provide the user with two techniques which
are not currently available in scientific program-
ming languages, but which would be very convenient
to have:

(1) The first requirement is to enable the user
to carry out intermediate stages of a calculation
in precisions which differ from that currently
being used in the program.

To consider one simple illustration, suppose
that x and y are two arrays, and that we wish to
calculate their dot product in higher precision in
order to reduce the cunulative effect of roundoff

* This research was partially supported by NSERC
(Canada) Grants A-5192 and A-0055.

CH1630-3/81/0000/0106$00.75 © 1981 IEEE

error. Here is an example of what might appear in
the program:

float(8) x(1:100), y(1:100), dotprod

begin precision(10)

float(10) temp

integer i

temp = 0

for i=1,2,...,100

temp = temp + x(i)*y(i)

end for

dotprod =
end begin

temp

The arrays x and y, and the result "dotprod", are
in precision 8, but the intermediate calculations
and the intermediate result "temp'" are all in pre-
cision 10. The begin-end block is known as a
precision block.

In some situations, it is desirable to increase
the range of the exponent as well as the precision
and the syntax can be extended in a simple way to
include this feature.

(2) The other requirement is to enable the user
to carry out one part of a calculation two or more
times in different precisions; for example, the
calculation could be carried out in higher and
higher precision until some error estimate becomes
small enough.

To illustrate this second capability, we consi-
der a program for solving a nonlinear equation
within some prescribed accuracy, say "tol". We
suppose that we have a procedure (such as Newton's
method) for finding an approximation to the solu-
tion. And we also suppose that we have a way of
determining a guaranteed bound on the error in an
approximate sclution, once that approximation has
been found. The following program outline shows
the essential features of what we have in mind:

initialize precision
flag = true
while (flag = true)
begin precision (p)
find approximate solution
find error bound
if bound £ tol
root = approximation
flag = false
end if
end begin
increase precision p
end while

106

Here, the precision block is executed repeatedly,
in higher and higher precision, until the error
requirement is satisfied,

The main implication of these two requirements,
as far as the hardware is concerned, is that the
precision of the data (which is concerned with
storage) be kept separate from the precision of the
operations carried out on the data (which is con-
cerned only with the arithmetic unit). By control-
led precision we mean to have control over both the
length of the significand and the range of the
exponent.

Besides the key ideas of having control
precision, and of separating the precision of the
data from the precision of the operations, it is
also desirable to satisfy several other require-
ments:

(1) The floating-point arithmetic should be per-
fect in some sense, and easy to remember;
normalized and properly rounded arithmetic
would be best (ties being broken by rounding
to the nearest even).

over the

(2)
(This requires provision of round up and
round down (algebraic) rounding modes.)
Interval arithmetic is needed, for example,
in the calculation of error bounds.
Comparisons should be done properly, so that,
for example, "IF (4 > B)" cannot cause over—
flow/underflow,

The most appropriate base is 10. This
avoids I/0 conversion errors; but, most
important, it makes matters much simpler for
the user.

Provision must be made for handling excep-
tions such as overflow, underflow, and zero-
divide.

One of the principle requirements of any design
is that the user knows exactly what to expect under
all circumstances. For example, the precision (of,
say, 8 decimal digits) should be exact, not "at
least' (8 decimal digits). The result after over—
flow or underflow should be the wraparound result
(which is probably the most useful result under
such circumstances - see, e.g., Sterbenz [3]).
Special values would also be needed for unassigned,
exact 0, infinity (i.e., A/0, A=0), and indetermin-
ate (e.g., 0/0). Hardware representations of these
special values would therefore be needed.

2. OVERVIEW OF CADAC OPERATION

The machine program view of CADAC is that it is
a single-accumulator arithmetic unit with a speci-~
fiable precision. A decimal, floating~point number
with declared precision is stored in the main
memory as a packed BCD string with a short header
that specifies sign, exponent, and length (preci-
sion of the significand).

Let us consider a typical sequence of operations
involving CADAC. Suppose the FORTRAN expression

(3)

4

(5

F=(B+C)/a

is to be evaluated. A machine language code
sequence corresponding to this expression is:

LOAD B
ADD C
DIV A
STORE F

Interval arithmetic should also be supported.

107

Suppose the precisions of the significands of A, B,
and C are declared to be 8 decimal digits, and the
significand precision of F is 6. 1If the current
significand precision of CADAC is 10, then the
above code executes as follows:

* the value in B is padded out with two zeroes
when it is loaded into the accumulator (ACC).

* the value in C is padded out with two zeroes
as it is moved from main memory into CADAC and
added to the contents of ACC, generating a
properly rounded 10-digit sum in ACC.

- the value from A is padded out when loaded
into CADAC where it is divided into the con-
tents of ACC, generating a rounded 10-digit
quotient,

+ the contents of ACC are rounded to 6 digits
and stored at location F in the main memory.

We are currently implementing a CADAC unit pro-

totype to be interfaced with a PDP-11/34 minicompu-
ter. A number of format details in the CADAC de-
sign to follow are thus influenced by the 16-bit
wordlength of the PDP-11 architecture. It should
be clear, however, that the design concepts gener-
alize easily to other machine evironments.

3. NUMBER REPRESENTATION

A main memory representation (suitable for a 16-
bit wordlength machine) for controlled-precision,
decimal, floating-point numbers is shown in Figure
1. The first word, termed the attribute, contains
the sign, extend flag, exponent, and significand
length descriptor. Succeeding words contain the
fractional, digit-normalized significand, low-
order digits first.

The exponent field, E, is a binary integer rang-
ing from 1 to 1023; and represents the true expo-
nent, E', in excess-512 notation. Therefore,

E'" = F - 512. We use the symmetric range -511 < E'
< 511, reserving E = Q to indicate exact 0 and
other special values, as described later.

The 4-bit length descriptor, L, is a binary
integer that ranges from 0 to 15 and specifies the
length of the significand as 2L + 2. Therefore,
the significand length ranges from 2 to 32 decimal
digits, in 2-digit increments.

A significand length of 2 to 32 digits, along
with a #511 exponent range is sufficient for prac-
tically all computational requirements. However, a
longer significand and/or exponent range may be
needed. This can be accommodated in an extended
representation, indicated by setting the X bit tol.
(It is 0 in the above standard representation). In
extended representation, a second attribute word is
used to contain the length descriptor and addition-
al exponent bits. The significant digits follow
this second attribute word.

Let us now consider the representation of the
special values: exact 0, unassigned, infinity, and
indeterminate. As mentioned earlier, this class of
values is indicated by an E = 0 field. Exact 0 is
represented by also setting S = 0. When S = 1
(with E = 0), the operand is either unassigned,
infinity, or indeterminate. These three conditions
are distinguished by the first digit of the signi~
ficand following the attribute word, labelled d

2142
in Figure 1. If this digit is hexadecimal E, then
the operand is unassigned; if it is hexadecimal F
the operand is indeterminate (0/0); and if it is
hexadecimal D the operand is infinity (A/0). When

a floating-point number is allocated to main memory,
its attribute word is loaded with the appropriate
L-field and X-field values. At this time, S = 1,

E = 0, and the leading digit of the significand is
set to hexadecimal E. A later assignment will
change the special value to a normal value.

4, THE ENVIRONMENT

CADAC is a single-accumulator arithmetic unit.
It performs operations based on opcodes and operand
addresses sent to its device input registers from
the host. CADAC moves numbers between main memory
and itself in DMA mode. A status register in CADAC
indicates exceptions that occur as a result of
instruction execution. This register can be read
by the host. A control register is available in
association with a maskable interrupt facility.
4.1 Precision
" The floating-point number precision, which is a
part of the main memory number representation, is
independent of the current precision of the CADAC
unit. Both significand precision and exponent
range of calculations can be specified for the
CADAC unit. In our main memory representation we
have allowed programmer-determined significand
precision. However, programmer-determined expo-
nent range has not been included in the number
representation. We feel that for most calcula-
tions exponent range control in CADAC is suffi-
cient. Independent exponent range checking of
main memory numbers can be done by host software.

Suppose that the CADAC unit is set to operate
with a given significand precision and exponent
range. A number loaded into the unit is auto-
matically rounded or padded to the current preci-
sion. If the exponent of the number exceeds the
current CADAC range, an overflow/underflow will
occur. When a result is returned to the main
memory, the number is rounded or padded to the
precision specified by the destination. Since
CADAC is a single accumulator machine, the high
level language statement X « X is translated to a
LOAD operation, with appropriate rounding or pad-
ding, followed by a STORE operation. By setting
the precision of the unit to some value less than
that of a number, we have a convenient method for
performing rounding. Thus we do not need a sepa-
rate ROUND instruction. 1In normal operation we
expect the precision of the unit to be greater
than or equal to the precision of the operands.
4.2 Rounding

CADAC performs proper rounding by implementing
"round to nearest or even". The unit supports
interval arithmetic with algebraic round up and
round down. In addition to these rounding modes,
CADAC also supports round up magnitude and round
down magnitude (truncation).
Rounding occurs frequently:
1) During alignment of operands.
2) After an operation (rounding of results).
3) When loading operands.
4) When storing results.

To properly support interval arithmetic, the
rounding mode must be a property of the operation,
not of the environment.

5. INSTRUCTION SET AND EXCEPTION HANDLING
5.1 Instructions:
This section introduces a basic instruction set
consisting of instructions for hardware control

108

and for basic arithmetic operations. Several

additional instructions are included to support

floating-point integer arithmetic. The instruc-
tion set consists of the following:

INIT: Initialize the unit and set the default
precision and exponent range. Reset the exception
flag. The default precision is 16 digits and the
default exponent range is *255. (This can be
doubled when calculating Euclidean Norm, etc.).

RESET: Reset the exception flags.

SET: Set the exponent range and significand
precision.

LOADADDR: The unit uses temporary storage areas in
the host main memory. These are required when
extended precision numbers are processed. The
starting addresses of these areas must be pro-
vided to the unit before extended precision pro-
cessing can be requested.

LOAD: Load the accumulator from main memory.
STORE: Store the accumulator in main memory.
ADD: Add from main memory.

SUB: Subtract the main memory operand from the

accumulator.

MUL: Multiply the accumulator bv the main memory
operand.

DIV: Divide the accumulator by the main memory
operand.

NEG: Change
lator.

FLOOR: Load the accumulator with the largest
floating point integer less than or equal to the
current contents of the accumulator. This oper-
ation can generate an underflow exception.

CEIL: Load the accumulator with the smallest
integer greater than or equal to the current
contents of the accumulator. This operation can
generate an overflow exception.

COMPARE: Sets the condition code from the result
of subtracting from the accumulator the number
whose address follows (if the signs are the same)
This operation is similar to subtraction except
that underflow/overflow exceptions will not

the sign of the number in the accumu-

occur. The accumulator is unaltered. If the
operand signs differ, the subtraction is not
required.

5.2 Tloating-Point Integers

Our floating-point (FP) number representation
can be used to represent large integers. These
can be generated by the host or by the FLOOR or
CEIL operations. The condition for a FP number to
be an integer is

1=LENGTH
LENGTH > EXPONENT AND) DICIT, = 0
i=EXP+1 *

OR
LENGTH = EXPONENT

where DIGIT1 is the most significant digit of the

significand. 1If it is known that a number is a FP
integer, the programmer can test for a rounding
"error". This can occur during anv rounding
operation.
5.3 Exception Handling

A number of exception conditions are detected.
They are indicated by setting appropriate bits in
the status register. An exception condition can
generate an interrupt if its corresponding bit in

the control register is set, and interrupts are
enabled. The status register can always be read
after an operation to determine if an exception
occurred. The following exceptions are imple~
mented:

1) OVERFLOW: This flag is set if exponent over-
flow or a zero-divide error occurred. Let us con-
sider the results of exponent overflow. If the

exponent range is < %511, the result of an addition

may still be correctly representad in the machine
and can be correctly stored in the destination.

If the exponent range was %511 during the opera-
tion, the wraparound result will be stored in the
accumulator. Now consider multiplication. If the
exponent range is < *255, the result of an opera-
tion will be correctly represented. Otherwise the
wraparound result will be stored in ACC. An over-
flow can also occur when CADAC is loaded with a
number whose exponent exceeds the current exponent
range of the unit. This situation should be
avoided.

6.1 Operation of the Pipeline

To understand the operation of the pipeline,
consider the multiplication of 2-digit numbers,

a3, x blbO’ as illustrated in Figure 2. Four 2-
X b X b,

digit product terms are required, a, 0’ a1 0

a. x b, and a In the pipeline, these are

0 1 1
obtained in parallel from lookup tables. Now note
the significance of the 2-digit product pairs.
Pairs a; X bO and a, x bl have the same signifi-

b4 bl.

cance. The least significant (even) and most sig-
nificant (odd) digits of these pairs are added
together in parallel with two BCD ALUs. The even
sum digit is added to the most significant digit

of a, X bO. Similarly, the odd sum digit is added

to the least significant digit of a, x bl' These
two additions are done in parallel. A 4-digit
product is obtained.

Now consider how the pipeline would multiply

If the overflow exception was caused by a zero-
divide error, the infinity code will be stored in

a3azalao X blbo. In the first cycle the pipeline

the accumulator if the numerator was non-zero, and produces a1 aO ® bl bO = 0L3 %y % 0LO - In the
. . . . 0 0 0 0

the indeterminate code will be stored if the numer- . . _

ator was zero. second cycle the pipeline produces ag a, X bl bO =
We recall at this time that overflow can also ay Gy oy %y - Now the digit pairs a3 oy and

occur when a result is returned to main memory. 1 1 1 1 0 0

However, the exponent range of the number is not al %y have the same significance and must be

stored with the number and so overflow on a store 1 1

operation cannot be detected by CADAC. Overflow added together in the pipeline. In general, the

can be checked easily by the software. The only digit pairs a, « emerge from the pipe. The

overflow on a store that is detected by the unit is li Oi

the case of storing an extended exponent range pairs a o are fed back to be added to

number in a non-extended destination. Overflow is 31 21
set if the exponent of the result is > +511. oy %4 .
2) UNDERFLOW: Underflow is handled similar to i+l i+l

overflow. Note that the wraparound result is
always stored; it is never replaced with a true
zero. 1 0 °
3) ILLEGAL OPERATION: This flag is set when the i i
unit attempts to operate on an unassigned, indeter- product is fed into the pipe in pairs 131
minate, or infinity operand, The indeterminate
code is stored.

4) NOT EXACT: This flag is set whenever a round-
ing error occurs. If FP integer numbers are
involved in an operation, any rounding operation
produces an error. The rounded result is returned. i

6. THE PIPELINE digit of al X bl. Call this digit a'l

CADAC uses a hardware multiplier to achieve i
high performance. The multiplier includes a 3- be added to the ey column during cycle i+1.
stage pipeline running at 10 Mhz. This pipeline
will multiply two 32-digit significands in about
30 us. The design chosen for the multiplier unit
uses BCD ALUs in a 2-digit x 2-digit structure.
This structure multiplies 2 multiplicand digits by

The pipe must also add the previous partial
product, generated with the previous multiplier
digit pair, to the pairs a o1 This partial

po. The
complete set of additions performed in the pipe is
illustrated in Figure 3. The 8 required additions
are indicated with brackets.

The 3-stage pipeline is designed with as much
parallelism as possible. Note that g is the odd

It must

It can

be added to any of the digits in that column at any
convenient time. It is most opportune to add it to
Py in the first stage of the pipeline as illus-

trated by the bracket labelled 1 in Figure 3. Note

2 multiplier digits and adds overlapped digits to that a, consists of three terms, of which one is
produce 2 digits of partial product and 2 over- i

lapped digits that are internally fed back. The the even digit of a; x bl. Call this digit bl'-
first cycle produces 2 final product digits and 2 i

overlapped digits. All the multiplication is done
in digit pairs and does not require shifting during parallel with the addition of a'
product formation. 1
The pipe requires 17 x 16 + 4 iterations to

multiply two 32-digit significands. At 10 Mhz this
takes 28 us. It does not appear to be cost-effec- bO and a5 ¥ bl can be added together.
tive to increase the level of parallelism employed
in the above design.

It can be added to the aO column of cycle i + 1 in

i
In the second stage of the pipe the terms al X

We can also

add together the a, X bO term and Py Py (to which

109

a' X b' have already been added).

1, .
i-1 i-1
We now consider the final stage of the pipe.

The odd digit of ao X b0 (to which other terms have

now been added) can be added to the even digit of

+ . - . +
a; x bO, ao b4 b1 And lastly, the odd digit of

1 X Bt agx by
the remaining component of o

a from the previous cycle, which is

, can now be added

2,
E i-1
torﬁhe least significant column.
#“The' complete pipeline structure is illustrated
in"Figure 4 and its interconnection with the other
components of CADAC is shown in Figure 5. The
inputs to the pipeline are:

1) the multiplier in Rll’ R12"

2) the multiplicand in RlB’ R]4.
3) the previous partial product in].?Lx R

]_,
denoted R .
X

x2’

The outputs from the pipeline are and R

Ri1 42°

Clearly all operations are performed with the
least significant digit pair first. This is the
reason that significands are stored least signifi-
cant digit first. (Since we have decided to repre~
sent true zero by a special code, and not by a zero
most significant digit, this storage arrangement
poses no difficulty in zero detection).

7. MEMORY REQUIREMENTS
7.1 Partial Product Storage (PROD)

The partial product digits emerging from the
pipe must be bufferred and fed back into the pipe
at the appropriate time. A dual port memory, PROD,
with 32-digit capacity, is used for this purpose.
With this device a new partial product can be
written into one port while the cld partial pro-
duct 1s read from the other. Separate counters are
used to supply addresses to the two ports. See
Figure 5.

7.2. Operand Storage

To complement the 32 digit limit, we choose an
accumulator (ACC) size of 32 digits. The second
operand of an operation (OP2) is also stored. If
a significand extends beyond 32 digits, it is not
stored in CADAC but is buffered in main memory, in
areas allocated to the unit. Regions are required
for storing (1) the accumulator, (2) the second
operand, and (3) the partial product. Data is
loaded into the machine and written back in blocks
of 32 digits as required by a calculation.

8. STANDARD (NON-EXTENDED) ARITHMETIC

8.1 Multiplication

We will consider the multiplication process in
detail since the pipe has been optimized for this
operation, See Figure 5 while following this dis-
cussion. Consider the multiplication of two 32-
digit numbers. The first multiplier pair is loaded
into registers R11 and R12' Now 16 pairs of

multiplicand digits are loaded into R

13 @d Ry,

while partial product pairs appear at registers
R and R,,. A zero is now loaded into R13, R

41 42 14
to obtain the 17th product pair. Of these 17
pairs, the first is a final product pair and the
others are partial product pairs (stored in the

dual port memory PROD).

110

If we required a 64-digit final product, the
final product pairs would be written into an addi-
tional 32-digit memory. However, all we require
is a properly rounded 32-digit result. This
requires the storage of a guard digit and the pro-
vision of a sticky bit. We provide a register (CD)
to store a pair of potential guard digits. During
the multiplication process, the first product pair
produced is written to GD and the others are writ-
ten to PROD.

While the the

zero is loaded into HIB, Rl&’

next multiplier pair is loaded into Rll’ qu.

This process is repeated until all digit pairs

have been processed. Zeroes dre now fed into R]},

until the pipe is flushed. There will now be

R4
a 32-digit product and a pair of digits in ¢D. [f
the most significant product digit is non-zero,
the odd digit in GD is the guard digit and is used
for rounding. If the most significant product
digit is zero, the product is normalized bv shiflt-
ing left, with the odd digit in GD becoming the
least significant product digit. The cven digit in
GD becomes the guard digit and is used for round-
ing.

Typical execution times for all four arithmetic
operations are shown in Table 1.
8.2 Division
" Division is more complex than multiplication.
We provide only an overview here. A straightfor-
ward long-division implementation is used. A PROM
lookup table is used to estimate the successive
quotient digits, by considering the first divisor
digit and the first two partial remainder digits.
The division process can be described as follows.
The first quotient estimate is loaded into Rll’

is written

with R The dividend

12
into PROD.

set to zero.
Now divisor pairs are loaded into Rli’

R14 where they are multiplied by the quotient, and

subtracted from the dividend pairs (fed into Rx)<

The partial remainder (PR) is stored in PROD. If
the PR is negative, the quotient estimate is
decremented and the divisor is added to the PR.
This is repeated until the PR is positive. The
quotient digit is written to ACC and the entirc
process repeated. One extra quotient digit is
generated for a guard digit and the final remain-
der determines whether or not the sticky bit is
set.
8.3 Addition/Subtraction

We will not discuss these operations in any
detail. They are sequenced through part of the
hardware described above for multiplication in a
reasonably straightforward fashion. TFor both add
and subtract instructions on signed operands, a
true subtract may be required. The minuend and
subtrahend are chosen so that the difference will
most likely be positive. If the difference is
negative (10's complement), another pass through
the ALUs is required to complement the result.

9. EXTENDED PRECISION ARITHMETIC
Extended precision arithmetic presents some
problems not previously encountered. Most impor-
tant we discover that the overlapped reading and
writing of PROD during multiplication is mnot pos-

sible since the pairs involved may be in different
blocks of 32 digits. Two separate RAMs are
required. As before, we use PROD to contain the
new partial product pairs, However, we add another
RAM, which we call AUX, to hold the previous par-
tial product. Arithmetic in extended precision is
no different than before except that blocks of 32
digits are fetched from the host and written back
as required.

10, CONTROL
So far we have not discussed the control of

iv) . trailing zero counts
v) other
4) control logic
The 2910 usequence controller addresses up to
4K words of ucode. It requires a 12-bit branch
address field in the pcode word. This field can
also be used to provide constants for the 2903s or
for the pipeline, -1f required.

REFERENCES
[1] "The Proposed IEEE Floating-Point Standard',
four articles in COMPUTER, Vol, 14, No. 3,

CADAC. The system uses an AMD 2910 psequence March 1981.)
controller and three 2903 4-bit ALU slices. The [2] Hull, T.E., "Desirable Floating-Point Arithme-
2903s are used for: tic and Elementary Functions for Numerical
1) exponent arithmetic Computation”, Proceedings of 4th Symposium on
2) length calculation and handling Computer Arithmetic, pp. 63-69, IEEE Publ. No.
3) provision of 12 bit registers to hold 78CH1412-6C, Santa Monica, California, October,
i) exponent limit 1978,
ii) precision [3] Sterbenz, P.H., Floating-Point Computation,
iii) operand lengths Frentice-Hall, Englewood Cliffs, N.J., 1974.
Sign S Length dfscriptor
Table 1. Typical execution times* (usec.) Extend
flag Exponent
E
DIGITS : 8 14 24 32 P
ADD/SUB 6+6 7+8 10-3 12-3 Lo 9910 o e e d, d)
MULT 4.1 7.7 18-2 29+6
R Lo N 4 - 4+ .,
DIV 20-3 39-9 46:2 131-0 Attribute Significand
Figure 1. Standard floating-point number representation.
*execution times do not include operand fetching.
a, q, °
X b b ®
k) % stage k
A, x b, a, ® ge
a,x b, a
3
QQ X b1 — r
c — operands from
Q1X b1 Q‘ X b‘ previous cycle (i-1)
<:x<3 =44 c~<1 =, l l o
A KRR p
combine with
next cycle (i+l1) O<2.
operands A=A

Figure 2. A 2x2 multiply operation.

<><31 <’<2_i £ C’QO.

b

Figure 3. Pipeline stage operations.

111

MULTIPLICAND MULTIPLIER PARTIAL PRODUCT
digit pair digit pair digit pair
7 —N— \ r A R s A— N 3
L Ry | [Ry | R\IJ LR“_] [(Rez | [Rx
o= — —_—
. = N+
E
2 r ¥ Ic F 0T S 1k, >Stage
A B A @
Rom . RoMy: Rom Ro™ A A
Y 1}
1] He Hs e
[Rae] [Ras] ,o[Rae] [Raa][{l[Raa] [Rer]
= 4 ms —J s Tl il
VB 4ms 8 A B AL gS%e
Alﬁ' ‘L\IB /\'LZ Al\ /
7
F¥ ’]
[Ray | L Ras J{[Z] [(Raz Ra
—
3 Stage
A A
N N4 ©)
/
RQS {""’[R"rl Rﬁ’\ I Figure 4. Pipeline orgunization.
- 1
Te PROD, AUX, & Gb
HosT .
INTERFACE RAM ¢xi8
D 78
IIA @l o 1z
TRANS. TRANS. =7 To Control tus
DATABUS LFa 8 ’
I T
l RDVSR l RbvbND
b= =3
- k3
PROM l
&
6 D
vﬁ M
LR,z I er] 3'
) B "‘:E'___”
[-
! PIPELINE e
Hé) dataflon paths.
Ry1,Ry2
e I3 . &
~13 i Hs = 3
PROD AUX
s [1 He e
£
J LL B 9 Ve
1 —'Jmuy
Rx1
Rxz.

1i2

