\
H
:
|

:
:

A CHIP-SET FOR A HIGH-SPEED LOW-COST FLOATING-POINT UNIT.

J.B.Gosling B.Sc., Ph.D., C.Eng., M.I.E.E., J.H.P.Zurawski M.Sc., Ph.D.,
Prof. D.B.G.Edwards M.Sc¢., Ph.D., C.Eng., M.I.E.E.

Department of Computer Science
University of Manchester, Manchester, England. M13 9PL

A ract

Although the advent of microprocessors has put
considerable computing power in the hands of large
numbers of users, there is still an important
group who have yet to benefit fully from large
scale integration. As a step in the direction of
rectifying this situation, a highly flexible chip
set is being designed, with a view to reducing the
cost of a powerful floating point processor by a
factor of about U4. Processing speed will be up to
twice that of an equivalent unit built from MSI
devices, before allowance is made for savings on
wiring delays. It will be possible to construct a
unit satisfying all published standards, proposed
and existing (de facto), as well as permitting a
number of extensions not specifically in these
standards. At a cost between 100 and 150 ICs, and
with a floating-point add time of around 120nS,
the proposed unit is cost-effective compared to
currently available coprocessors.

1. _Introduction

Large scale integration of. digital circuitry
has produced 16-bit microprocessor . systems,
together with relatively large memories with up to
eight bits in parallel. The computers so produced
are of too low a throughput for a large group of
ugsers, notably the scientific community. To cope
with more powerful processing facilities, and the
longer word lengths wused, it 1is necessary to
partition the logic in such a way that the word
length is extendable. This leads to the bit-slice
approach. The. resulting machines are still very
slow in terms of conventional large computers. To
achieve greater processing power, more specialised
designs are needed, and for the speeds required, a
lower scale: of integration has to be -accepted.
This leads to more specialised packages and hence
a smaller market, which in turn points to the use
of uncommitted logic arrays (ULAs) or
masterslices. This work describes an approach to
the design. of a high speed. floating-point
arithmetic unit, making usé of a ULA in emitter
coupled logic (ECL).

Experience of designing with the particular
array has been obtained in an earlier project in
which a slice of a high speed multiplier was
produced [1]. This was proved on a 16-bit model,
which indicated a 64-bit multiply time of around

CH1630-3/81/0000/0050$00.75 © 1981 |IEEE

50

280nS. Two additional, but smaller and faster ULAs
were designed to handle end effects and control,
replacing 17 SSI circuits. The total cost of this
multiplier would be 56 packages. This compares
with about 800 for z machine of 10 years ago, at a
similar theoretical speed. The actual speed of the
latter was 60% slower due to large wiring delays
that will not be present 1in the newer unit.
Current work 1is directed towards the 56-bit
mantissa section of a 6U-bit floating-point
multiplier (112-bit product).

The authors have also been associated with the

design of two floating-point arithmetic units.
That of 1968 [2] consisted of about 3000 3SI
circuits, and had a repertoire of about 50

functions including 32-bit fixed-point and 64-bit
floating point arithmetic. Floating point addition
time was an average of 250nS, and a multiply time
of 500nS. A newer unit at present under
construction in a machine known as MU6G (3],
consists of about 650 ICs, mostly MSI. The unit
will perform only floating-point arithmetic, but
includes a capability for calculating a number of
mathematical functions by polynomial evaluation
under microprogram control. Floating-point add
time is expected to be under 200nS. Multiplication
speed is low, at 1.8uS, but the fast multiplier
discussed above is to be connected as an ‘'optional
extra'.

The present work is aimed at producing a set of
medium scale integrated components that can
significantly reduce the size of this unit. It is
expected that the MU6G floating-point unit will be
reduced to around 180 ICs, and a simple unit
without the mathematical functions should require
less than 120. The speed will be at least as good
as MU6G, and initial indications are that the
operation times will be halved.

The ULA to be used is the Plessey ULA2000 or
ULA3000. They are similar to the Fairchild
F100168. These devices each consist of 144 cells
that are essentially 2-input OR-NOR gates (similar
to those of [1]), and with capability for both
wired-AND and wired-OR. The difference between the
two arrays - is solely one of speed and power
dissipation. The ULA2000 has an OR-NOR time of
550pS, and dissipates up to U4W, while for the
ULA3000 the figures are 3nS and 1W. There are a
maximum of 64 connections available, including
power. Of these, up to 24 may be outputs. These
arrays are small by the standards of other

technologies, but are currently available. Larger g) The function set must include the operations

arrays in ECL are projected for the next few add, subtract, multiply and divide. The
years. The proposed design is such that it will be operations ‘'reverse subtract' and ‘'reverse
a simple matter to incorporate more onto the divide', defined as S-A and S/A (as opposed to
larger chips, since pin 1limitation is not a subtract as A-S and divide as A/S), are also
serious problem.) required when using a one-address architecture.
For this architecture operations such as 'load
2. Specification of a floating point unit accumulator' and 'store accumulator' are also
included. The proposed floating-point standard
The design of the chip set is to be as flexible includes square root, remainder (=x - yxn; n =
as possible in order to allow the system designer nearest integer to x/y), compare, and
the maximum freedem in choosing the details of the conversions between fixed and floating-point
system. It is hoped that the result will then be a
commercial proposition. The cost of producing Store ACC ST
different designs for each system variation is Store AEX STX
still prohibitive, even using ULAs. Load ACC with real LDR
Load AEX (with real) LDX
Considerations that are to be born in mind Load ACC with integer LDD
include the following Load exponent only LSR
Add ACC to OP ADD
a) The chip set should be capable of meeting the Subtract OP from ACC SUB
de facto standard of ICL/IBM floating point Subtract ACC from OP RSB
units. These make use of an exponent base of 16 Multiply ACC by OP MLT
rather than 2. It is believed that this format Divide ACC by OP DIV
may be more acceptable to a number of large Divide OP by ACC RDV
users rather than one in which the exponent Scale ACC by 2 n (LS bits SCL
base is restricted to 2. of OPM treated as a signed integer)
Square root of ACC SQT
b) The proposals of the committee on Compare ACC and OP CMP
floating-point standards must be considered Remainder (ACC=ACC-OP*n REM
(4], since many users will wish to conform with n = nearest integer to ACC/0P)
any agreed standard. The maximum set is the Convert integer to real CIR
aim. real to integer CRI
real to floating CRF
¢) The reasons for the choice of sign and point integer
magnitude representation of numbers by the
major manufacturers and by the IEEE standards Table 1 Proposed operations of a floating point
committee 1is not clear. The set will be unit
designed to allow the choice of a complement ACC - accumulator } the two operands in 2 or more
number system.) OP - operand } address formats
AEX - an extension to ACC used mainly for double
d) At least two methods of exponent biasing are length work.
used; by 27 or 2" . 1. The logic will be
designed to handle both. formats. MU6G includes facilities to assist with
multilength arithmetic, and certain double length
e) Different approaches to rounding are used by operations are provided in microprogram. A
different manufacturers, and others have been function SCALE allows rapid multiplication by
proposed. MU6G contains options to allow (n integral) and the exponent can also be
multilength arithmetic to be performed, and to manipulated as an entity on its own (LSR).
satisfy different high level language
requirements with regard to real to integer Table 1 lists a function set defined in terms
conversion (truncate, round, entier etc). One of a one-address architecture. For two or more
of the floating-point standard proposals address systems (two addresses referring to two
suggests the use of rounding towards + oo and operands etc.) the ST, LDR, LDD, RSB and RDV
towards - o0 to enable the user to assess the operations will be unnecessary. The register AEX
error bounds of an algorithm. is the accumulator extension register. Its most
obvious use is to receive the less significant
f) Exceptions must be detected and used half of a multiplication result, thereby
appropriately. Exceptions include overflows and simplifying multilength multiplication. It is also
underflows, indications of which wmay be useful in other double length operations for
collected together in a register of "odd" holding intermediate results.
status bits, ccllectively designated here as
AOD. This register will also contain exception Other desirable features are:
override bits- and could include 1-bit '
indications of "Not a numbers"[4]. "Graceful a) Results should be as close as possible to the
underflow" as proposed in one version of the true result. In particular, operations with
floating point standard may also require a flag integers of comparable magnitude but expressed
since numbers are then permitted to become in floating-point format ° should give the
subnormal. correct integer result.

51

b) The result of A+(-B) and A-(+B)

identical.

should be

¢) It is helpful if error propagation in common
sequences, such as polynomial evaluation of
functions, can be minimised.

3. & Floating-Point unit proposal

The design of a floating-point unit falls into
three sections, which are, to some extent,
independant. These are the mantissa, the exponent,
and the "end effects™. It is tempting to leave the
latter until a late stage in design, but this can
lead to a severe deterioration in both cost and

performance.
.1 M issa
179
Regtster —
fFtle
16 lines [— Ron ’,_.
i ne
i ACCH | [__orA]

[

3

x4/\/4 %2 :
A3 nz_ | v
RT R2

Rl lgl'f.l;llnl‘ X
Shift

Shift

A B
L B LU }‘ Earrg_ tn
i
]:: e -
ruu/ln—_u]) v
:F %

nosietr

Nerpalisser

ﬁ—l-ilkound bik

14 I

]
o/p

Fig. 1 Mantissa secticn

Fig. 1 is a schematic diagram of the mantissa
section, and includes an indication of some of the
end effect logic. It 1is arranged in a form
suitable for a one-address system, but may be
adapted easily for other forms of order code by
addition of an extra multiplexer on the input to
the register ACCM. For one-addriéss orders, an
existing number is held in a register ACC, whose

52

mantissa section is ACCM. A second operand enters
the unit via M6 and is set to register OPM. The
use of this register as a buffer allows the
operand fetch unit to prepare the next instruction
- operand pair. For an addition, the exponents
will be compared, and one operand is routed via M3
to R1, and the other to the alignment shifter. The
output of these two devices feeds an adder
subtractor unit at the inputs A and B. It is
envisaged that this would consist of an arithmetic
logic unit (ALU) such as the 10181. This unit can
perform A+B and A-B. The latter is performed
internally by inverting data on the B input and
adding. With floating-point arithmetic the operand
reaching the B input is the one with the smaller
exponent, and not necessarily the subtrahend of a
subtraction operation. If sign and magnitude
representation is used, it is immaterial which
operand 1is inverted, and the result may also
require inversion. With twos complement the
correct result can be obtained by use of the
relation [5]

-A+B = A+B

which does not have a forced carry as is normally
required. The result of the add is set to a
register R3, true or inverse selected, and then
normalised and returned to ACCM.

Multiplication takes place by using the loop
consisting of the ALU, R3 (and the true / inverse
logic), M3 and R1 to accumulate the product. ACCM
is used as the multiplier, and is decoded two bits
per cycle [1,5]. The decoder selects OPM or 2x0PM
to be gated via M2 to R2. The least significant
bits of the product fill up ACCM as the multiplier
is shifted down. When the product is complete, the
most significant half is in R3, and the least
significant half in ACCM. ACCM is transferred to
R1, R3 via the normalisation to ACCM, and R1 via
the same normalisation to one line of the register
file RF (if present).

In division the divisor is in OPM and dividend
in ACCM. Again the loop consisting of the ALU, R3,
M3 and R1 is used, with shifting in the opposite
direction. A redundant 2-bit at a time algorithm
is used [6].

Convert to integer orders make use of a special
operand with a fixed exponent and zero mantissa.
An appropriate addition without the subsequent
normalisation will then give the correct result.
Provision to hold the fractional part of the
result in floating-point form in AEX can be made.

Convert from integer to floating-point format
operates similarly, but includes the
normalisation.

Fig. 1 also ineludes an indication of the logic
for rounding and carry generation to be deseribed
later, logic - for controlling the normalising
shifter, and for performing other functions. The
latter consists of a read only memory to hold
polynomial eonstants, and a register file to hold
intermediate results mainly in multilength
operations. One of these registers would be
designated as AEX. The input route bypassing OPM

to M5 is used by certain of these functions to
avoid destroying the value in OPM. Finally a
buffer from the output of M1 allows data to be fed
to extra optional units, resuits returning via MH4.
A fast multiplier would be one such unit, where
the low speed of the multiplier described above is
insufficient for the application. For a 6L-bit
unit, a fast multiplier would add at least 50% to
the chip count, and more to the PCB area. The
multiplier speed would be up by a factor of about
6.

3.2 Partitioning of the mantissa logic

The unit illustrated in Fig. 1 is capable of
providing all the features described in section 2.
In an ideal world one would wish to incorporate a
slice of all of this into a chip. Unfortunately
ULAs of the required speed are not yet large
enough to incorporate more than one bit of such a
slice. The number of pins that would be needed for
the two shifters, and the problem of adder carry
propagation, particularly with the F100K Series,
would make such a chip virtually impossible to
design, and difficult to use.

In deciding what to omit from the logic of Fig.
1, two factors are considered. Firstly, certain
relatively large scale circuits are available
commercially. These include the ALU, the shifter
(16-bit shift matrix, 10808), ROM and register
file. Secondly, a less ambitious unit could be
constructed without the ROM and register file. In
this case M6 would not be needed. In some cases
the output buffer and MY would not be required
either. Thus the ROM, RF, the output buffer, M6
and MY will not be considered further.

Considering the shifter, the pin requirements
of a shift matrix can be reduced by using a shift
register approach. This will make shifting very
slow, and add times, in particular, will be
operand dependent. With exponent bases other than
2, the one-bit-at-a-time shift is particularly
galling. This is one disadvantage of the 10800
when used in this application. The 10808 shift
matrix is capable of shifting both ways, of
shifting by the twos complement of the control
input, and of backfilling with zeros or ones. This
unit is therefore particularly suitable for the
purpose, since the alignment shift is by the
exponent difference or by its (effective) twos
complement (a property of the bias system). The
backfill arrangements allow for mantissae in
either sign and magnitude or in complement form.
Suitable wiring from M1 to the shifter, and from

shifter to ALU, and of the normalise shifter, will
allow the use of any exponent base without
difficulty. Omitting the shifter from the ULA thus

leads to a much more flexible system.

The second large section of logic 1is the
adder-subtractor. A four bit slice of this will
itself occupy most of a ULA of the type being
considered. A reduced device performing only
addition and subtraction requires about 50 cells.
Consideration of block carries over a 50 plus bit
mantissa, particularly when using the F100179,
leads to the conclusion that a four bit (rather

53

than a two bit) section is necessary. Three bits
may be acceptable for this purpose, but has other

disadvantages. It is therefore proposed that the
adder-subtractor should be constructed from
commercially available ALUs (10181, 10179 or
equivalents).

The rounding, carry generation, and normalise
distance (MOSIBIT) 1logic will be discussed in
connection with the end effects. The remaining
logic will be considered as candidate for
inclusion in the mantissa chip.

Details of the circuits and their use will be
found in [1]. Basic ocells consist of 2-input
OR-NOR gates, or 3 or Y4-input ORs. A latch can be
made from 2 cells, and a multiplexer-latch with
one more cell than would be required by the
multiplexer alone.

On this basis the mantissa section requires
about 101 cells for a 3-bit slice, or 130 cells
for a H4-bit slice. For ease of wiring it is
advisable to aim for about 75% occupancy of the
cells, or about 108 cells. The three bit slice
fits into this, but the four bit one does not.

It appears intrinsically better to aim for a
four-bit slice, as this fits better with
commercially available devices. However, there is
a2 more important reason. In constructing the
rounding logic and the normalise distance (MOSIBIT
of fig.1) the initial gating requires many SSI
components. The section marked X in fig.1 consists
of a set of Y-input OR gates, or 7 packages in
ECL10K, for a 56-bit mantissa. That marked Y looks
at each group of four bits and decides if they are
all zeroes for positive numbers and negative if
sign and magnitude numbers, or all ones for
negative numbers in complement form. This requires
over one package per four bit group. At the cost
of four or five cells, this logic can be included
in the mantissa slice, thus saving about 25
packages. For binary exponents the number of bits
in the ULA would be immaterial, and some extra
logic is needed to handle the odd few bits (3 bits
for a 4 bit slice). For base 16 it is important to
have 4-bit groups (or 8 etc.). Since this is a de
facto standard, a four-bit slice is chosen. This
can be achieved by omitting either ACCM or the
OP-MS5 combination. ACCM is 1left out, since the
resulting structure is more appropriate to two and
three-address order codes.

3.3. Exponent

Fig. 2 is a schematic diagram of the exponent
section of the unit, and is suitable for 1, 2or 3
address codes. ACCE and OPE are compared by the
adder subtractor, and the difference, RD, is used
to control the alignment shifter of the mantissa.
The larger of ACCE and OPE is set to ACCE. After
mantissa addition, the normalisation distance,
MOSIBIT, is fed to OPE and subtracted from ACCE.
Multiplication requires the addition of the
exponents, and division and reverse division the
subtraction or reverse subtraction of exponents
respectively.

H
H
i

[P nosiBIT
I-P LSR SCL CONU

e

[woo] [rcce]

L

L m]

4/ sy

Fig. 2. Exponent section

The inputs to the exponent unit, other than the
'normal' ones are:

a) LSR. Used to 1lcad the exponent from an
‘unusual' place in the operand. This is
intended to ali»w the exponent to be
manipulated as a separate entity. It is also
needed with two and three-address order
codes.

b) SCL. This is the entry for a part of the 'n!'
of a scale operation. Scale is performed by
adding all or part of n to the exponent
(depending on the exponent base) and shifting
the mantissa under control of the rest of n.

¢) - CONV. This is the special exponent required. in
orders to cenvert between integer and
floating-point formats. The value will depend
on the exponent base, the mantissa length and
whether the mantissa is an integer or a
fraction.

On the assumption that a U4-bit adder subtractor
will require about 50 cells, a 4-bit exponent
slice will require about 120 cells. This is a
little on the high side. .

4. End Effect

There are five major sections of logic which
are placed under the general heading of end
effects. These are:

'Carry' generation.

-Rounding. :)

MOSIBIT (determination of normalisation
distance).

AOD register.

54

Multiply and divide decoders.

By 'carry' 1is implied the carry to the least
significant bit of the adder. The implementation
of this affects the problem of getting the same
answer to the two calculations A+(-B) and A-(+B)
(twos complement). It also affects the rounding
operations for convert orders, and 1is closely
associated with the rounding of other functions.

Rounding can be done in three main ways.
By truncation (IBM/ICL).

By forcing the 1least significant bit cf the
mantissa to one whenever there is any 'spill' from
the less significant end of the adder.

By adding one if the 'spill' is greater than one
half the least significant bit of the mantissa.
The first of these is seriously biased if numbers
of the same sign are being wused (e.g air
pressure), and is the least accurate. The second
is unbiased providing the condition 1is observed.
The last has the least deviation from the correct
result, but takes longer to execute and/or is more
expensive in equipment. It 1is not biased if tne
case when the spill is exactly half the least
significant bit is treated as round to ever [U4].
In some special circumstances it may be required
to round towards zero, towards + oo, or towards -
®0, rather than to the nearest, which is what has
been under discussion.

A full discussion of carry generation and
rounding 1is beyond the scope of this paper.
However, the following points must be noted.

a) The end around carry for sign and magn:tude,
or forced carry for twos complement should
only be added in if the spill from the less
significant end of the mantissa is zero. If
the spill is not =zero then a carry at the
proper place in a ‘theoretically infinite
length adder would not reach the bottom of the
finite implementation.

b) Rounding by forcing a one is recommended for
tWwo reasons.

(i) It is unbiased.
(ii) It is a good compromise between
accuracy and speed of implementation.

Rounding must be performed after normalisation,
but determination of rounding action does not need
to wait until then [5,7]. It is noted that if the
alignment shift is =zero or one place, a large
normalisation may be needed, but there is at most
two digits of spill. This may be due to either
alignment, or mantissa 'overflow! or both. If the
alignment shift is greater than one place, then
the normalisation is, at most, one place. Thus one
guard digit at the least significant end of the
adder will be needed, and suitable 1logic can
prepare the round bit prior to the end of
normalisation. Where rounding = by addition is
required, the addition must wait until after
normalisation. This adds considerably to the time,
as a second cycle of the system of Fig. 1 is
needed. .Alternatively, -a second adder can be
included. In either case mantissa overflow could
reoccur, and -thus further normalisation and
rounding.

For both these problems it 1is necessary to
detect mantissa spill. The proposed approach to
this is to OR together groups of four bits in the
mantissa slice [see section 3.2], thus giving a
one out if any of the four bits are ones [6]. The
resulting outputs are fed to a shift matrix (see
fig.1) consisting of a single 10808 IC, and
shifted left by an amount that is complementary to
the mantissa alignment. Thus for a 56-bit mantissa
and an exponent base of 16, the shift will be 56/4
+ 1 - RD. The OR of the outputs of the shifter
will then be the spill if RD is less than 15. For
values of RD of 15 or greater, the spill is
obtained by forcing the shift to be a circular,
rather than a logical shift. This method gives the
effect of an infinite length shifter. For an

exponent of base 2, some additional logic will be.

necessary to cater for shifts which are not
multiples of 4 bits. In fact three or four 'guard'
bits at the least significant end of the mantissa
will handle this. Some of these guard bits are
needed for rounding anyway.

¢) The MOSIBIT logic is best performed using
priority enccders. Again, use can be made of a
4-bit combination from the mantissa slice,
plus some extra logic for the last four bits
when the exponent base is not 16.

It has been estimated that the carry, rounding
and AOD logic, together with multiplier decoding,
could be implemented in 107 ULA cells, and with 52
pins. Although only one of these chips is required
per unit, it does replace around 20 small scale
integrated circuits, and is well worth while.

ICs Pins/IC.
Mantissa slice (56 bits) 14 60 (est) chip
exponent slice 2 40 (est) carriers
end effects 1 52 (est) "
Shifter (10808} 9 48 quil
Adder (10181/10179) 24 2U/16
ACC register (10141) 16 16
MOSIBIT 8 16
Divide decode _20

94

Table 2 Cost of a floating-point unit

4, Conclusions.

The overall cost of a floating point unit
designed to handle 64-bit numbers in ICL/IBM
format, and with no double length or mathematical
function facilities would be around 94 packages,
excluding control. Table 2 1lists the details. It
is believed that the necessary control would allow
the unit to be implemented in under 120 packages.
The estimated speed is under 120ns for floating
point add and subtract; multiplication time is in
the region of 1.2us, and a divide time around 4ps.
The major portion of the times are made up of the
shifter times for addition, and the ALU times for
multiplication. They are, therefore, dependent on
which of the two versions of the ULA is used only
to the extent of about 30%. If the support
circuits are F100K rather than 10K, the package
count reduces from 94 to 73, and times are

55

correspondingly improved, notably for
multiplication (as yet there is no F100K version
of the 10808).

Addition of a register file, a ROM and a
multiplexer to enable a more powerful unit to be
built would increase the cost by about 50 ICs.
This is a factor of about 4 less than in a current
MSI design, and a factor of about 20 down on a
1968 SSI implementation with a 1less powerful
function set. The speed may be about twice that of
the MSI design, not allowing for reductions in
layout problems (F100K version).

Compared to single chip floating point
processors, the number of ICs is obviously much
greater. The majority of these processors normally
work with ‘only 32 bit numbers and need to load
them 8 or 16 bits at a time, a severe limitation.
Floating point add times are usually in the region
of tens to hundreds of microseconds, and are
severely operand dependent. Thus the time cost
product of this proposal compares very favourably
with these other devices.

The project described is one step in a longer
term intention to implement a powerful processor
in a small number of ICs. The ULA approach puts
the costs of LSI within the budget of relatively
small quantity production. The lowering of the
cost of an individual floating point unit also
makes it easier to contemplate moderate to large
numbers of such processors linked so as to perform
high throughput array processing.The numbers of
ICs are still larger than might be wished, due to
the relatively small ULAs at present available at
this speed. The arrival of larger devices would be
welcomed, since it would enable larger slices to
be placed on a chip. Units with still longer word
lengths also become economical.

Acknowledgemenys

Thanks are due to the Science Research Council
for funding this project.

References.

[1] Gosling,J.B., Kinniment,D.J., Edwards,D.B.G.
'Uncommitted logic array provides cost
effective multiplication even for long words'.
IEE J Comp.& Dig. Tech. 2 1979 pp 113-120.
Morris,D.M., Ibbett,R.N. 'The MU5 Computer
System' Macmillan 1979.

Edwards,D.B.G., Knowles,A.E., Woods,J.V.; MU6G
: ‘A new design to achieve mainframe
performance from a mini-sized computer'. ACM
SIGARCH Newsletter 1980 p161-167.

ACM SIGNUM Newsletter. Special issue on the
proposed IEEE Flcating Point Standard. October
1979.

Gosling,J.B 'Design of arithmetic units for
digital computers' Macmillan 1980
(Springer-~Verlag).

Zurawski,J.H.P 'High performance evaluation
of division and other elementary functions!'
Ph.D Thesis, University of Manchester 1980.

Sterbenz,P. : 'Floating Point Computation'.
Prentice Hall 1974,

(2]

3]

(4]

(5]

(6]

(7]

