Effects of Underflow on Solving Linear Systems

James Demmel

Computer Science Division
University of California
Berkeley, CA

ABSTRACT

Software to solve systems of linear equa-
tions by Gaussian elimination has in the past
ignored the effects of underfiow. But when
underflows are replaced by zeroes, this
software can give spurious though plausible
results much worse than could be blamed on
roundoff. When underflow is gradual, as in the
proposed IEEE standard for floating point arith-
metic, the same software gives provably more
reliable results. To achieve the same reliability
without gradual underflow, but with underflows
set to zero, complicated tests must be inserted
into the software.

1. Introduction

In this paper we examine the effects of underfiow on solv-
ing systems of linear equations using Gaussian elimina-
tion. In particular, we contrast the effects of gradual
underflow ! and "store zero" on the accuracy and stabil-
ity of the algorithm.

Our ultimate goal is to decide whether reliable software
for solving linear systems in the presence of underflow
can be written at a reasonable cost, where by reliable we
mean a piece of software that ideally

1. produces accurate results whenever they can
be represented,

2. gives a warning whenever the computed results
are inaccurate, and

3. avoids giving warnings when it is possible to
compute accurate results.

Our motivation for this study is twofold. First, that
underflow is a problem at all in linear equation solvers is
not generally recognized. For example, the LINPACK
Users' Guide 2 states in its introduction that "Any
underflows which occur are harmless.” This statement is
almost always true, since underflow's status as a border-
line phenomenon means it may be ignored safely in most
situations, but not always. The advantage of gradual
underflow over store zero is that a cleaner line can be
drawn between problems where underflow can be ignored

CH1630-3/81/0000/0113%00.75 © 1981 IEEE

and those where it cannot, thus helping the writer of reli-
able software who wants to be able to guarantee when his
program will work. Our first motivation, then, is to make
people aware that underflow can give reasonable looking
but totally inaccurate results if it is handled poorly or
ignored.

Second, we wish to attenuate the controversy surround-
ing the recent decision by the IEEE Microprocessor Stan-
dards Committee on how to handle underflow. The deci-
sion to use gradual underflow instead of the usual store
zero approach came after much argument about which
one made reliable numerical software easier to write 1,
In this paper we show that gradual underfiow makes writ-
ing reliable linear system solvers significantly easier
than store zero.

Specifically, the algorithm to solve Az =b is as follows:

(1) Decompose A=LU = (lower triangular){upper
triangular) using pivoting, so that the diagonal
of L contains all 1's and no entries of I, exceed
1 in absolute value.

(2) Solve Ly=b for y (forward substitution).
(3) Solve Uz=y for z (back substitution).

The only gradual underflows that can possibly contribute
significantly to the residual turn out to be underfiows in
the final solution vector z. Intermediate gradual
underfiows will be shown to contribute an error with a
bound scarcely worse than the bound for the error con-
tributed by roundoff alone. Thus, by using gradual
underflow we are able to satisfy the second two goals of
relinble software since an alarm need not be raised
unless the results themselves underflow and are not
representable (in which case the data would have to be
scaled to avoid underflow).

In contrast, storing zero in place of intermediate
underflows during any stage of solution can introduce
significant errors, possibly producing reasonable looking
results whose error greatly exceeds the uncertainty
attributable to roundoff alone (see the Examples),

The second and third goals of reliable software can be
achieved, but not easily, with store zero. We must either
do tedious testing to tell which underflows require a
warning, or naively raise an alarm whenever an underflow
occurs. This naive approach produces "paranoid” code
and many false alarms. To tell which small class of possi-
ble gradual underflows can contribute significant errors
and require a warning is easy: they are the underflows in
the answer itself.

It is important to understand how the unavoidable uncer-
tainty due to roundoff can affect our ability to meet out
first goal: produce accurate results. Guaranteeing

results z to within a certain accuracy is not possible for
a price everybody is willing to pay. Unless we pay the
price, by doing iterative refinement for example (discus-
sion of iterative refinement is beyond the scope of this
paper), we can only guarantee that our computed answer
z is the solution of a new unknown problem perturbed
slightly from our original problem. This is the nature of
Gaussian elimination, and confirmed by backwards error
analysis, the approach used in this paper; we want to
bound that perturbation, to bound how different the new
problem is from the old. If the problem is ill-
conditioned, then the solution z of the new problem may
be very different from the solution x of the original prob-
lem, and there is no way, at negligible cost in time and
storage, to tell. Thus, our original goal of producing
accurate results should be modifled to read: "satisfy the
equations as closely as possible; achieve a tiny residual
Az —b." This is an achievable goal. (Discussion of itera-
tive refinement is beyond the scope of this paper.)

In the remainder of this paper we will present examples
to demonstrate the typical effects of underflow, describe
the model of arithmetic used and the approach used in
the error analysis, and present the conclusions drawn
from the error analysis.

2. Examples

We use G.U. to denote arithmetic performed with gradual
underflow, and S.2. to denote that performed with
underflows set to zero; we assume the reader is
acquainted with both kinds of arithmetic *4. In particu-
lar, we perform G.U. in the "normalizing mode” rather
than the “warning mode"”. We will present our model of
arithmetic briefly here, and give a more precise model of
rounding and underflow errors in the next section.

Let £ be the rounding error of the arithmetic, and A be
the underflow threshold. Suppose, for example, a binary
floating point nurmber is represented as f - 2* where f
lies between 1 and 2 with an n bit fraction, and e is an
integer exponent in the range ep;;se <e_,,. Then
£=2" (the difference between 1 and the next larger
number). The underflow threshold iz A = 2'™; this is the
smallest positive number in S.Z. arithmetic, and the
smallest normalized number for G.U. Whenever a
nonzero number smaller than A is generated by arith-
metic, underflow is signalled and something special hap-
pens; S.Z. replaces the number by zero, and G.U. by a
nearest "denormalized” number or zero. Denormalized
numbers in G.U. arithmetic consist of an arithmetic pro-
gression from 0 to A with common separation equal to
H=EA
We denote the usual condition number of the matrix 4 by
k(a)=lAlla- 1471w,

and a new set of condition numbers by
I 14751 141 |=] |l

Hzlla
Cond(4) = || 1471 141 Il .

These new condition numbers, due to Skeel?, will be dis-
cussed more fully in section 3 below. Note
Cond(4) = Cond(4,z) for all z.

In this section we present four examples of the effects of
underflow on performing Gaussian elimination. The first
example shows how store zero can produce a reasonable
looking but completely inaccurate decomposition of a
well conditioned matrix, whereas gradual underflow

Cond(4,z) =

114

either produces the correct decomposition or correctly
decides the matrix is singular. (There are no rounding
errors nor pivot growth in this example.) The second
example shows that G.U. produces the correct decompo-
sition of a well conditioned matrix which S.Z. incorrectly
decides is singular. Third, we present an innocuous look-
ing ordinary differential equation and show that the
linear system arising from trying to solve it numerically
leads to underflow which is handled correctly by G.U. and
not by S.Z. Finally, we present an exarnple which shows
that regardless of whether we use G.U. or S.Z., Gaussian
elimination can only ‘gudrantee small residuals, not an
accurate answer, even when the matrix 4 is well-
conditioned in the sense that Cond(4) is small.

2.1 Example 1 .
Consider the family of matrices A(z) where

1
1
Az)=x] T2 1], (1)
: 1
E4

(blanks denote zero entries). The LU decomposition
obtained by G.U. is

1 2 1|
1 2 1
LG9 (z) UG (z) = 1 "N 2 1 (=)
1 21
.5.5.5 .51 z-2
=A(z) exactly, and by S.Z.is
1) 1]
1 2 1
L5 (z) US%(z) = 1 A 2 1 (3)
1 21
.6 .5 .56.51 z
=A(z) + £, where the error matrix £ equals
E=x (4)

We see S.Z. causes a relatively large error in the U(z)ss
entry, whereas G.U. gives the correct decomposition.
When 2=2, using S.Z. leads us to conclude that the
matrix is far from singular, when in fact it is exactly
singular. Note that the matrix A(z) is well conditioned
when z is far from 2, and if z is & small integer no round-
ing errors occur in either decomposition.

2.2 Example 2
Let
x 3l
a well conditioned matrix. Using G.U. we obtain
1 lka an]
cY . ey = . =
LeY . U -[.5 1] [2 vel=4. (®

but by using S.Z. we obtain

LSZ . sz _ [15 1]. [z}\ g)\] (7

Thus, G.U. correctly decomposes the matrix A, whereas
S.2. incorrectly makes the matrix look singular.

2.3 Example 3
Consider the ordinary differential equation

2(t) = 12 DX gy

Tt ®)

We try to solve this equation nume};ically by replacing

z(t) by the truncated power series Y} z,t™, the function
n=1

(A—(t/)4/ (T-t) by its (finite) power series, and then

equating coefficients of equal powers of t on both sides

of equation (B). After we scale the last row {which

represents the initial condition) down to have largest
entry equal to 1, we get the linear system Az =b, where

z(T,)=c .

IN =1/T -1/T% . . ., -1/ TN
N-1 =1/T -1/ TN-1
N-2 -1/ TN—E
4= . (9)
1 -i/T
1 /71, /78 /TN 1T
b7 = (0, - -.,0,c/ T8), and zT = (zy, - - - .zq).

We chose M =15, N=14, I'=512,, T,=500., and ¢ =100, for
this example. We used an implementation of the IEEE
Floating Point Standard 4 on a VAX 11/78068. ¢ was 223
and u was 2""%. There was a switch on the compiler to
enable/disable G.U., so we were able to obtain numerical
results using both G.U. and S.Z.

L and U have a simple structure. [will be zero below
the diagonal, except for the last row, which is graded
from L5, ® 7.14285,, —2 down to L,g,, N 5.34726,, —35.
U is identical to 4 in all but its last row.

1
0 1
0 0
L= (10)
o 0 R |
Lls.l LlS.E L Lw.u 1
N -1/T -1sT% -1/7N
N-1 -1/T -1/ TN
N-2 -1/ TN-2
U= (11)
1 -1/T
Uw.m

A’s columns are badly scaled, although this is not obvi-
ous because no row nor column is drastically smaller in
norm than any other; nonetheless, bad scaling causes 4
to appear very ill conditioned, and this ill conditioning
shows up in the last row of U/, making U515 very small,

115

barely above the underflow threshold. S.Z. and G.U.
compute all elements of L and U identically except for
Uss.is- In fact, all additions in the computation of L add
normalized numbers with like magnitudes and like signs,
so no cancellation, loss of significance, nor underflows
occur. If the exponent range were unbounded, so
underflow never happened, the correct value
Uys.is ® 2.08281,5 =37 would be computed. This is the
value computed using G.U. But when S.Z. is used instead,
the computed value is Ufg%s ¥ 1.72763,9 =37, & relative
difference of .174 from the correct value. All additions in
the computation of Uy ,s involve numbers of like magni-
tude and sign, so cancellation cannot be blamed for the
discrepancy. This relative difference in the last entry of
U is very important, because one divides by U515 in the
course of solution. Thus, the computed solution £V is
very close to the true z, and the relative difference in
solution vectors is

”zc.u. - zs.z. ”.

RNL211
”zG.U.”_

Thus, G.U. obtains markedly better results than S.Z. This
example is very interesting because there is nothing
obviously wrong with the matrix. All its entries are
unexceptional normalized numbers, and every row and
every column contains at least one number no tinier
than 1/ T ~ .00195 and none larger than N=14, yet 11
out of 14 products Lys¢*Uj,5 in the sum for U4 ,s
underflow just slightly below the underflow threshold.
Since the true value of Uy, iv itself not much larger
than the underflow threshold, this makes for a large rela-
tive error.

This example was chosen to be simple and realistic; even
though it can be solved analytically, it could be changed
easily into a two dimensional problem without an explicit
solution, but with the same sensitivity to underflow.

We repeat that even though A appears very ill condi-
tioned, since k(4) ~ 1/\ (i.e. near the overflow thres-
hold in most arithmetics), it is also well conditioned in
the sense that Cond(4,r) ~5.5. We will discuss the
significance of this example later in section 4.

2.4 Example 4
G 2/ G -i/g

Let
-— G - —
A=l 2gl A7 =16 /g

where g/ G underflows to 0 using either S.Z. o1 G.U. The
L obteined is thus the identity matrix since
Ly =fl(g/ G)=0, and so the L and U obtained are the
exact factors of the matrix

lc ¢l
A+E =y g -
which is a very different matrix than A. If 7 = (G,0),

then z = A716 = (2,-1)7, whereas 2 = (A+E£)"1 = (1.0)7,
so 2 does not resemble z at all. The residual r is however

guaranteed to be small, in the sense that
Irila/li 1AL |2] + |b] [} is small:
el N || 22l
rarizl+ 16 lie 1l (Al 12] + [6] ||
_glE s L<esz.
Gl2,| +Glz,] G

Of course A is an exceedingly ill conditioned matrix in
the sense that k{4) 2G/g is beyond the reciprocal of
the underfiow threshold, so we would be inclined not to
trust our results anyway. However, Cond(4) is only 7.
This is true because Cond(A4) = Cond(DA4) for any non-
singular dmgonnl matrix D, so 4 has the same condition
number: u the utterly tame matrlx

IG—I 1 1|

e

Needlesa to say, in the absence of underflow we would
ute a very accurate solution. We will return to this

_c”mple later to explain why we can get inaccurate

renllts from a matrix with a small condition number

Cond(A).
3. Error Analysis

3.1 Assumptions

In this section we define our notation and our model of
arithmetic. & will denote the level of roundofl error and
J4 the smallest nonzero number when using G.U. Then
A = u/ ¢ will be the underflow threshold and smallest nor-
malized number. Using S.Z. the only number smaller
than A in magnitude is zero; using G.U. the numbers
between A and zero in magnitude are called denormal-
ized numbers. Zero and all numbers no smaller then A in
magnitude are normalized in both G.U. and S.Z.

Let = be one of the operations (+,-,*,/) and let fi{a = b)
denote the floating point result of the indicated compu-
tation. Traditionally, error analyses have used the for-
mula

Ji(ad) = (asd)(1 + e)
unless asb underflows or overflows.
into account, we write?

Ji{a) =(ad)(1 +e) +7n (13)
uniess as overflows. In the case of G.U. we have the fol-
lowing constraints on e and n:

(1) |e| =cand || <Ae,
(R) ne =0,
(3) 7m = 0ifsis either addition or subtraction.

(12)

To take underfiow

In the case of S.Z. we have the following somewhat
different constraints on e and n:

(1) le| saand Inf < A, and

() ne =
Note that n need not be 0 when performing an addition
or subtraction using S.Z.
We assume no overflow occurs.

We ignore terms which are 0(¢®) or O(eu). This allows us
to replace 1/ (1+e,} by 1—e, (where |e;{<¢), or n,*(1+e)
by 7, (where [ny|<A for S.Z. or Ae for G.U.) when con-
venient.

By replacing every appearance of an original datum o by
1.+ a, and using the above formula for error in multipli-
cation, we can take into account effects of rounding and
underflow errors in the original data.

||A]] and || &|} denote matrix and vector norms. || b||
denotes the infinity norm of &, namely m’ax[b,]. and
Al denotes the infinity norm of A4,

HAll~ = max|| 4z [}/ |} ||« = max}]] 4.
zw 3

I16

Then k(A) = || A|| = || A™!}| = denotes usual the condition
number of the matrix A.

{A| (]b]) denotes the matrix (vector) whose entries are
the absolute values of the corresponding entries in 4 (b).
Inequalities like [A| > |B| (la| > |b]) are meant com-
ponentwise.

3.2 Approach

As stated in the introduction, we use backward error
analysis. Thus, when Gaussian elimination is used to solve

Az = b (14)

for z it generates instead an approximation £ =z + 6z
which satisfles some perturbed problem

(A+6A)2=b + 6b (15)

The task of backwards error analysis is to infer bounds
on 64 and 6b from the details of the arithmetic used to
implement the elimination process. These bounds can be
used in turn to bound the residual
r=AT - b = -6A% + 6b = Abzx

and then the error §z.

(18)

We proceed by breaking the elimination process into
three steps:

1) Decomposition : Try to decompose A into LU
and obtain L and U where A=LU - A4; bound
AA in terms of A.

Forward Substitution : Try to solve Ly=b and
obtain ¥ where (L+6L){J = b+Ab; bound 6L in
terms of L and Ab in terms of b.

Backward Substitution : Try to solve Uz =§ and
obtain 2 where (U+8U)% = §+6%; bound 8U in
terms of U and 6§ in terms of §.

Thus, combining the above three steps we obtain

(A+AA+ L6U +6LU + LEU)E = b + Ab (17)
+ (L+6L)6G .

2)

3)

The residualr = AZ — b is
r=—0A% +68b=—(8A+ LSU +6L(U + 6U))2 (18)
+Ab + (L + 6L)6%

Equation (18) shows that we may choose 64 and éb to be
SA=AA +L6U + 6L(U + 6U) (19)
and

b = Ab + (L + 6L)67 . (20)

The usual error analyses attribute the various perturba-
tions A4, 8L, &b, 6U, and 6§ directly to roundoff errors
during the elimination process. Underflow contributes
additional perturbations thus:

(1) during decomposition - - - to A4 and 6L,

(2) during forward substitution - - to Ab,
(3) during backward sustitution - - to 6§ and %.

These additional perturbations, of the order of A for S.Z.
and g = Ae for G.U., all turn out to be comparable with or
less than the respective terms to which they contribute.
Our task is to summarize quantitatively the perturba-
tions" curnulative effect.

Wilkinson's approach? is to determine a bound w,, on the
errors

[|6Allaswg [|Alja and ||8bjle=<wy |l (21)

whence

Hrile<ow[IlAllali2]1a+ [Ib]]a] (22)
and then it will follow that the error 8z is bounded:
6z || .
li oz |l < wy, k(4) (23)

hzila+ 2]l

The detailed derivation of wy, from the details of the
arithmetic is given elsewhere ®. Theorem 1 below states
simple requirements on 4 and b that ensure wy, Wwill be
scarcely worse if underflow occurs then if it does not.

Skeel's approach % modified slightly here, is to deter-
mine a bound w, on the relative error in each entry of 4
and b:

[64] < w, |A] 6] = w,|b] . (24)

From these inequalities follows a bound upon the error
8x:

l8zll. _ 147} {Aflz] + 147" (8]l
Nzlle =7 (1=l 1A AT]S N 2]] -

(provided the denominator is positive.) This motivates
defining the following condition numbers:

1A 1Al (=] |}
lzla
Cond(A) = |/ |47} {A]]| .

and

(25)

Cond(A,z) = (26a)

(26b)

Cond(A4) is an upper bound for Cond{4,r) for all z; the
error bounds are useful only if w,Cond(4) < 1.

The bound w, in (24) is not inferred directly from equa-
tions (19) and (20). Instead, following Oettli and Prager®
and Skeel ® we use an expression for w, Obtainable from
(18) in terms of the residual r:

v, = max——o ! (27)

(Al 2] +lbl)
where the max is over those 1 for which the denominator
is nonzero. Following Skeel, we overestimate w, by
analyzing the elimination process to infer an inequality

frilas oyl 1A} 12] + 18] || (=8)
from which we compute the overestimate &, as
max(|A] 2] + [b1)
= W' (29)

S mgn(TAT 81+ 1o,

(where the min in the denominator is over the nonzero
values of (|A| |£]|) only). Unfortunately %, can be a
gross overestimate of w,, as we will see when we return
to example 3 later.

The deteiled derivation of w', is given in reference 9.
Theorem 2 below states requirements on A and b that
ensure ', will be scarcely worse if underflow occurs than
if it does not. These requirements on 4 and b are nearly
identical to the requirements in the Wilkinson style
analysis.

3.3 Results

Theorem 1: Wilkinson style error analysis of solving
Az =b in the presence of underflow

Let apy=max|4y|. and g=[largest intermediate result

appearing in the decomposition]/ ay.,. g is the "pivot
growth factor"” and is <2771,

117

Our objective is to estimate a bound w,, for which

Hrila= oy [lAll]2].+lB]1.] (22)
In the absence of underflow, we can use
we =nicgs2 . (30)
If underfiow occurs then
w, =3n3gpg/2 (31)

provided certain conditions are met.
For G.U. these condition are:

Fomax = A if there are any underflows during
triangular decomposition

1] == ;):— if there are any intermediate
underflows during forward (32)
and back substitutions

bil .
‘”—“——z % if the solution 2 itself underflows.
@ max T

For S.Z. the above conditions still apply but A must be
increased to A/ ¢.

Proof: See reference 9.

Theorem 2: Skeel style error analysis of solving Ar =b in
the presence of underflow

Let a; =mFxlA,-‘, |, and ge=max([largest intermediate
result appearing in the decomposition in column 7]/ a,).
ge is the “columnwise pivot growth factor" and is <21,
Our objective is to estimate a bound w's for which

Nrlle= oyl 1Al [2] + |B] {la . (28)
In the absence of underflow we can use
o, =ndege . (33)
If underflow occurs, then
oy =3nlegy/2 (34)

provided certain conditions are met.

For G.U. these conditions are:

geay = A for all 7,if there are any underfiows
during triangular decomposition
15| -2 Ay there are any intermediate
underflows during forward (35)
and back substutions
bl
liell- , A if the solution # itself underflows.
G max n

For S.Z. the above conditions apply with except A must
be increased to A/ .

Proof: See reference 9.

The theorems indicate how to write software that will
solve Ar=b reliably despite underflow, and how the
requirements for G.U. differ from those for S.Z. To keep
the residual small in the sense of a Wilkinson style error
analysis, we appeal to Theorem 1. With G.U., as long as
one normalized number appears during the decomposi-
tion (gamay = A). residual with underfiow has a bound not
much worse than residual without underfiow. If there are
intermediate underflows while solving the triangular sys-
tems, as long as some component of b is normalized
(Hola=X), residual with underflow has a bound

scarcely worse than without underflow. If the answer
itself underflows, we can either issue an error message
(which would be very reasonable since the first goal of
reliable software is only to compute an answer if it is
representable) or test to see if ||b|| ./ @,y is not too
small.

All these requirements are natural ones to make, since
they say that when a problem’s inputs and its computed
solution are normalized numbers, we should expect the
residual to be scarcely worse with underflow than
without. Thus, the only gradual underflows which can
cause concern in a problem with normalized inputs are
underflows in the solution itself.

In contrast, the bounds for S.Z. are all higher by a factor
of 1/¢. Thus, using S.Z. we can neither solve as many
problems as with G.U., nor decide so easily which
underflows matter. Thus, from the point of view of a Wil-
kinson style error analysis, G.U. makes writing reliable
software easier.

Theorem 2 shows that Skeel style bounds for the residual
are scarcely worse with underflow than without provided
conditions are satisfied that are almost the same as in
Theorem 1. Therefore the previous paragraphs’ com-
ments remain valid provided, when underflow is gradual,
at least one normalized number appears in each column
of A, rather than just somewhere is 4, before or during
the decomposition process.

The programs in Appendices 1 and 2 show the few extra
lines of code needed to implement the test for gradual
underflows in the solution % in terms of the proposed
IEEE standard.

4. Examples 3 and 4 Revisited

We wish to emphasize that we have only derived condi-
tions under which residual bounds with underflow are
about the same as without underflow. There is no way
using this analysis to say how closely this bound will be
approached with and without underflow, or how accurate
the computed solution will be.

In example 4 above, the matrix 4 and vector b satisfy all
the conditions of Theorems 1 and 2 for G.U. as well as
S.Z., so the residual is small, but the answer £ is totally
inaccurate. This inaccuracy can be explained either by
the huge condition number k(4)~overfiow threshold, or
the large backwards error in equation (27): w, = 1. In

this case w,’s upper bound @, in equation (29) is also 1.
Thus, having a small value of Cond(4) is not sufficient to
guarantee accuracy given a small residual o', ((28)),
although a small value of k(4) combined with a smpall
residual &, is enough, as can be seen from (23).

Example 3 is another case where the conditions of
Theorems 1 and 2 hold, but now G.U. successfully com-
putes the last pivot U,5,5 and an accurate solution 2
while S.Z. does not. Again, we have a problem where
k(A) is huge and Cond(4.z) is small. Now the w, of equa-
tion (27) is = 5.23,, -8, verifying the high accuracy of
solution. Unfortunately the bad scaling of the matrix
causes the upper bound ®, of equation (29) to be
2.0,020. This example demonstrates the occasionally
intense pessimism of Skeel's approach.

In summary, the significance of exarnples 3 and 4 is to
show that maintaining a small residual in the face of
underflow does not guarantee an accurate solution 2,
although we conjecture that for not terribly ill condi-
tioned matrices G.U. will provide answers at least as
accurate as provided by S.Z.

118

5. Conclusions

We have proven something quite unremarkable: if
underflows are gradual, then we continue to get what we
have come to expect from Gaussian elimination. That is,
we get a small residual as long as the inputs and outputs
are all representable (normalized) numbers and there is
no indication of singularity or excessive pivot growth. If,
however, underflows are handled in the usual way and set
to zero, then no such simple guarantee can be made, and
some kind of testing on the scaling of the problem is
necessary. These results demonstrate that gradual
underflow makes it easier to write reliable linear equa-
tion solvers than "store zero.”

Appendix 1: Program Listing of Triangular Decom posi-
tion

array A[1..N,1..N] of real;

array L{1..N,1..N] of real;

array U[1..N,1..N] of real;

/* note that arrays A,L, and U can occupy the same
locations in memory; we use three different arrays

here to keep the notation consistent with

the previous analysis */

/* Triangular Factorization: A=LU */

/* As in the analysis, we assume the matrix has
been permuted so row or column exchanges are
unnecessary. */

/* Lines prefixed by "G.U.:" are the additions to
the code required for reliability using gradual
underfiow. */

/*set mode to prevent spurious warnings about
denormalized numbers */
G.U.: invoke normalizing mode

for p=1to N do /* p=pivot number */

begin

for j=p to Ndo /* compute U[p,j] */
begin
SUM:=A[p,j;
for k=1 to p-1 do SUM=SUM - L[p,k]*U[k.j]:
Ulp.j]=SUM;
end

/® insert your favorite test for singularity

or pivot growth */

for i=p+1 to N do /* compute L{i,p] */
begin
SUM=A[Lp]:
for k=1 to p-1 do SUM=SUM - L[i,k]*U[k.p];
L{i.p]=SUM/U[p,p}:
end

end

Appendix 2: Program Listing of Solution of Both Triangu-
lar Systems Following Triangular Decomposition

array B[1..N] of real;

array X[1..N] pf real

array Y[1..N] of real;

/* Again, B,X, and Y could occupy the same locations
in memory. Arrays AL and U are defined above, ./

/* Forward Substitution: LY=8 */

for i=1 to Ndo
begin
SUM=0;
for k=1 to i-1 do SUM=SUM + L{i,k]*Y[k];
Y[i)=B[i]-SUM:
end

/* Back Substitution: UX=Y */

/* initialize fiag for reporting underflows
in the solution z */
G.U.: xunderfiow = false

for i=N downto 1 do
begin
SUM=0;
for k=i+1 to N do SUM=SUM + U[ik]*X[k];
temp=Y[i] - SUM

G.U.:underfiowflag = false;
X[i]=temp/U[ii);

G.U.:if underflowflag then xunderflow = underflowflag;
end

/* if xunderflow = true, an underflow has
occurred in the solution X */

References

1J. T. Coonen, "Underflow and the Denormalized
Numbers”, Gomputer, vol. 14, no. 3, March 1981, pp 75-87

£]. 1. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart,
LINPACK User’ Guide, Society for Industrial and Applied
Mathematies, Philadelphia, 1979

*W. Kahan, J. Palmer, "On a Proposed Floating-Point
Standard”, SIGNUM Newsletter, October 1979

4J. Coonen, et al.,"A Proposed Standard for Binary Float-
ing Point Arithmetic”, SIGNUM Newsletter, October 1979

°R. D. Skeel, "Scaling for Numerical Stability in Gaussian
Elimination”, Journal of the ACM, vol. 28, no. 3, July 1979

®VAX is a tredemark of the Digtal Equipment Corpora-
tion.

71LH. Wilkinson,"Rounding Errors in Algebraic Processes”,
Prentice Hall, 1963

BW. Oettli and W. Prager,"Compatibility of Approximate
Solution of Linear Equations with Given Error Bounds for
Coefficients and Right-hand Sides,” Numer. Math.
6(1964), 405-409

®J. W. Demnmel, "Effects of Underflow on Solving Linear
Systems”, Computer Science Division, Electronic
Research Laboratory Internal Report, U.C. Berkeley,
1981

Acknowledgement

The author gratefully acknowledges the support of the U.
S. Department of Energy (Contract DE-AM03-78SF00034,
Project Agreement DE-AS03-79ER10358), the Office of
Naval Research (Contract N00014-78-C-0013), and Prof.
¥W. Kahan, whose comment and encouragement have
been invaluable.

119

