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ABSTRACT -- A gate level design of a digit-slice on-line arithmet-
ic unit is presented. This unit is designed as a set of basic modules,
Processing Elements (PE), each of which operates on a single digit
of the operands and the results. It is capable of executing four basic
operations of addition/subtraction, multiplication and division in an
on-line manner. The results are generated during the digit-serial in-
put of the operands, beginning always with the most significant di-
git. A general (with respect to radix) analysis of the cost and speed
of the proposed unit is also given.

1. INTRODUCTION

The subject of this paper is the hardware design of a highly
modular  on-line arithmetic unit for the four operations of
addition/subtraction, multiplication and division. The goal is to in-
vestigate the gate complexity of an on-line unit and show its flexi-
bility for VLSI implementation. The logic design of the on-line unit
is based on work of Goyal [GOY 76].

We review briefly the basic definitions and concepts of on-
line arithmetic. An on-line algorithm generates the j-th jeftmost di-
git of the result after receiving the (j+8)-th input digit. Therefore,
an on-line algorithm is always performed in 2 digit-serial manner,
from left to right. In order to generate the first digit of the result,
the inputs must be known to 53+1 digits of precision. Thereafter,
an output digit can be obtained for each additional input digit. The
on-line delay 8 is a small integer, typically 1 to 4, depending on the
operation and the range of the arguments [TRI 77, GOR 80al.

On-line arithmetic provides a cost-effective approach to
achieve higher computational rates by allowing overlap at the digit
level between the successive operations [ERC 75, TRI 77]1. 1n par-
ticular, on-line arithmetic is highly attractive in high speed multi-
module structures for parallel and pipelined computations. Several
on-line algorithms have been developed and used in iterative struc-
tures for array computations [ERC 80a, GRN 80, ERC 80b]. Typi-
cal problems, such as matrix-vector multiplication and solving

linear recurrence systems, have been investigated and correspond-
ing solutions using on-line approaches are proposed and evaluated.
The main result indicates that the on-line approach offers a speed-
up factor of 2-16 with respect to conventional arithmetic while
preserving limited interconnection bandwidth, decentralized control
and uniform structure. It is especially important that the on-line ap-
proach offers a straightforward speed improvement in solving hard
problems, such as non-linear recurrences {ERC 80b]. Applications
of fault-tolerance technigues to on-line arithmetic have also been
considered and the feasibility of low-cost error detection and correc-
tion for on-line algorithms has been demonstrated in [GOR 80b].
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2. ON-LINE ARITHMETIC ALGORITHMS

In general, an on-line algorithm is specified recursively in
terms of on-line representation of operands, results and some inter-
nal values. The recursion is usually of the following form:

P,-==f(P,'--l,X/+5\y1+asZ/)

where f is a linear function and P; is the partial internal result. The
output digit is obtained by applying a selection function on the
truncated version of the partial result P; and the current inputs.

2,41=SELECT (P}, X459 +5)

In order to be able to perform such a selection, it is neces-
sary to use a redundant number system. We assume that all the
operands and the results are represented in a symmetric signed-digit
number system {AVI 61]. The totally paraliel addition/subtraction
[AVI 61} can be easily performed in an on-line manner with 8=1.
On-line algorithms for multiplication and division were introduced
in (ERC 75, TRI 77). Also, systematic methods for derivation of
on-line addition/subtraction, multiplication and, division algorithms
appears in [GOR 80a] and for division in [TRI 78].

It has been proved that an on-line division unit is capable
of performing on-line addition and multiplication with minor
modifications and actually with no increase in hardware [GOR 80c}.
Therefore, in the remaining parts of this paper we focus our atlen-
tion on the design of a digit-slice division unit, assuming that the
same unit can also perform addition and multiplication. The design
is based on the following on-line division algorithm [TR1 77]:

Step 1 {nitialization]:

5 5
P0=2 ! D0=2 dir™! Q=0

i=1 -1
Step 2 [Recursionl:
for j=1,2,....,m do:
Step 2.1 [Selecrion}:
4;=SELECT(P_,.D,)

0=0;1+q;r™’
Step 2.2 [fupur Digits}:

D,=D,-1H+d; sy
Step 2.3 [Basic Recursion):

Pp=rP;\—q; D44 = Q) 1dpasr ™ (1)
Step 3 [End)

In the above algorithm N, D, and Q are assumed to be the
dividend, divisor, and the quotient, respectively.




3. ON-LINE DIVISION UNIT

We assume that the on-line unit consists of a linear cascade
of identical Processing Elements (PEs). Each PE is a relatively
complex logical module capable of performing on-line operation
under the contral of the Global Control Unit (GCU). Figure 1
shows the schematic organization of the on-line division unit along
with the GCU. The module EU performs the exponent calcula-
tions. END UNIT allows the last PE to be identical to all the other
PEs as far as interface is concerned.

The PEs collectively contain the fractional parts of all active
operands, one digit in each PE. Most significant digits are in PE,
and least significant digits in PE,. Output digits are generated by
PEy in an on-line mode and are placed on the Z-Bus. Each output
digit is temporarily stored by all PE’s.

After receiving the output digit and the transfer informa-
tion from the right-hand neighbor, each PE starts the computation
and generates one digit of the partial remainder. Depending on this
partial remainder and the truncated version of the divisor, the next
quotient digit is selected by PE£| and it is placed on the output bus.
This operation continues until the required precision is obtained.

X-BUS
e, Y-BUS
CONTROL‘ ‘ey
GLOBAL K3
CONTROL (=—— Ey — =
UNIT (GCU)™BATA

Z-BUS (TO NEXT ON-LINE UNIT}
Figure 1 -- Organization of an On-Line Division Unit

In order to determine the operation of each PE, we use the
basic recursion formula for on-line division (Eq. 1). Let:

Ly :
P=X pir

=l

3
4

where, for each PE;, p/ is the i-th digit of the j-th partial remainder
and n; , d; are the i-th digit of the operands.

The digit recursion, performed by each PE,, is defined as:
P/(/)=P,(¥l_”‘qj d,+n,+5[i=81—q,+1--sd,+s+1?70)-”,9? (5

where njfal.i=8] means 7,45 will be used only in PE;. T,V is the
transfer digit from PE, . at the j-th step T,S’f is the transfer digit to
PE;_, at the j-th step

It is obvious that g,+)_5 is zero in PE; for §< i €,j—2-+8.
Using Eq. (5) Figure 2 for the on-line divide unit is obtained.

In order to eliminate carry propagation between the PEs,
we assume that each digit of the partial remainder (p,)) in PE, is
represented by an interim partial remainder (w,%)) and a transfer
digit (7,9%) such that:
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Figure 2 -- Interconnection Between Processing Elements

The transfer function in Eq. {5) is obtained by a series of
three transformations /| , f, and f; such that:

IO ;
S =G - dig=rtl) 4w} O
23(1) 0
5

Fri=q; . d=ri " w20

.. i)
The transfer digits from PE, to PE,_| are r,p_?l(/ and ,/"_2](/’

resulting from transformations £ and /5, respectively. Also there
is a transfer digit out of the Multi-Input Adder (+A{’). Therefore:

T =2 4220 4 4 (8)
substituting (6), (7) and (8) in (5) we get:
wD=w D+ TYTD 4wt
+”j+s[’=5]'f’f‘—w ©

I3 TP P14 2294 a0

. . . i) @] ;
P D= D+ T V= O 1 P20 a0

A block diagram of transformations f , f, and f3 is shown
in Figure 3.

Transformation f; essentiaily requires a radix-r multi-input
adder which forms the sum of the digits of both signs. This adder is
implemented as a k-stage (r=2*) linear cascade of radix-2 multi-
input adders where each input of a radix-2 adder can assume three
\(/alues {-1,0,1). The organization of this adder is shown in Figure 4

k=4).

The products ¢;*d, and g,41_4 *d;45 are generated by two
separate product matrix generators which consist of a k*k square ar-
ray of redundant binary product, cells. Each cell performs the pro-
duct of two redundant binary digits qj; and d,; and its output pro-
duct digit is also in the digit set {-1,0,1}. Figure 5 shows the opera-
tion of the digit product generators f; and £, (k=4).

Therefore, transformation f; requires k MIRBAs (Multi-
Input Redundant Binary Adder), each capable of summing 2(k+1)
redundant binary inputs, as well as the 'Transfer’ from the adjacent
MIRBA position [GOY 76]. Figure 6 schematically shows the im-
plementation of /'3 for radix 16, i.e., k=4,

Design of a MIRBA

MIRBA is a limited carry/borrow propagation adder which
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Figure 3 -- Functional Representation of the Digit Algorithm for
On-Line Division
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accepts several redundant binary inputs (digit set {-1,0,1} ) and pro-
duces one redundant binary output (with appropriate adder
Transfers for more significant adjacent adder stages).

Using Rohatsch’s technique [ROH 67], a 10 input MIRBA
can be realized with four simple transformations [GOR 80c].
Another way of implementing MIRBA’s is the log-sum tree tech-
nique. In this scheme each MIRBA can be implemented by a log-
sum tree structure of two input redundant binary adders (Borovec
Unit (BU) [BOR 68]). For a 2(k+1) input MIRBA, the tree struc-
ture has L levels of Borovec Units (BU) such that:

L=llog22(k+1)] a10)
and the number of BU’s required is (2k+1). Figure 7 shows the
log-sum tree structure for a 10 input MIRBA.
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Figure 6 -- Illustration of the Implementation of the Digit Algo-
rithm, Using Redundant Binary Product Matrix Generator (Radix
= 16)

Logic Design of The Processing Element

The major components of the PE are the Register File
(RF) for the storage of active operands, the Digit Processing Logic
(DPL) which is essentially a large combinational network and the
Local Control Unit (LCU) which supplies the control signals in
proper order to the DPL. Figure 8 shows the schematic block di-
agram of a Processing Element. The RF comprises a set of digit-

wide registers which are used to hold the operand digits and the
result digits.




The DPL operates on the operand digits stored in the regis-
ter fite of the PE and the information received from its right neigh-
boring PE. I also generates Transfer information for its left neigh-
bor PE. The LCU issues the timing control signals to the processing
logic for sequencing the various steps of the digit algorithm.

The register file is a set of registers that are used to hold
the operands and result digits. Each PE retains one digit of each of
the active operands. Each register is (k-+1) bits long to hold the k-
magnitude bits and one sign bit of one sign and magnitude encoded
radix-2* digit.
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Figure 7 -- Illustration of Log-Sum Tree Structure for a MIRBA
Using Borovec Units Only (k = 4)

There must be at least seven registers in a PE. One for the
dividend, one for divisor, one for quotient digit and one for interim
partial remainder {w,'")). Three other registers are used to hold the
transfer functions (7.} coming from PE..;. In the next step of
the computation {j+1) these functions are gated to PE,_; along
with w,'”’. They constitute the operands of PE,_; in step j+1.

The registers in the RF are loaded from a buffer register,
IBR whose contents are determined by the internal Register Input
Bus Selector, SRIB in the Digit Processing Logic. Similarly, the
contents of the registers are inputed to the DPL either directly or
through an Output Bus Selector SROB, also in the DPL.

Block Diagram Description of DPL

Figure 9 shows the data flow structure of the Digit Process-
ing Logic (DPL) in a block diagram form. It consists of three ma-
jor components: the Digit Product Generator, (DPG), a radix-2¥
multi-input adder (MIAD), and a Digit Surn Encoder (DSE). DSE
converts the redundant binary sum output of adder MIAD to the
Sign and Magnitude format for local storage in the Register File, or
transfer out of the PE.
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Figure 8 -- Block Diagram of a Processing Element

As shown in Figure 9, there are input and output ports
designated as 7/P, , RIP, and TOP,, ROP;, respectively. The input
port TIF, carries the *Transfer' (carry or borrow) from adjacent
MIAD and the contents of some register in the Register File of the
adjacent PE, 1. RIP, carries the quotient digit from PE,; _s. The
output ports TOP; and ROP, carry similar information for PE,_;
and PE, . _; respectively.

Logic Design of 2 Multi-Input Adder (MIAD)

In general, a radix-2* multi-input adder consists of a linear
cascade of k MIRBAs. A 2(k+1) input MIRBA is implemented as
a tree structure of BUs (see Fig. 7). Each MIRBA requires 2k +1

BUs that are arranged in L=’logz2(k+1) levels. Therefore:

GMIAD=k(2k+1)GBU = 26/\ (2k+1) (11)
Imiap=L"3 sy 12
There must be at least seven registers in a PE. One for the
dividend, one for divisor, one for quotient digit and one for interim
partial remainder (w,(-’)_). Three other registers are used to hold the
transfer functions (7.Y?) coming from PE.,. In the next step of
the computation (j+1) these functions are gated to PE,_, along
with w,(”. They constitute the operands of PE,_; in step j+1.

There are other registers in a PE which are used to hold the
intermediate results. These registers are ocated in DPL and will be
shown later.

The registers in the RF are loaded from a buffer register,
IBR whose contents are determined by the internal Register Input
Bus Selector, SRIB in the Digit Processing Logic. Similarly, the
contents of the registers are inputed to the DPL either directly or
through an Output Bus Selector SROB, also in the DPL.




where Gyap is the number of gates required for one MIAD; nyap Logic Design of Digit Sum Encoder

is the delay of one MIAD; Ggy is the number of gates required for

one BU and 8y is the delay of one BU. The Digit Sum Encoder (DSE) transforms the redundant
binary sum output of the radix-2* adder into an algebraically
equivalent radix-2¥ sum digit in Sign and Magnitude format for ei-
ther local storage in the Processing Element or transmission out of
the PE. The total number of gates, Gpse required by the DSE logic
has been found to be [GOY 76]:

For a 2{(k+1) input adder, the number of pins required for
the input and output adder transfers /AY™" and AY are 2(2k+1)
each (see Figure 7).

Logic Design of DPG

Gpse=16k (14)
The Digit Product Generator forms the product array of
two signed radix-2¥ digits. It accepts the two digits encoded in Sign . .
and Magnitude format and outputs the product array in redundant Logic Design of Selectors SRIB,SROB,STOP and STIP
binary. The logical design of DPG is given in {GOR 80cl. The ‘ . . ] )
number of gates required for each DPG is k! AND GATES + 1 The selector SRIB is a seven-input multiplexor. It constant-
XOR [GOY 761. ly examines the data on D, Q and N Busses. If the data on any of
these busses belong to PE,, it writes this data in the corresponding
; . > o
The pins contributed by DPGs to the Pin complexitzf of registers in the register file. It ajso gates the output of DSE (u,.’ )
DPL . . . P ) ey g =1 to Register RW in the Register File. The transfer function
are those pins which are required for 71y, ) L Gin " 40 D) ey ) T
and 2™ The number of pins required for a transfer signal is: T (=i V7,0 7) which should be sent to PE, -y in G+ 1)-th
i+l ’ ’ ’ step is gated through this selector to Register File for temporary
H_k(k'ﬁ a3) storage. The width of the selector is obtained by the following
2 equation:
TO REGISTER FILE
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Figure 9 -- Block Diagram of Digit Processing Logic (DPL)
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b=MAX [k+1,P 4 P, 1. F

LAY

Pyt
A
i i

Pagr= Pin Count of 1=2(2k +1)

G

P o o= Pin Count of 1, I+ klk=1)
t

2

P = Pin Coun o_/'/,pz(/)=l+ —‘&z_—”—
Il

Therefore:

b=2(2k+1) (15)
The logic design of SRIB is similar to that shown in [GOY
76] and the number of gates required is:

Gsrig=b+b+2(1+ 1‘("7”“—)+4(k+1)=k2+1 1k+10(16)

The selector SROB selects the contents of one of the regis-
ters of the Register File on to the Register File Output Bus (ROB).
The gates required for this network are dependent on the number
of registers in the Register File and the bit width of the registers.
There are seven registers in the Register File. For radix-2% | four of
them are (k+1) bits wide, one is 2(2k+1) bits wide and the other

two are {1+ L{——) bits wide. Therefore, the gate requirements

of SROB are exactly the same as that of SRIB, that is:

GSROB=k2+11k+10 (17)

The width of selector STOP s equal to the width of output
port TOP,. The width of TOP, is determined by the maximum
length of "Adder Transfers". Therefore, the width of TOP, is given
by Eq. (15). Logic implementation of STOP is shown in [GOR
80c}. From the given design we conclude that:

Gsrop=3b+2(1+ ﬁﬁfz‘“”)=k2+11k+s a8

The selector STIP is actually a four-output demultiplexor.
The width of STIP is exactly the same as that of STOP and is there-
fore equal to b. The logic implementation of STIP is simple and the
number of gates required for this element is;

Gsrp=b+k+1+2(1+ %ﬂ)=k2+4k+5 19

Storage Buffer Registers of DPL

DPL has ten buffer registers, R through Rq and IBR. The
width of each of these registers has been indicated in Table (1).

Register Width

R, 202k+1)
R, | " k+1
Ry 1+k(k-1}/2
Rs_g k+1
IBR 212k +1)

Table (1)- Width of The Registers in DPL

Design of The Quotient Selection Unit

The selection of the quotient digits is done by the most
significant Processing Element (PE}). The quotient digit selector
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inside PE| is a table look-up device which implements the SELECT
function. It examines the Y most significant digits of P,y and o
most significant digits of D;_1, in order to select the appropriate

quotient digit, q;.

According to Eq. (9) :

Pzl b
Pi_l=zpl(/—l) i 2 [w,(’_”+ 7'/(_/—1)]r—/

i=1

(20)

im1

Therefore, the truncated version of Py e, 13,_1 ) is:

i’./—l=i (w, U= 7.U=D] i

i=1

Q1)

This means 7,'s and w,’s can be used as the address lines
of a ROM device implementing the SELECT function. It is not
difficult to see that even for small radices the number of input lines
to the device will be prohibitive [IRW 77]. Two techniques to avoid
this dilemma are available: 1) Use a PLA, or 2)APerform carry pro-
pagation on the most significant portion of P,_; to reduce the
number of lines required. The number of input lines will be re-
duced by up to 44% if this technique is used [[RW 77]. In estimat-
ing the cost of the Processing Elements we have ignored the cost of
the Selection Block because it effectively appears in only one PE
(PE}). We assume that the time required by the selection process
is:

=45,

Gate Complexity of Digit Processing Logic

The total number of gates we require for the implementa-
tion of DPL is the sum of all the gates we require for each of its
components:

Gppp=58k2+T79k+51 (22)

Pin Complexity of DPL

The pins required for digit processing logic DPL is the sum
of the pins necessary for input ports 7/P;, RIP, and output ports
TOP; and ROP;. The total number of pins, Ppp;, necessary for logic
implementation of DPL is equal to the sum of the pins required for
input and output ports.

PorL=Prop+Prop,+Prip+Prep,
From [GOR 80c] we have:

PT,P/=PTOP,_=P/W-,)=2(2k+1) (23)
and since the information on RIP; is a single digit then:

Prop=Pgip=k+1 (24)
Substituting (23) and (24) in the equation for Ppp; we get:

Ppp=10k+6 25)

Overall Logic Complexity of a PE

The total number of gates, Gpg, required for the imple-
mentation of a PE is the sum of the gates required for the combi-
national logic of DPL, the gates required for the PE control logic
and the gates required for the implementation of storage registers
in the PE. The storage registers in a PE comprise the registers in
the Register File and buffer registers in DPL. From Table 1 the
number of gates needed for storage is:

Gsro=[6(k+1)+4Qk+1)+k (k—1)+2]G,)

=(k™+13k+12)Gp




Gp is the number of gates required for the realization of a D type
flip-flop. Assuming Gp=6 [TEX 69] we get:

Gsro=6k*+78k+72 (26)

Ignoring the number of gates needed for PE control, the number of
gates required for each PE is:

Gpe=GppL +Gsro
Substituting the values from Equations (22) and (26) we get:

Gpe=64k?+157k+123 (V)]

The pin requirements for each PE is the sum of pins re-
quired for the DPL plus the number of pins needed for the input
and output busses (ignoring the pins required for control signal
from GCU). That is,

Ppg=Ppp;+Py_gus*+Pp—pustPo-sus
or

The pin and gate requirements of DPL and PE along with
the gate requirement of other PE components have been shown in
Table 2.

4. SPEED OF THE DIVISION UNIT

o Time required to compute a single quotient digit (k+1
bits) is composed of the following elements:

1. Time to select a quotient digit (r,)
2. Time to update Q; and D; registers (z,)

3. Time to perform the basic recursion formula (zg)

The following diagram indicates the relative position of
these three delays with respect to one another.

Nj4g & djs5 ARRIVE

SELECTION UPDATE

Pit 4 G n, 5,qANDd}, 5 (ARRIVE
UPDATE RECURSION ‘ SELECTION |
| — t 4

b; P G+1

Since usually ¢, and g are greater than t,, the total time for
one step of the algorithm (Tsrgp) is:

Tsrep=tst+ir 29)

Each step starts when the digits of the dividend (n;45) and
divisor (d+s) appear on the input busses (N-BUS and D-BUS). At
the beginning of each step, selection of the quotient digit (qj) is in-
itiated by the quotient selection unit in the most significant Process-
ing Element (PE;). This selection. is based on the truncated version
of the previous partial remainder (P;_,) and divisor (D,-p).
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16| 4 | 936| 24| 68| 70 70 | 68| 37 {1295 46 | 480{1775| &1
32/ 5 |1430| 33| 80| 90| 90 | 88| 50 |1896| 66 | 612/2508| 74
64| 6 (2028 44| 96| 112|112 | 110! 65 |2613} 66 | 7563369 87
128| 7 {2730| 57112136136 | 134 | 82 |3446| 76 | 912]4358| 100
256 8 (3536 72| 128 | 162 [ 162 | 160 | 101 |4395| 86 | 1080/5475| 113

Table 2 -- Gate and Pin Complexity of a Processing Element vs the
Radix (r).

PE, outputs g, on the Q-BUS. After reception of this quo-
tient digit and some other information from its right neighbor, each
PE starts the processing of one digit of the next partial remainder
(P)). After a certain amount of time (rpg), the next partial
remainder will be available in a redundant format (w, ¥ and TV).
This process continues until the required precision is obtained. We
compute 7pg by measuring the time span between the setting of all
registers (R, through Rg) in PE; at step () and (G+1). Therefore
(29) can be rewritten as:

Tsrep=tstipe (30)

Graph representation of #;+1pg is shown in Figure 10. Us-
ing this graph Tszgp is found to be:

Tergp=2tsrig+tpse+ iap+1smre+istip S isToP

+3rSROB+r: 31
sRiB
n, .d, ARRIVE [¢ 'STOP'
v Rg J SROB/ g 'DPGU  tsmip 'SRIB My 4qodi 4 ARRIVE
R. R 1 S _ 4 L 4 [ ) i
&7 tspig, 3 RQ | CHST tsrop TPt |
: y SRO Rg | t
\ STIP tgRiB i
| RD_ 4 1ppG(2) " 1
C! TP
gnof*2 | v £ |
| §tstop Ry | : !
i STIP R, ‘SM/RB | !
: SROBM 2y I |
1 tgwme oot ST terop B3l tsMme i
|___pne tsTop |
* t STIP |
CMPR SRoB i Rs tsmre !
t v . 4 srig!
SROB tSTOP tgrip 1 M_IAD _'DsE Jj__:
- RW
tsTop 'SRIB
—_J t
b v tstip TA |
— —Tsrep =& * 'pE i

Figure 10 -- Graph Representation of Tsrep-

The components of Tsrep are as follows:
IsriB:

Logic design of Register File Input Bus Selector (SRIB) has
been given in [GOY 76]. According to this design:

Ispip=28,

isroB <

From [GOR 80c] :

Isrop™=28,




Also we have:

IsToP=28,
and
lens1=8,

lope -

Assuming LVE; (Logic Vector Encoding) for the operands
[GOY 76], and according to what has been explained in the design
of the Digit Product Generator we get:

IpPG=1x0R =128,

Isr4p

According to Eq. (12):
miap=L"8gy

such that: L=llog;2(k+l)l and dpy is the time required by one

Bo]rovec Unit [BOR 68). Using LVE,, 3gy is obtained to be [GOY
76]:

85[/:76*,
Therefore:

a0 =T, [log2 (c+1)]

pse

From the design given in [GOY 761, 1pse can be estimated
to be:

Ise=5kB,+3k8, =8k,

IsTip’

According to the design given in [GOR 80c] :

IsT1p =8y

Therefore, the total time per step is:

Tgm,=[8k +7[log2(k+1)]+24]5£ (32)

Table 3 shows Tsrep and its components. From this table it
can be deduced that contribution of "Digit Sum Encoder" (DSE) to
the total step time dominates all other components for relatively
large radices. But this unit can be eliminated if w," can be stored
in redundant format. That is, RW and R, should be made to be
double bank registers. Also STIP, SRIB, SROB and STOP blocks
should be modified.

R it T tm——m e R e Fomm e T R +

" II . ‘1 'sriB | tpge f 'MIAD; tsTIp g'sro;' I tspop 1‘ sTEP II
r

[ A T b g, ]

+——-+—--+-—-—g—-—+- L] + +--—g-~—~+

fzl11 2 | i [ T

R it STt T S + + o +

lat 21 2 | | { 1|

R ST ST + + R g

8131 2 | 20 | 21 | 1 |

Form b T Fome o oo +

e a1l 2 | 32 | 2 | 1 |

R s o, oo e m R +

'32 151 2 1 40 | 28 1 1 |

R e oo Amm e R et +

‘64 161 2 | a8 | 28 | 1 |

e Hmmman m D S

11281 71 2 | s6 | 28 | 1 I

D Satabet ST PR Fomm Hmm- oo S T

l2561 8 | 2 | e | 35 | 1 |

R it (T Fommmem o R Fomme Foemmmem

Table 3 -- Time Required for one step of the Division Process
(Tsrep) and its Components.

5. CONCLUSION

A detailed design of a digit-slice on-line arithmetic unit was
considered. This unit was designed as a set of basic Processing Ele-
ments (PE) each of which operates on a single digit of the operands
and the results. Assuming that the radix of implementation is
r=2% the number of gates required for one PE has been shown to
be proportional to k2. - Also, the number of pins required is propor-
tional to k. Specifically, we showed that the number of gates vary
from 350 to 5500 for radices 2 to 256. From the gate count expres-
sion Gpg, assuming a total precision of B bits, it can be easily deter-
mined that r=2 and r=4 require the least total number of gates.
The number of external connections per module ranges from 22 to
113. Again, assuming a total of B bits, we determine that the total
number of pins (external connections) is a monotonically decreas-
ing function with the maximum at r=2. Similarly, it can be seen
that the total time for B bits is also a monotonically decreasing
function with the maximum at r=2. These results indicate the ex-
pected time-gate count tradeoff.

They also show that the on-line arithmetic is highly suitable
for LSI/VLSI implementation. As the number of available gates per
chip increases, several processing elements (modules) can be im-
plemented on one chip and thus simplify further the interconnec-
tions.
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