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Abstract

The algorithms used for elementary functions
on the FPS-164 array processor are descr:bed. In
each case, the choice of the algorithm depends on
the parallel hardware, the capability of the in-
struction word, and the precision desired. For
some, the choice depends on the version - either
scalar or vector. Algorithms for the divide,
square root, cosine/sine, exponential, and
logarithm are discussed. Those for arctangent,
tangent, arc-cosine/sine, cosh, sinh, and tanh
are summarized.

Introduction

The FPS-164 array processor is designed to
solve the many scientific problems that demand
high’ throughput, high precision, and large data
memories. In order to facilitate the task, there
is a camplete library of scalar elementary or
intrinsic functions as well as an extensive library
of basic vector routines. The algorithms used for
the intrinsic functions are discussed as to how
they fill the above needs.

Parallel Processing

The schematic of the FPS-164 architecture is
shown in figure 1. In additior. to the I/0 pro—
cessors and the program cache, there are eight
separate synchronous units that can operate in
parallel; they are main data memory, table memory,
X and Y data pad registers, address or integer
wit, floating adder, floating multiplier, and pro-
gram execution control (i,e. branch). The clock
cycle time is 167 nsec.

High throughput on the FPS~164 is achieved by
parallel hardware camplemented by parallel software.
A 64 bit instruction word, illustrated in figure 2,
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allows almost camplete parallel control over the
hardvare units. This can be understood by com-
paring figures 1 and 2. EBEoth reads and writes can
be made simultaneously to the X and Y data pad
registers. With a clock cycle time of 167 nsec
and all the possibilities allowed, one
instruction can contain up to 10 operations giving
60 million operations per second. Several of

the operations take more than one cycle but these
are pipelined. The memory unit has 3 stages,

the floating adder has 2 stages and floating
multiplier has 3 stages; in each of these units,
a new operation may be initiated every cycle.
When maximum use is made of the floating adder
and floating multiplier, there are 12 million
floating point operation per second (12 mega-
flops).

Precision

In order to accomodate the high precision
required, the data word ccnsists of 64 bits, 53
in the mantissa and 11 in the exponent. See
figure 3. This provides 15-16 decimal digits of
precision in the mantissa and a dynamic range of

approximately lOiJOB. The mantissa is normalized

to a fraction F with the radix point immediately
following the sign bit and to the left of the
representation of F with the sign bit and the
rost significant bit opposite such that 1¢Fel
2
for positive values or -1«F<«-1 for negative
2

values. The mantissa is expressed in 2's com-
plement notation and the exponent uses excess
(bias) notation. The 64 bit data word is main-
tained in the registers, the floating point
arithmetic units, data bus and data memories.
The low end of the mantissa is extended to three
guard bits which are used for even rounding.

Algorithm Choice

The algorithms used for the intrinsic func-
tions are designed to optimize the parallelism
and precision of the processor making efficient
tradeoffs when necessary. Taylor's method was
chosen over Newton's iterative method for both
the scalar divide and square root. The iterative
method must wait for one intermediate result be-
fore it can calculate the next and so is not
appropriate for scalar routines in a parallel
pipeline processor. On the other hand, the
Taylor's method allows several operations to occur
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Figure 3
FPS-164 Data Word
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simultaneously. The vector routines do benefit

from the fewer operations in Newton's method.

Divide Algorithm

The full precision scalar floating point divide,
called RDIV, is done in software in 23 cycles.
RDIV of Y/X begins with a reciprocal lookup fram a
256 value table (residing in table memory, TMRCOM)
of the most significant 8 bits of the fraction F
where

X = F*ZE.

F = 74R,

where Z contains the first 8 bits and R contains
the remainder. The table lockup gives the inverse,

TI = ];
2
Then
v/X = v/ma2b = va2 F o (v/2) 52" = TTavs2E =
7R 1+R/Z T+TT*E
-E
¥/X = TI*xyx2
I+A

where A = TIxR.

The Taylor expansion (1+A)71 is carried out

through' the A7 term. The error due to cut off of

the series is bounded by AB. The reciprocal of a
fraction between 1 and 1 gives values
2

1< TI«< 2.

The largest value of the remainder is 2_8. Thus

the largest value of 4 is 2_7 giving

a% ot

an insignificant number in a 53 bit fraction. The
Taylor expansion gives

3 4 5 6 7

W) a1 oa+a? o a3t AY +a” - a'.
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In this form, the polynomial requires 6 multiplies

and 7 adds. This is also the situation when
written as
(148) 7L = 1A (1-A (1A (1-A11-A (1-A (1-2) ) ) ))

In fact, this representation is the worst for a
parallel processor because each operation waits on
the results of the previous one. Happily, a
factorization as

1

- 4
(14+2) =

(1-81+2a9a+ah

may be implemented in 4 floating nultiplies and

3 floating adds and, in addition, operations may
be performed in parallel. The entire algorithm
contains 8 floating multiplies and 6 floating adds.
By producing software that makes use of the hard-
ware's parallel and pipeline structure, the routine
is coded for optimum speed.

The parallelism of the computer can be more
fully realized in a vector routine such as the
vector divide which produces a result every 7 cycles.
The vector divide, called VDIV, for Y/X uses
Newton's interactive method as follows:

R

f

FRECIP X (floating point approximation

0 to 1/X)
Ry = ROx (2.0-RO*X)
R, = R1*(2.0-R1%¥)
Ry = R2x (2.0-R2+X)
Y/X = VxR,

The opcode FRECIP {located in the floating add
group) gives an approximation of 8 bits precision
to the reciprocal. It differs fram the approxi-
mation used in RDIV in that the table is software
transparent, it includes both the exponent and
mantissa, and it is an approximation where the bits
after the most significant eight are all zeros. In
addition, if the operand of FRECIP is zero, an in-
terrupt bit is set in the status register; in fact,
it is used in the scalar divide for this reason
only and not for the approximation given. Because
the convergence of the method is quadratic, the
number of significant bits doubles with each
approximation. The initial value RO has 8 bits of

precision giving the final value 64 bits of pre-
cision. The three iteraticns show that this method
is not suitable for a scalar routine because one
iteration must wait for the result from the pre-
vious one and thus the algorithm allows no parallel
or pipeline instructions. However, this algorithm
contains only 7 floating multiplies and 4 floating
adds and is more suitable for vecterization than
the Taylor's method. 1In a vector routine, floating
adds and multiplies of one vector help fill the
pipeline of those for another vector. Wwhen the
algorithm is applied to a vector

Yi/Xi i =1,2,...N

different phases of the calculation are goinag on
simultaneously for several input vectors.




Figure 4 Vector Divide Loop

Vector Divide Loop

1 2 3 4 5 6
The Vector Divide Y/X pro-
ADD ADD ‘MULT MUILT MULT
duces a result every 7 cycles. ush
Simultaneously, 6 vector FRECIP X push push RyxX 3

elements are being processed. 1 (=1-) N R0
The memory ferch pipline is X
at least 3 cycles, the MULT
pipeline is 3 cycles and the

ADD pipeline is 2 cycles. ADD MILT MULT MLT ADD
Only one ADD or MULT can be push R = (_ZvRO*X) push push save R,
initiated in each cycle; 2 save X in in adder
the ADD and MULT "pushes" data pad = Rl R_+0
are supplied by the corres— 3
ponding initiation on an-
other element. In this ex- MULT MULT ADD MULT ADD
ample, several inter- Ry*X push  2-R1.X push push
mediate results are saved in 3 Fetch
the ADDER because of data next ¥
pad and/or data bus conflicts.
I tﬁe 1a‘13’;er are included MULT MULT ADD ADD MULT |
in the tally, an ADD is ush ush ush 2-R_4X Y+R.
initiated in all by one cycle P P P 2* 3
and a MULT is initiated in 4 = ¥/X
every cycle giving 11.2
megaflops.
Fetch MuLT ADD MULT ADD MULT
next push save Rl R1x {2~R1+X) push push
5 X in adder = R
R1+0 2
ADD ADD MULT MULT MULT
2-R_ WX push push R_x (2=-R_xx] push
6 0 2 2
y in dataj}pad
MULT MULT MULT Store
R, X push push Y/X
7 1
The actual routine illus=trated in figure 4 con- where TS is the square root table lockup
sists of a 7 cycle loop with 6 colums indicating approximation and A = TI#R as before. The address
that € input vectors are being processed simal- for the table is given by the same 8 significant
taneously. bits used for the divide table. Because only
positive operands are considered, the table con-
Square Root Algorithm sists of only 128 values. The Taylor expansion
with B = A/2 is
The technique followed for the square root is " 2 3 4 5 6
similar to that for the divide whers Taylor's (I4A)*=1+B-B +B - 5B + 7B - 2l B
method is used for the scalar version and Newton's 2 2 8 8 16
method is used for the vector version. The scalar
square root, called SQRT, consists of a software with the cut off error bounded by the first term
table look and a Taylor series carried out to the 7
6th power of the variable as follows omitted is given by 33 B7. As
L % Y y ~7
Xy = (F*ZE) ‘= ZE/Z*(z-rR) ‘= 2E/‘!*z;5* (l+R/Z);5 before Ag¢?2
/ -8
E/2 " =7
= 27 4TSx (142) * for even E B=afs2

7 =55
% L
2E/2*(2) TS+ (14A) 2 for odd E and so 33 B« 2

16
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which is insignificant with a 53 bit mantissa. If

the series is written as

21

B}))))

1+ B(1-B(-B( - B(

_B(Z_
2 2 8

5
B

—
N

there are 6 floating multiplies and 6 floating adds
but, as before, this representation is not suitable
for parallel processors. Although the representa-
tion
1+8+8% <1+18) +8% (<5+78- 2189
2 2 k3 16

8

0] <2

requires 7 floating multiplies and 6 floating adds,
it can be handled more efficiently in a parallel
processor. The entire routine has 11 floating

multiplies and 12 floating adds and takes 28 cycles.

The vector square root using Newton's
method with 3 iterations produces a result every

11 cycles. The algorithm is as follows
A = FRSQRT X {floating point approximation
0 5 to 1/X%)
Al = A_O *(3.0--A0 *X)
2 2
A, = Zi *(3.0—-Al* X)
2
A, = (3.0-2,24x)
3 = i *(3.0-2,
2
%
X = X*A3

This contains 10 floating multiplies and 7
floating adds which is less than that required in
the scalar version. The loop takes 11 cycles and
has 5 colums. The opcode FRSQRT (located as is
FRECIP in the floating add group) gives an
approximation of 8 bits precision with exponent
and trailing zeros to the reciprocal of the square
root. If the operand is negative, an interrupt
bit is set in the status register and for this pur-
pose only, it is used in the scalar routine. For
an operand of zero, FRECIP gives a finite result

such that X*A?) is zero.
Cosine and Sine Algorithm

The cosine and sine is also evaluated by a
table lockup and interpolation. In fact, of the
three large table read only memories, the cosine/
sine is the largest, consisting of 4096 values be-
tween 0 and %/2. In this case, the scalar and
vector routines use the same algorithm. The
cosine/sine table forms the foundation of the Fast
Fourier Transform routines used for signal and
image processing. Here, the argle in radians is
scaled by 4096

T/2
to its normalized value, X
/2
the 12 lowest bits of the nearest integer is taken
as the table address in the quadrant. The next
two higher bits denote the quadrant. The remain-
ing higher bits are ignored. 1In this manner, the

* 4096, fram which
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table accomodates angles without losing precision
in modulo 2T and also negative values (2's com
plement notation). The table gives both the
cosine and sine in the following manner. The
table address is multiplied by two by left shifting
with zero fill in the low bit. The low bit then
designates either the cosine or sine table such
that two adjacent values of the table address point
consecutively to the cosire and sine of the same
angle. A bit called the FFT bit is set in the
status register so that the hardware interprets an
increment in the cosine table address to give the
sine address of the same angle.

The interpolation giving the cosine and sine
is given by the trigonometric identities

COS (T) #COS (D) -SIN(T) «SIN(D)
SIN (T)*COS (D) +COS (T) #SIN (D)

Cos (X) =
SIN (X)

COs (T4D)
SIN (T+D)

where T is the integer part of the angle used for
the table address and D is the fractional difference

in radians. Values of COS(D) and SIN(D) are
approximated by the Taylor series
cos () = 1 - p?
27
3
SIN D) = D-D
37
where the maximum error is given by the maximum value
D= 2‘12 in the first term amitted as
4 -48 _ _-52
Q.AJ:LTE_ =2
4t 2

close to the precision of the processor. The
scalar cosine is evaluated in 30 cycles and the
scalar sine in 32 cycles. The vector routines
produce a result every 8 cycles.

Exponential and Logarithmic Algorithms

The exponential and logarithmic functions are

outlined as follows.
by the following.

. X . .
The exponential e is given

et 2¥ = X

then Y = X*DOG2 (e)

If Y =1+ FR where I = integer part
FR = fraction part

then oY = pTHFR _ T FR

where 2% is calculated by a polynamial of degree
11. The coefficients of the polynamial are given
in the University of Chicago notes. 1 The
scalar version takes 32 cycles and the vector
version produces a result every 18 cycles.

The logarithmic function is given by the
following algorithm.




vy o By -
IOGe()n) = I_OGe(F*Z ) = IO(_-ye(F) + E*LOGe (2)

LOGe(F) + E*IOGe(2) + %.[OGe(2) - 1§LOGe (2)

= (E -~ %)*Loce(z) + LOGe (SQRT (2) &F)

Sumary of Intrinsic Functions

A summary of the intrinsic functions and their
vector versions is shown in the table 1. Times
are shown for the scalar and vector versions in
the range indicated. Routines below the line were

where E = exponent of X rot strictly “vectorized'; in these, the vector
routine only calls the scalar routine for each in-
and F = mantissa of X put variable,
Then if Y = SQRT (2)xF
and 2= (Y-1 / (Y+1)
> Table 1
then LOGe (Y) = ZapP(2°)
2 Summary of Intrinsic Functions
where P is a polynomial of degree 6 of Z°., The 2
coefficients are found in Hart and Chzney, #2665, and their Vector Versions
The scalar version takes 55 cyclas and the
vector version produces a result every 20 cycles. Speed in USEC
NAME SCALAR RANGE VECTOR

Real Divide 3.833 X%0 1.167
Reciprocal 3.833 x¥o 1.000
Integer Divide 4.500 X o0 1.167
Square Root 4.667 0 X 1.833
Cosine 5.000 all 1.333
Sine 5.333 all 1.333
Exponential base e 5.333 X< 709 3.000
Exponertial base 10 5.833 X< 308 3.167
Logarithm base e 9.167 0< X 3.333
Logarithm base 10 9.667 0< X 3.333
Arctangent 4.667 0< X «tan(n/8) 5.000

9.833 tan(1/8)<Xstan (31/8) 5.000

10.500 tan(3:/8) < X 5.000
Tangent 9.667 -I<X <1 10.333
Arcosine 6.833 IXle % 7.500

12.500 < 1X1e¢ 1 13.167
Arcsine 6.833 1X1< % 7.500

12.167 k< IX1c 1 12.833
Cosh 10.833 all 11.500
Sinh 3.167 0< 1X1< 0,3465 3.833

12.000 0.3465< 1X1 12.567
Tanh 8.000 0< 1X1< 0.5493 8.667

11.833 0.5483«<.1X1 <19.4 12.500

1.333 2.000

19.4< 1X1
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Comparison of Intrinsic Functions
Table 2 on AP-120 and FPS~-164
Speed in USEC
Routine AP-120 FPS-164
SCALAR VECTOR SCALAR VECTOR
Real Divide 3.7 Table & 1.7 Tablepé 3.8 Tablepg 1.2 N3
P3
Square Root 3.8 Table & 1.8 Table g 4.7 Tablepg 1.8 N3
P3 P
i 1.3 Table & 5.0 Table & 1.3 Table &
Cosine 5.0 P9 s s . o
ine 4 1.3 Table & 5.3 Table & 1.3 Table &
Sine 4.5 P9 s o o5
Exponential 4.2 Fé6 2.3 Po6 5.3 Pll 3.0 Prll
Base e
3.2 P11
Exponential 2.3 P6
Base 10
Logarithm
g Base e 4.0 Fe 2.7 Pé6 9.2 P13 3.3 Pig
Logarithm 4.7 F6 2.7 Pé6 9.7 P13 3. P
Base 10
calls
Artangent 8.7 P11 9.7 scalar 4,7-10.0 P21 5.0 P21

Pn
Nn

refers to order cf polynomial.n
refers to number n of iterations

Table 2 campares the speed and methods used
by the AP-120 and the FPS-164. The increased
precision of the FPS-164 over the AP-120 (15-16
campared to 7-8 decimal digits) is achieved with
little or no sacrifice in speed. In one case
where the routines zre slower, the LOGe/lcclO,

the old AP-120 algorithm is retrieved as an al-
temate or QUICK IOG.

Table 3 shows the relative error of the in-
trinsic functions when compared with double pre-
Cision CYBER 175 function values (word size 120
bits, mantissa 96 bits). For 2ach function, 1000
double precision data points in the appropriate
range were generated on the CYBER 175. With
the mantissas rounded to 53 bits, the furctions
were then evaluated on the CYBZR and alsc rounded
to 53 bits. The same input values were used to
calculate the functions using the FPS~164 Simulator
on the PRIME. Table 3 summarizes the results
using these definitions.
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in Newton's method

Absolute Error = ABS (164 Value - Rounded

CYBER 175 Value).

Relative error is according to 164 value, so
Relative Error = Absolute Error / 164 vValue.

The median relative error indicates
decimal digits of precision desired.

the 15 +




Table 3

Relative Error of Functions

MAXIMUM MEDIAN

RELATIVE RELATIVE

ERROR ERROR
ACOS ¢.1125D-14 0.0000D 00
ALOG 0.4679D-13 0.3005D-15
ALOGI1C 0.3726D-11 0.2874D-15
ASIN “0.2015D-14 0.2757D-15
ATAN 0.8837D-15 0.0000D 00
Ccos 0.2874p-12 0.3569D-15
COSH 0.8727D-13 0.4441D-15
CSQRT 0.1202D-14 0.2752D-15
EXP 0.8238D-13 0.4645D~15
RDIV 0.1281D-14 0.2589D-15
SIN 0.3274D-12 0.3042D-15
SINH 0.8675D-13 0.7990D-15
SQRT 0.9643D~15 0.2425D-15
TAN 0.9511Dp-11 0.7688D-15
TANH 0.1113p-14 0.0000D 00

Courtesy of Harry Sedinger,
Floating Point Systems

Conclusion Acknowledgements

The algorithms used “or elementary functions
are designed to optimally use the parallelism and
precision of the FPS-164 array processor. In some
cases (divide and square root), the choice of the
algorithm depends on wiether the scalar or vector
version is desired. The parallel properties of the
processor are most manifest in the vector
algorithms and it is here that speed is of
greatest importance.

177

For their help and cooperation, I thank R.
Norin and the Application Software Group at
Floating Point Systems. I acknowledge the work of
C. Hsiung (now at Cray Research) while at Floating
Point, Special thanks go to H. Sedinger of
Floating Points Systems, for extensive assistance
and discussions and for supplying the error analysis
data. Thanks also to A. Charlesworth of Floating
Point Systems, for many helpful comments.




References

1). Hirondo Kuki, "University of Chicago
Computation Center Report-Mathematical
Functions", Feb. 1966

2). Jobn F. Hart, E. W. Cheney, et a.,
"Camputer Approximaticns", SIAM series
(edited by Johy Wiley and Sons, Inc., New
York, 1968)

3). William S. Dorn, Daniel D. McCracken,
"Numerical Methods with Fortran IV Case
Studies" (edited by John Wiley and Sons,
Inc. New York, 1972)

178




