HIGH BANDWIDTH EVALUATION OF ELEMENTARY FUNCTIONS*

P. Michael Farmwald'

S-1 Project

Lawrence Livermore National Laboratory

Abstract

Among the requirements currently being imposed on
high-performance digital computers to an increasing extent
are the high-bandwidth computations of elementary func-
tions, which are relatively time-consuming procedures when
conducted in software. In this paper, we elaborate on a
technique for computing piecewise quadratric approxima-
tions to many elementary functions. This method permits
the effective use of large RAMs or ROMs and parallel mul-
tipliers for rapidly generating single-precision floating-point
function values (e.g., 30-45 bits of fraction, with current
RAM and ROM technology). The technique, based on the
use of Taylor series, may be readily pipelined. Its use for
calculating values for floating-point reciprocal, square root,
sine, cosine, arctangent, logarithm, exponential and error
functions is discussed.

1. Introduction

Consider the well known [1] technique for evaluating
1/2z by generating an initial approximation, ao, for 1/z
using a table-lookup on the high bits of z and then using
the iteration a;41 = @;(2 — a:2) until the desired accuracy
is reached. The combination of the table-lookup and the
first iteration is the same as expanding the Taylor series for
1/z = 1/(z 4 y) about the initial point of approximation,
z, ie.
Yy

1
00(2 —_ aoz) = ; —_ ;,

where ag = 1/z is the initial approximation. Furthermore,
by one multiplication (y(1/z*)) we have doubled the preci-
sion of our approximation. We shall show that using fur-
ther terms of the Taylor series leads to a fast method for
evaluating many functions, whereby in one multiplication
time (but with two parallel multiplications) we can triple
the precision of the table-lockup approximation.

*Work performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory un-
der contract number W-T405-ENG-48, with support from
the Naval Electronic Systems Command, U. S. Navy.

tFannie and John Hertz Foundation Fellow, Computer Sci-
ence Dept., Stanford University

CH1630-3/81/0000/0139$00.75 © 1981 IEEE

2. Mathematics of the approximation technique

We wish to compute a suitable function, f(z), to p-bits
of accuracy. More precisely, over some limited range of the
argument’ z, we would like to compute an approximation
}(2), such that |f(2) — }(2)] < 1/2°%+ for all z in the
restricted range.

For simplicity, assume that 0 < 2 < 1 is the range in
which we are interested. Thus z is a fized-point fraction
with p, bits. We will break z into two pieces, z and y, where
z = [2272]/27 and y = (z—z)2*, s0 that z = 2} y/2P=.
1t should be clear that 0 < z < 1 and 0 < y < 1 and that
z and y are fixed point fractions with p. and p, — p. bits,
resp. We are going to make a number of approzimations to
z and y which use various numbers of the leading bits of
each. We will use the notation p., and p,, for the number
of bits of z or y used in the £** term of the approximation.

We have (using the Taylor expansion for f at z)

1) =1+)

= /() (1a)
+ = f(2) (1)
+ GV 1" (@) 2 (1c)
+ (55" (=)/3 (1)
+ (3" (= + B)/4, (1e)

where 0 < 8 < y/2P=.
We will analyse the approximation to f of {see Figure
1)

}(2) = round(f(z),p + 6) (2a)
+ 2% round (f'(z),p + 6 — pz) (2b)

2
+ round ((E%M) '+ 6)

X round (—';(!z),p +7— Zp,) (2¢)

+ round (R(truncr(z,p,.), M#M)

P+ T— 317:) (2d)

where
round(z, q) = [z2% - 1/2]/27,

(ie., normal rounding to p-bits)
truncr(z, g) = (|22%] 4 1/2)/27
{also known as von Neumann rgundipg or jamming) and
R(u,0) = (0/2"*)*f" (u)/3! +- (v/2°=)" £"" (u) /4.

Of these four terms constituting the desired approximation,
notice that (2a) and (2d) consist of table-lookups, (2b) of
a table-lookup {ollowed by a multiplication and (2c) of two
table-lookups followed by a multiplication. Notice also that
the table-lookups may be performed in parallel, as may the
two multiplications.

Let us assume that the general term of the Taylor series
of f satisfies

[F™(2)] <

for 0 < z < 1 and n > 0. In addition , let us choose p,
such that it is technologically feasible to perform fast table
lookups on z (e.g., about 9-16 bits using 1981 technology).
The values of the terms f(z), f'(z) and f”(z) thus can be
obtained directly from ROM or RAM. (This implies that
Pzo = Pzy = Pzy = Pz-) Also note that Py, =Dy = P2 —
Pz, since we use the full precision of y in term (2b). This is
not strictly necessary, since we could approximate y with

enough of its leading bits (at least p 4 7 — p, to make the
error of truncation small).

The term (y/27=)* can be obtained by table lookup on
the high p,,-bits of y if 2p, - Pya = p+ 2. To see this,
note that the approximation used in the table lookup is

[w2™a] + 4
y= 2Puz =¥ + EPQT‘v

where —1/2 < a < 1/2. The error involved in using this
to approxzimate (y/27=)? is

g \2
(_!I_)2 (¥ + 7 1 |2ay a?
2p=z 2p=z - 22pz | 9Pva 93ryg
1 1
T 93zt py, 03pz+3py,+3

Term (2d) is found by table loockup on the high bits of
z and y. We will use the high Pz; and p,, bits of x and y.
Using the same approach as before, we approximate z rs
z+7/2P% and y =3 y + \/27¥3, where —1/2<r<1/2
and —1/2 < X\ < 1/2. Then the error in this approxima-
tion to term (2d) will be (leaving out intermediate steps)

Z<Q:PZ-1>

(33 bite)

—

X<QiPX- 1>

(512x 36«8

Tebie of

FUX)
2A

(9 bits)

(512x27x8)

Toble of
F (X

2B

Y<@:PY-1>

(24 bits)

Y<Q:PY2-1>

(512<18«8)

Table of
Froex),

2C

(12 bits)

X<B:PX3- 1>
(4 bits)

X<e:PY3-1)
(5 bits)

(2048« 16}
Table of
2
Y 52Px
2C

[(B12<9«8)

Table of

2 L

(36x36)
MULTIPLIER

(36x 36)
MULTIPLER

\7

4- INPUT
ADCER

Ft2y

R(X, V)

2D

FLgure

140

1

v+ 27\ 1+)
R(z,y) —

2P= 3!

v+ s) M+)
- ors 4! .

< 2 3/2

- 93Pz+pey 23P=+ryy

+0 1 +o ! .
24pz+min(pzy,py,) 93pz+2min(pey,pyy)

We now have all of the pieces to find the total error
in our approximation to (1). The five rounding errors sum
to at most 1/2° 5 Thus the error in {2¢) can be made
close to 1/2712 by making 2p; + p,, > p -+ 2. We can
make the error in (2d) be less than 7/27%% if 3p, + Dzp >
p+ 4 and 3p. + py, > p -+ 4. Furthermore we ignore a
number of smaller error terms because they make little or
no contribution to the error. Summing these errors gives a
total maximum error less than 1/27%2, as desired. Notice
that this is the maximum error — the average error will
tend to be much less due to cancellation.

Summarizing the foregoing assumptions, we have

|£™(2)] < (3a)
2z +py, 2 p+2, (3b)
3pz: +py, > p+4, (3¢)
3pz + pzy > p+ 4, (34)

together with technology constraints on the choice of Pz,
Pya; Pzy and py,.

We shall now select p., Pyas Pzp and py, to minimise
the total number of bits in the tables. There are five tables
used, and the sum of their sizes (in order of their appearance
in (2)) is

2" (p+6)+2°*(p+ 6 —p.) + 23 (p + 6 — 2pz)
+ 2% (p + 7 — 2p.) + 2P FPus(p 4 7 — 3p,).
Clearly, we can let p,, = p 4 2 — 2p, and Pry = Py =

p + 5 — 3p., since these are the minimum values which
satisfy the constraints. Thus we must minimize

2°2(3p + 190 — 3p,) + 2°T*~F=(p 4 6 — 2p,)
+ 280z (p 7 2p,)

as a function of p,. Without proof, we state the result
that the minimum occurs at p. ~¢ p/3, which satisfies
the constraints if p. > 3. The table involving only bits
of y need not be duplicated when using this technique
for evaluating multiple functions; this drives the optimum
value of p. even lower, since the y? table is common to all
of the functions. The total table size (in bits) at p; = p/3
is approximately

28(3p + 45) + 7000

or if k functions are implemented:

25((2k + 1)p + 20k -+ 25) + 7000k,

141

3. Some functions which satisfy the constraints

Table 1 lists some common functions which satisfy
the necessary conditions developed above. The examples
assume a radix-2 floating-point format. Since the dynamic
range of the result must be limited to maintain relative
accuracy (the dynamic range is limited essentially to 2), we
are forced in some cases to compute another function which
can easily be transformed to the correct result. In fact,
the correct way to regard this method is to consider it a
technique for computing a fixed-point function of a fizxed-
point number. To maintain relative precision in floating-
point may involve additional work. This is why we compute
sin(2)/z instead of sin(z) (since sin has a zero at gero). Also
notice that 1 — erf(2) < ne_‘a/(zz) for z > 1. Thus for
2 > 8 we have erf(z) = 1 to within 2% or 10~2%. Also
the derivatives of erf(z) are so small when 2 > 1 that much
coarser tables can be used than for the range 0 < z < 1.
The tables used in computing 2/z and /z are double-sized,
since in computing 2/z we need to look at the sign of z
and in computing /z we must examine the low exponent
bit (i.e., we use different approximations, depending upon
whether the exponent is odd or even).

4. Practical implementation

The technique just described has been implemented in
the 5-1 Mark IIA processor [4] to evaluate elementary func-
tions in single-precision floating-point (which has a sign bit,
9 exponent bits, a hidden fraction bit, and 26 bits of frac-
tion). The numbers in parenthesis {in Figure 1) are the ac-
tual sizes of the tabler used. The Taylor series is actually
evaluated to 29 bits of accuracy and then rounded to 27
bits. This implies that the functions satisfy an equation of
the form }(z) = f(z)(1+ €) where ¢ < 0.62/237. All of
the approximations used satisfy the correct monotonicity
properties (partly as a consequence of evaluating it to extra
precision before rounding). In addition, some of the funec-
tions satisfy necessary special properties, such as |sin| <
1. Evaluation to extra precision is also valuable for com-
puting double-precision reciprocation and square-root. The
8-1 double-precision floating-point format has 57 fraction
bits. Since we have an approximation which has more than
one-half of the desired precision, one Newton iteration will
suffice to finish the approximation.

All of the table lookups are done in the first stage of
the multiplier functional unit, with the normal operation
of the succeeding stages of the multipier being delayed
by 25 nsec (to make time for the table lookups). The
multiplier has four 18 x 36 multipliers which can be re-
configured as two 36 x 36 multipliers. The subsequent
pipe stages (accumulate, normalize, round and normalize)
are shared by the floating-point multiply and elementary
function evaluation functional units. The multiplier has
a total latency (time from input to output) of either 125
or 150 nsec, depending on how it is being used. This
arrangement readily supports the pipelined evaluation of
1/2, \/z, lgz, and 2* at 25 nsec per datum and y/z, Inz,

log 2, e*, arctan z, sin z, cos 2 at 50 nsec per datum.

5. Rounding

There is 2 minor problem with this form of function
evalution, in that it doesn’t round “perfectly”, i.e. it doesn’t
allow rounding of the nearest representable floating point
number to the exact result. (Here “perfect” rounding means
that the error in the result is less than or equal to one-half
the least significant bit.) Of the functions discussed above,
reciprocation and division {and occasionally square root)
are the only ones for which serious attempts are ever made
to do “perfect” rounding. The error due to the approximate
method for elementary function evaluation presented here
can be considered as additional rounding error, and can be
made as small as desired by making p as large as necessary
before rounding. This type of error has been well studied
by numerical analysts, and i therefore quite acceptable
where function evaluation speed is important. There is no
a priori limit known to the precision to which one might
have to evaluate sine, cosine, logarithm, exponential and
arcbangent in order to round correctly [6]. Of course, for a
fixed size word, one could determine the precision needed
to round each value ahead of time and so place a bound on
the precision necessary to round any value. This is clearly
not worth the small increment in precision that it actually
gives. For division, reciprocation, and square root, it is in-
teresting to note that in order to round “perfectly” to p
bits it is sufficient to evaluate the result to 2p bits before
rounding.

6. Summary

We have shown that it is possible to compute many
common functions to p bits of accuracy, using a technique
comprised of table look-upe and two paralle! fixed-point
multiplications with precisions 2p/3 bits and p/3 bits. The
size of the required tables is approximately 2(k+ 1)p2§ bits,
where k is the number of functions to be so approximated.
With the fastest 1981 RAM or ROM technology, p can
feasibly range from 30 to about 45. This structure can be
readily pipelined (as easily as can a multiplication), and it
is very similar to that of a high-precision multiplier unit
implemented from a pair of lower-precision mulipliers.

References

[1] M. J. Flynn, “On Division by Functional Iteration®,
IEEE Trans. Computers, vol. C-19, pp. T02-706, August
1970.

[2] P. Rabinowits, “Multiple Precision Division”, Commun,
ACM, vol. 4, p. 98, February 1961.

[3] Z. Shaham and Z. R. Riesel, “A Note on Division Algo-
rithms Based on Multiplication”, IEEE Trans. Comput-
ers, vol. C-21, pp. 513-514, May 1972.

[4] Staff, S-1 Project FY1979 Annual Report, University of
California Lawrence Livermore National Lab., UCID
18619 (1979).

[5] C. T. Fike, Computer Evaluation of Mathematscal Functions,
Prentice-Hall, 1968.

(6] W. Kahan, private communication, March 1981

Base function ~ Domain Example of use
if(3),) (0<i<y)
n{XZ , s — (l—if(l-—i), (1_<..7<2)
sin{Z2)/ 0<Le<1 sin(z)= —if(d), (2< j<3)
—(1—-f1—14), 3<5<4)
where t = 2 mod 1 and j = # mod4
lg(z)(=logy(2)) 1<:2<2 Ig(2°m)=e+ f(m)
2/z 1<|r <2 1/2%m =271 f(m)
vz 1< <4 V23team = 2% f(2%2m)
2* 0<z<1 2*=2lf(z—2))
I3)z— % (2<-1)
arctan(z)/z 0<2<1 arctanz = ;}?'zf)(,z)’ g;; f i f) 0)
-1z (1<2)
-1, (Z < —8)
N e » _ —2f(z), (—8<2z<0)
erf(z)/2 0<2<8 "erfz= f(2), (0<z<8)
1, (8 <2
Table 1

142

