RESIDUE ARITHMETIC WITH RATIONAL OPERANDS

R. T. Gregory Department of Computer Science The University of Tennessee Knoxville, TN 37916

ABSTRACT

A method is described for doing residue arithmetic when the operands are rational numbers. A rational operand a/b is mapped onto the integer $|a \cdot b^{-1}|_p$ and the arithmetic is performed in GF(p). A method is given for taking an integer result and finding its rational equivalent (the one which corresponds to the correct rational result).

Let $I_p = \left\{0,\ 1,\ 2,\ \dots,\ p-1\right\}$ be the set consisting of the least positive residues modulo p, where p is an odd prime. If I represents the set of integers, the mapping $|\cdot|_p : I + I_p$, defined by $|a|_p = r$ if and only if $a \equiv r \pmod{p}$ and $0 \le r < p$, establishes the p disjoint residue classes modulo p $R_0,\ R_1,\ \dots,\ R_{p-1}$. We can generalize the concept by forming generalized residue classes $Q_0,\ Q_1,\ \dots,\ Q_{p-1}$, where Q_i is the set of rational numbers of the form a/b which are mapped onto i ϵ I by the mapping $|a/b|_p = |a \cdot b^{-1}|_p$, where b^{-1} is the multiplicative inverse of b modulo p. Obviously, $R_i \subset Q_i$ for i=0, 1, ..., p-1.

Since not every rational number a/b is such that $b^{-1} \mbox{exists}$, we define

$$\hat{Q} = \bigcup_{i=0}^{p-1} Q_i$$

to be the set of all rational numbers mapped onto I_p by the mapping $\left\|\cdot\right\|_p$. It is proved in [2] that $(\hat{\mathbb{Q}},+,\,\cdot)$ is a commutative ring with identity and that

$$|\cdot|_{p} : \hat{Q} \to I_{p}$$

is a homomorphism with respect to addition and multiplication. In other words, \mathbf{I}_p is a homomorphic image of $\hat{\mathbb{Q}}$ and so arithmetic operations in the ring $(\hat{\mathbb{Q}},+,\cdot)$ are equivalent to the corresponding arithmetic operations in the finite field $(\mathbb{I}_p,+,\cdot).$

The mapping (2) is onto but it is not one-to-one since each i $\epsilon \frac{I_p}{p}$ is the image of an

infinite set of rational numbers \mathbf{Q}_i . Hence, the mapping does not have an inverse. It turns out that if N is the largest integer satisfying

(3)
$$N < [(p-1)/2]^{\frac{1}{2}},$$

then there is at most one element of the set

(4)
$$F_N = \{a/b : 0 \le |a| \le N, 0 < b \le N\}$$

in any given Q_i . These order-N Farey fractions, F_N , enable us to establish a one-to-one and onto mapping with their images $\hat{I}_D \subset I_D$.

5. Example Let p=19 and $I_{19}=\{0,1,2,\ldots,18\}$. Then N=3 and the mapping $|\cdot|_{19}\colon F_3\to \hat{I}_{19}$ is exhibited in the following "symmetric" array.

Notice that 4, 5, 14, and 15 are not elements of $\hat{\mathbf{I}}_{19}$.

6. Example Consider the computation

$$x = 1/3 - 2/3$$

= 1/3 + (-2/3).

If p=19, then N=3, and we can use the mapping in Example 5 to write $\frac{1}{2} \left(\frac{1}{2} \right)$

$$|x|_{19} = |1/3 + (-2/3)|_{19}$$

= $|13 + 12|_{19}$
= 6.

Since 6 ϵ \hat{I}_{19} , we use the inverse mapping in Example 5 to obtain x = -1/3.

If the result of an arithmetic operation is an integer in \mathbf{I}_p which is not also in $\hat{\mathbf{I}}_p$, we have pseudo—overflow*. This implies that the rational number corresponding to the integer result is not an order-N Farey fraction. In other words either the numerator or the denominator (or both) have become larger than N in absolute value. Pseudo—overflow causes us no difficulty if it occurs during an

^{*}This term was suggested by T. M. Rao.

intermediate calculation as long as the final answer is an element of $\boldsymbol{F}_{\text{N}}.$

7. Example Consider the computation

$$x = 1/2 - 2/3 - 1/6$$

= 1/2 + (-2/3) + (-1/6).

Notice that the sum of the first two rational numbers is not in F_3 and -1/6 is not in F_3 . However, the final result is in F_3 and so pseudo-overflow presents no problem. Thus,

$$|\mathbf{x}|_{19} = |10 + 12 + 3|_{19}$$

= 6,

which implies x = -1/3.

The following theorem gives us an algorithm for carrying out the mapping $\hat{I}_p \to F_N$ if either the denominator in a/b or a multiple of the denominator can be found.

8. Theorem suppose we map x = a/b from F_N onto the integer $|ab^{-1}|_p$ in \hat{I}_p . We obtain the inverse mapping as follows: If kb can be found, with the integer k satisfying 0 < k \leq N, then

$$ka = /kb|x|_p/_p$$

where $\left| \cdot \right|_p$ gives us the symmetric residue modulo p, and we have

$$a/b = ka/kb$$
.

Proof See [3].

With this algorithm we have no need for storing the table exhibited in Example 5. Obviously, if p is extremely large (that is, large enough so that N is very large), then a practical number system for error-free computation can be established using the order-N Farey fractions along with the finite field (I $_{\rm p}$, +, -). For example $2^{61}\text{--}1$ is a Mersenne prime and, if we choose p = $2^{61}\text{--}1$, then N = $2^{30}\text{--}1$. For a computer with a word length of 32 bits,p requires two words but N fits into a single word very nicely.

For a related discussion see [4].

References

- [1] Gregory, R.T., "Error-free computation", Robert E. Krieger Publishing Co., Huntington, NY, 1980.
- [2] Gregory, R.T., "On residue arithmetic with rational operands", Technical Report CS-80-47, Department of Computer Science, University of Tennessee, Knoxville, August 1980.
- [3] Gregory, R.T., "Error-free computation with rational numbers", to appear in BIT, 1981.
- [4] Rao, T.M. and Gregory, R.T., "The conversion of Hensel codes to rational numbers", these proceedings, 1981.