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ABSTRACT

Column-wise addition schemes involve count-
ing the number of I's in a column and rep-
resenting this number in binary weighted
form. In Conditional Sum Logic (CSL) par-
tial results are first generated for every
column, then one of these results is selec-
ted depending on the incoming carry value.
A compact scheme for counting the number
of 1's and generating partial results for
all possible distributions of incoming
carries is introduced. Application of such
counters to CSL yields a high speed in
multi-operand addition.

INTRODUCTION

Sklansky [1] proposed a fast method to
find the sum of two Operands in two's comp-
lement representation. With the philosophy
that the higher the parallesim the faster
the operation, he produced partial sums for
each column simultaneously.

This system is based on the determina-
tion of the sums and output carries for a
column that can arise from all possible
distributions of input carries. Then,
of these output values is selected by a
multiplexer dependent on the actual carry
value that is received. Due to conditional
selection of the outputs, the method is
called "Conditional Sum Logic" (CSL). For
the addition of two n-bit binary numbers
there are only two possibilities for carries
coming into a column. They can be either
"Q" or "i". Two sum-carry pairs are jene-
rated to correspond to these incoming
carries. Then one of the outputs is selec-
ted depending on the carry received by this
column. If n=2 then only one multiplexing
level is needed. For n»>2 nested multiplex-
ing is necessary in order to include the
effect of intermediate carries. The number
of multiplexer levels is calculated as
FlogznT.

one

This method can be applied to multi-~
operand addition by generating sum-carry
pairs for each possible value of carries
that can be received by a column. If there
are m operands, then m different sum=-carry
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pairs must be generated to correspond to
incoming carry values of 0, 1, 2,...,m-1.
Then a similar selection mechanism to that
used in two operand addition may be employ-

ed. Fig. 1 shows the working of CSL for
m=4 and n=4.
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Fig. 1 4x4 Array Addition with CSL.

Implementation of this method for mul-
tiple operand addition involves counting
the number of 1's in a column, then genera-
ting multiple sum-carry pairs. One way of
generating partial results corresponding
to all possible distributions of input
carries may be by employing a seperate
counter to generate every sum-carry pair in
the output distribution. For addition of an




m-bit by n-bit array m X n counters will be
required to generate all possible output
distributions of n columns; this is highly
expensive, if not impractical even with
todays VLSI technology. However if we could
reduce the price down to the range of other
known schemes, this method would be prefer-
rable for the sake of speed.

In this paper, a compact scheme is
proposed for producing partial results. The
problem of counting the number of 1's at
each column has been studied previously
[2-6]. Dadda [4] has given a general theory
of counters and gave examples with (7,3)
(i.e. 7 input, 3 output bits) and (3,2)
counters. This idea was extended to the

design of general (2q~l,q) counters using
q threshold gates by Irving T. Ho and Tien
Chi Chen [5]. The following section of this
paper summorizes the threshold gate logic
and extends this scheme to produce partial

sums. A counter scheme with multiple output
vector is introduced. In the later sec-
tions, application of this scheme to mul-

tiple operand addition is discussed.

COLUMN-WISE COUNTING

The column-wise counting circuits
accept an input vector in which the place-
ment of 1's is not important. The output
represents, in binary weighted form, the
number of 1's in the input vector. There-
fore if there are m bits in the input vec-
tor, then the number of bits in the output
vector will be rlog2m1.

A threshold function, r, can be adap-
ted to represent the input-output transi-
tion of a counter as follows:

r=(p, gl M) (1)
(Where M = total number of 1's in
input vector).

the

This means that:
r=1 if Mmod q 2 p
O otherwise.

If g = 2p, this function generates
normal binary vectors corresponding to M,

For example, if M=6, then:
r, = (1,216) =0
ry = (2,416) =1
r, = (4,816) =1

Thus the binary representation of 6 is
easily found as 110.

Ho and Chen proposed a logical circuit
which produces an output vector from the
input vector whose outputs are calculated

r2

by threshold functions. Fig.2.a is an exam-
ple circuit for a (3,2) counter. This cir~
cuit can also be used, with a small modifi-
cation, to generate outputs for all possib-
le distributions of incoming carries. In
Fig.2.b it is shown how this modification

is made. In this circuit, the three outputs

Oo’ 04 and 02 correspond to incoming carry

values of O, 1 and 2 respectively. The Oo

output is calculated by the threshold

function (1) above. The Ol output dis cal-
culated as :

ro“ = (1,2|M+1)

rl' = (2,4[M+1)

r2' = (4,8[M+1)
and the O2 output :

ro” = (1,2{M+2)

" —_ 4 +

r (2,4 |M+2)

r2” = (4,8{M+2) where M<3.
In the most general case the 0, output vec-
tor of a counter is calculated as :

ri3’ = (2%, 2x2% | M+9)
where i = 0..gq-1 and j = O..p-1.

Following the notation in [5] such a
chip can be represented as a (p,3') chip,
where q'=px(g+l)-1 and

g : number of bits in the Oo output

vector,

p : number of bits in the input vector

such that p=2q—l.

A (p,q') chip will have a delay of
three lcgic levels. A (7,27) chip can be
implemented in MSI technology.

ADDITION WITH MULTIPLE OUTPUT COUNTERS

The
addition
from two

principle of multiple-oparand

using (p,q') chips is not different
operand addition which uses Half
Adders. 1In Fig.3.a an example is given for
addition of a 3x4 array. This scheme finds
the sum of three rows as indicated in Fig.
3.b.

The scheme in Fig. 3.a employs two
different types of AND-OR circuits: counters
and multiplexers. Allthough the former are
generally slower than the latter, they are,
however inevitable in today's best known

schemes. Once the partial results are ge-
nerated, an mxn array can be summed in
rlog2n1 multiplexer levels. The delay of

an mxn array adder is :
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Fig. 3: 3x4 array adder using multiple output counters.
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t, = to + Tlog,nixt (2)
where tC counter delay
n : number of bits in a row
tm : delay of one multiplexer level.

Once an mxn adder is implemented as a
basic building block, 'a kxn array (kzm)
can be summed in

N, = Flogka (3)

stages:

In the most general case the total
delay for addition of a kxn array by using
mxn basic adders is :

T < [tCX(TlogznT + 1)1 x rlogka (4)

Here the number of multiplexer levels
is incremented by one in order to include
the effect of additional columns obtained
in the later stages of addition process.

It can be seen from (2) that to is

not affected by m. Therefore, in order to
maximize the speed m must be chosen to be
as large as technology permits. Note from
(3) that Ns+l as m+k. This means that if

m=k then k-operand additfon can be made as
fast as 2-operand addition in CSL.

SIMULATION RESULTS OF SPEED ESTIMATIONS

The speed of the scheme introduced
here depends on the choice of m. It is
possible to implement an 8 x 8 array adder
on a single chip with m=k in todays tech-

nology. For larger arrays it may be neces-
sary to divide the array into smaller
blocks.

An 8-bit by 8-bit multiplication
scheme was implemented in NMOS technology,
using 4x8 and 3x16 adder blocks [7]. Reduc-
tion steps were as in Fig. 4. A simulation
program, written in SPICE, has shown that
this multiplication could be done in less
than 50 ns.

Analytically, the time needed for ge-
nerating the result of 8-bit by 8-bit mul-
tiplication is t8 + t16' where :

t8 = tc + tm (1092 8) = tc + 3 tm
t16= tc + tm (109216) = tc + 4 tm
Multiple output ccocunters were imple-
mented with 13 ns delay [7]. Assuming
level

tm=3 ns delay at each multiplexer
(when implemented on the same chip as the

counters), the total delay will be 47 ns.

Fig. 4. Reduction steps of 8 x 8
multiplication scheme in CSL.

DISCUSSION

A comparison between the other methods
and the method presented in this paper may
ke made from two different aspects

a. The choice of the strategy for
exploiting parallelism,

b. The choice of the parallel counters
for generating partial results.

The conditional Sum Addition technique
maximizes parallelism and this parallelism
is not obstructed by any carry prcpagation
in the classical sense. The only delay
incurred after generation of the partial
results is in the selection the correct
cutputs among the partial results. Most of
the selection here is done in parallel.
Extension of this method to multiple operand
addition is straightforward and requires no
modification. 1In the literarure carry save
addition techniques were used in order to
exploit parallelism [11]. In this method
the parallelism is maximized in the early
stages. However the final stage of the
addition process, which is the stage when
the "saved" carries are taken into conside-
ration, requires carry propogation. This
carry propagation may reduce the speed down
to an intolerable level as stated in an
earlier study [12]. It is felt that a suit-
able combination of the two systems could
yield an interesting scheme. The feasibili-

ty of such a technique is now under inves-
tigation.
A number of parallel counter schemes

were proposed in the literature [(3-6]. 1In
general, it is possible to modify any paral-
lel counter scheme to generate the multiple
output vector needed in Conditional Sum
Logic. All one needs to do for this is to
design a logic array which generates the
multiple output vector from the basic Cin=o




output which is generated by the ccunter.
Such an extension was found to be most
natural in Ho and Chen's parallel counters.
Therefore the counters wused in this paper
were derived from these counters.

Implementaticn of the method presented
is not limited to the way described. The
multiplexer network could be implenented by

a PLA. ROM table look-up techniques could
be utilized for counter design. It is not,
however, the primary interest of this

paper to investigate such considerations in
detail.

CONCLUSION

Using the Conditional Sum Logic, a
scheme for multiple operand addition is
introduced. For generating the partial re-

sults, a modified version of (Zq—l, q)
counters are used.

A comparison among some schemes has
been given in (6,8,9,10]. The scheme
introduced in this paper maximizes paral-
lelism and therefore yields a higher speed
in comparison with the other schemes.

The cost is comparable to the other
known schemes. The counters are imple-~
mented by only a small modification of the
schemes in [5].
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