PARTITIONED ALGORITHMS AND VLSI STRUCTURES
FOR LARGE-SCALE MATRIX COMPUTATIONS

Kai Hwang
School of Electrical Engineering
PURDUE UNIVERSITY
West Lafayette, Indiana USA

ABSTRACT:

VLSI modular arithmetic structures and new par-

titioned matrix algorithms are developed in this
paper to perform hardware matrix computations in
solving large~scale L(inear system of equations.

Gaussian elimination and inversion of triangular
matrices are shown systematically partitionable.
ALl the partitioned algorithms being developed can
achieve Llinear computation time O(n), where n is
the order of the linear system. The partitioned
matrix computations are feasible for modular VLSI
implementation with constrained I/0 terminals.

Performance analysis and design tradeoffs of the
partitioned VLSI arithmetic structures are also
provided.

1. INTRODUCTICN

Large-scale matrix computations are needed in
connection with solving high~order Linear System of
Equations (LSE), A ° x = b, in many important ap-
plication areas, such as structurat analysis,
Linear programming, seismic signal processing, im-
age understanding, numerical weather forecasting,
and artificial intelligence, etc. At present, most
large scale LSEs are solved on SIMD array proces-
sors or on pipelined vector computers using pre-
developed software packages [7]. Fast matrix algo-
rithms for solving LSEs on paraltel computers have
been studied by Csanky [11, Kant and Kimura £a3,

Sameh and Kuck [13], and Wing and Huang [17] among
many other authors.
The rapid advances in  Very Large-Scale

(VLSI) microelectronic technology have
architectural horizons to implement
large-scale vector/matrix computation algorithms
directly in hardware, Mead and Conway [11] have
studied the cost and performance of highly con-
current VLSI computing structures. Kung and
Leiserson {91, Kung [10] have suggested the systol-
ic arrays for matrix and vector computations.
Foster and Kung [31 and Swartzlander [15] discussed
the design problems of special-purpose VLSI chips
for pattern matching or for signal processing. The
pioneering systolic arrays have opened the research
area of VLSI computing structures. Recently,
Horowitz [2], Hwang and Cheng [6]1, and Preparata
and Vuillemin [12] studied globally structured VLSI
arrays for matrix computations. 1In the theoretical
domain, Savage [14] and Thompson [163 developed the
complexity theory and computation models for VLSI
computing structures.

Integration
created new

*This research was supported by the NSF under grant
MCS78-18096A02.

CH1630-3/81/0000/0222$00.75 © 1981 |IEEE

Yen-Heng Cheng

Department of Computer Engineering and Science

TSING-HUA UNIVERSITY
Peking, China

Due to the limitations on projected VLSI chip
density and chip packaging technology, we can only
expect monolithic VLSI computing devices with regu-
tarly structured functions and limited 1/0 termi-
nals. Modular approach to develop VLSI devices 1is
amenable from the viewpoints of feasibility and ap-
plicability. In this paper, we developed parti-
tioned iterative algorithms and VLSI modular struc-
tures for the following matrix computations.

* Partitioned L-U Decomposition of Matrices.

* Partitioned Inversion of Triangular Matrices.
* pPartitioned Multiplication of matrices.

* Partitioned solution of triangularized LSEs.

We reserve the parameter, n, for the order of a
given dense matrix A and the parameter, m, as the
size of available VLSI computing modules. Hote
that m << n in practical applications. We shall
consider those cases in which k = n/m is an in-
teger. ALL analytical results on complexity and
performance are expressed in terms of these three
parameters. Tradeoff studies between computation
times and hardware complexities are also provided.

2. MATRIX COMPUTATIONS IN LINEAR SYSTEMS

characterized by a pair
nx n matrix,

An |LSE of order n is
(A, b, where A = (aij) is an

b = (b, b,

problem of

**, bn)T is & column vector. The

solving an LSE is to find a vector

x = (x1, X ", xn)T which satisfies A x=b.

2’
The solution vector x is unique, if and only if A
is nonsingular. We shall consider only strongly
nonsingular LSE's, in which all the diagonal subma-
trices of A are nonsingular. This strong nonsingu-
larity s necessary and sufficient in three of the
partitioned matrix algorithms being presented, ex-
cept the algorithm for partitioned matrix mul tipli-
cation.

Using the Gaussian elimination method, one can
systematically decompose A into two triangular wma-

trices L and U such that A= L * U, where L = (Lij)

is a lower triangular matrix with all diagonal ele-
ments equal to 1, and us= (uij) is an upper tri-

angular matrix with nonzero diagonal elements.
Such an L-U decomposition is unique, if and only if
A is strongly nonsingular. Let us define the fol=
Towing recursive computations.




(1 _ i s
a_ij = aij for all 1 < i,j <n

k+1) _ (k) SRS DU Y DN ¢ 9)
aij = aij - (aik /akk ) akj 1)
for k = 1,2,...,n-1
and i,j = k,k+1,...,n

The entries of L and U are computed by

- k), (k) .
lik = aik /akk for all i > k
2)
(k) .
ukj = akj for all k <]

We shall show in section 4 how to partition the
above recursive computations in order to generate
the decomposed matrices L= (Lik) and U = (ukj) for

arbitrary order n using fixed size VLSI modules.
In this paper, Gaussian elimination with natural
ordering is presented for clarity purpose. One can
always use the pivoting technique to improve accu-
racy, as suggested in our earlier paper [6].

The sequence of Gaussian elimination operations
will transform the dense system A * x =b into an
equivalent triangular LSE, characterized by

-1 b =d. With this triangularized sys-

U=* x =1L
tem, one can Tompute the solution vector X by
©d. The
trices U

-1 . (Lf1 R _f1
U and L.'1 always exist, because U

x = U b =u inverse ma-
-1
are nonsingular,

and L

Consider a nonsingular upper triangular matrix U

) = U-1 is

of order n. The inverse matrix vs= (Vij

also an upper triangular matrix. The following re-
cursive computations are needed to generate the en-
tries of the inverse matrix V.

-1
Vik = Uk for all k = 1,2,...,n

j (3)

..1 R .

vii == X us eV ) s Ul for all § o> §
1] k=741 ik kj ii

In Section 5, we shall partition the above pro-
cedures to enable modular generation of the (Vij)

entries for atl 1 <1, £n.

In fact, once the entries (uij) of the triangu-

Lar matrix U and the elements (di) of the
transformed vector d are determined, the sclution
vector x can be recursively generated by
x_ =d o u!
n n nn
4 -1
.= .- A 5 B INT . (%)
% (d1 L U1J XJ} Y5

j=i+1
for i = n-1,...,2,1

In Section 6, we shall show a partitioned procedure
to generate sections of the solution vector

X = (xn,x ,...,x,,)T sequentially by VLSI modules.

n-1
3. BASIC VLSI ARITHMETIC MODULES

Before presenting the partitioned algorithms for
iterative | ~U decomposition and matrix inversion
and multiplication, we describe below several prim-
itive VLSI computing modules. These modules will
be used as building blocks in implementing those
partitioned matrix algorithms in subsequent sec-
tions.

The Type-I VLSI computing modules are designed
for Llocal L-U decomposition of any m x m submatrix

into two tria i
Am W tangular matrices Lm and gm such that

A = Em

and ym is an upper triangular matrix as shown below

Hm’ where Lm is a lower triangular matrix
for the case of m=3.

11 212 %13

2 V00 uggug, Uy,
21 %2 %37t T OT0 Uy, Uy )
31 %32 %33 |31 %52 1 [0 0 ug,

Equations 1 and 2 can be wused to compute

L, = (Lij)
Fig. 1, we show the schematic
Type-1 arithmetic module with m = 4. Two types of
arithmetic cells are needed in all VLSI module
tdesigns. The D cell performs the division of two
matrix elements, say a/b, and the M cell performs
the accumulative multiplication, say a-bxc. Typi-
cal array structures of such cellular arithmetic
cells can be found in Hwang [4,5]., Three levels of
fast Latches are used to control the timing and
data flow. The structure is pipelined with feed-
back Lines controlled by multiplexers (MPX), Demul-
tiplexers (DMX), and the Latches. The time delay
of the Type-I module equals 2m units of time.

and gm = (uij) for all 1 <1, <nm 1In
design of a 4 x 4

The Type-II VLSI array modules are used for the
inversion of triangular submatrices of order m. In
Fig. 2, we show the schematic design of the Type II
VLSI module with size m=4. This module performs
the iterative computations specified in Eq. 3. It
is also pipelined with a total compute delay of 2m
units of time. The thick lines between the arith-
metic cells are high-speed latches. Similar tri-
angular arrays were also independently suggested by
Preparata and vuillemin [12] for matrix inversion.

The Type~-III VLSI arithmetic module is for the
additive matrix multiplications specified below for
the case of m = 2 and any integer r >1.

W T TRk
A1 2] [21212]  [bgy Bag | [cqq s
dyy ool fa, a7 E [ o ol o ol ©
21 22) %21 %22) K= oyl b0 [k Lk

In Fig. 3, we show the design of a Type-I111 ar-

223




ithmetic module for the case of m=2. The accumula-
tive multiplications are implemented with the M
cells, which keep performing the additive multiply
operations. At time t1, matrix element ai. enters

one Accumulative Multiply Unit <(AMU). Starting
from time tZ’ the feedback Loop is established in-

side each AMU. . The output diﬂ is generated at cy-

cle tm In other words, the total time delay of

r+1°
a Type-11I module s m*r+1, in order to complete
the computations specified in Eq.é.

ALl three types of computing mocules will be
used in partitioned L-U decomposition. Only Type-
I1 and Type-III modules will be used in partitioned
matrix dinversion and in the VLSI solution of tri-
angular LSE. The partitioned multiplication of two
large matrices requires the use of only Type-III
modules. It is assumed that there are large 1/0
data (latches) 1in each VLSI module to allow the
outputs of a VLSI module be connected directly to
the inputs of other VLSI modules to form a synchro-
nous modular network. In other words, all the in-
termediate results are routed directly from modules
to modules without storing back to the main memory.

4. PARTITIONED L-U DECOMPOSITION OF A DENSE MATRIX

Consider the L-U decomposition of an n x n non-~
singular dense matrix A=L * U. A systolic array

of n2 step-processors can compute the triangular
matrices L and U in 4n units of time [91. Such a
systolic array may require 2w x (2n-1) input/output
terminals, where w is the word length of the matrix
elements. For large n (say n > 1000) with typical
operand length w (say 32 bits per word), it is
rather dimpractical to consider implementing an
n x n systolic array on a single VLSI chip. The
Limitation Lies in the projected VLSI density and
by the 1/0 packaging constraints.

The given n x n dense matrix A= (aij) and the

two decomposed triangular matrices L= (zii) and

U= (uij) can be each partitionad into k2 ‘subma-

trices of order m x m each. The partitioned opera-
tions on submatrices can be best illustrated by an
example matrix A of order n = 6 using size m=2
modules, and thus the ratio k = 4/2 = 3. There are
in total k*(k + 1) =3 x 4 = 12 nontrivial 2 x 2
submatrices in L and U such that A = L°y. These
submatrices must be generated in a specific order
to be described below.

v 1 -

247 251243 14,215 %16
l |

821 2221923 %24.%25 %3

. e -

331 32,933 9341935 334

A= - ! hoy Ass A e
341 34019,3 84408,5 4| |21 T22 723
. e ao s T T P Asp Ass

51 521753 a54:355 T3

1
361 62263 364:665 66

L ] -

1 0!0 o© 1o q

]

\ |
10 110 0lo o
—--=71-—-7=-9 .0 0
b = t 0lo of |1

L= , S T (8

By Maltys 1100 L21 22
----------- - Loy L

‘ 31 L3z Las
bgq Lspltes 154: 10

)
261 £62:“63 Yo41tes 1

{ .

, | ‘
Y11 Y12,Y13 Y14, %5 Y16

3

I
0 Upaibpz Upy Yzs Upg
R e Uyq Uiy U
0 0 :%ZUMF%SUM 11 “12 713
S0 0 10y us )0 V22 Ves 9

____J__-_f-__.4 0 0 U

[ 33
0 0 'O 0 :uSS Use

1
P 0 'O 0 I0 uééd

First of all, we perform the local L-U decompo-
sition on submatrix A11 using a Type-I module to
generate the first two triangular submatrices
and {H1 such that A11 = L11 . U11.

VLSI modules are then used to compute the

11
Two Type-11

inverse
-1

11°
Llowing matrix multiplications using 2(k-1) Type III

modules to generate all the Lp1 and u1q submmatrices

submatrices L;} and U We then perform the fol-

in parallel,

= .yl -
Lp1 = Ap1 U11 forp=2,3, ..., k
-1 “d
U1q = L,H . A1q forq=2, 3, ..., k
For the example 6 x 6 matrix, submatrices L21, L31,

U12 and U13 are generated using £q.10.

In each iteration, we need to generate the fol-

Llowing intermediate submatrices using Type-II1I
modutes for r = min (p,q).

A ol

R =A - 3 L _«uU (1

Pa pa I Tps $q
for p,a=2,3,...,k.

The local L-U decompositions is then performed
on & in each iteration.
N

qu . qu = Aqq forg=2,32, ..., k “12)
The remaining off-diagonal submatrices qu and qu
are computed by inverting the diagonal submatrices
qu and Lq and then multiplying them by the
corresponding intermediate submatrices qu and qu

as follows for
r=2,3, "', k.

p=a+l, aq+2, °°°, k and

224




= A .
LDQ Pq qu
(13)
U =L .
ap qq ap
For the example 6 x 6 matrix, we first compute

the following intermediate matrix 22 with r = 2,

. = A Co
22 U22 A22’ we obtain the two
triangular submatrices L22 and U22.

these submatrices, we obtain two additional subma-

: -1, _A .

trices U23 = L22 QZS and L32 = A32 U22. The
next intﬁrmediate dense matrix can then be calcu-
tated  Ryz = Agz = (gy * Upg *+ Ly Uyp).  Per-
forming L~U decomposition on A33, we obtain the

? and U33.

The above iterative procedures are summarized in
Algorithm 1 for partitioned L-U decomposition of
any strongly nonsingular dense matrix A.

By performing L
Substituting

last two submatrices sz

ALGORITHM 1
Inputs:
The n x n dense matrix A = (aij} partitioned

into k2 m X m submatrices Aij for i,j=1,2,°*",k,

where n = kem,

Qutputs:
ke (k+1) submatrices of order m x m each:
qu for g<p=1,2, ..., k and Urs for
s>r=1,2, «.., k

Procedures:
(1) Decompose A11 into L11 and U11 such that

L1 * Upq = Agys
1

(2)Find the inverse matrices L;1 and U;l

_ | =1,
Compute Lp1 = Ap1 U11 and U1p L11 A1p
for p = 2,3,e0e,k.
(3)For g « 2 to (k-1) step 1 do

-1
A N - N .
Compute Aqq = Aqq E% qu Usq’
ompose & = . ;
pecomp aa " taq * Ygo’
Find inverse matrices L;l and U;;.
For p + (g+1) to k step 1 do
A r-1
= - . U
Compute qu qu éé% Lps sq
r-1
= A - « U
and R = A ;E% Las " Ysp
for r = min(p,q);
= ﬁ . -1- = L-1' .
compute Lo = Rog'Uaas Ygp = Laq Pap
Repeat
Repeat
k-1
(4) Compute Akk = Akk - X Lks . Usk;

s=1
becompose ﬁkk = Ly * U

5. PARTITIONED MATRIX INVERSION AND MULTIPLICATION

Partitioned algorithms are developed 1in this
section for iterative inversion of an n x n strong-
ly nonsingular triangular matrix using small m x m
Type~1I and Type-III VLS array modules. Ffor clar-
ity, we demonstrate the partitioning methods by
finding the inverse of an example 6 x 6 upper tri-
angular matrix, U = (uij} with 2 x 2 array modules

(for n=45 and m= 2), The inverse matrix

V= (i) = U7 ds partitioned as follows:

[ N
Vi1 v2lvas Y14IVis Vag
|

0 VaarVas Vau Vas Vog
Yir Y2 Vas| o o v Vo v
1733 Y30, '35 Y3

velo v, v,.l= !
2 23 0 0 L? v“‘v45 V46
0 0 Vg |Z-mmk—--T o=
33 0 0 :0 0 'VSS Vog

|
0 010 o lg o

- | |

Note that U * ¥V = I and vV *U=1. By equating
the corresponding submatrices in the product matrix
to the identity matrix I, we obtain three types of

relations between submatrices.

Y TV = L
Y22 " V2 T L ae
Usg * V33 = 1
Upg * Vgp P Ut YV, =0
(15)

Ugp " Vpz * Upg * V33 = 0

Y1 T Vg H Ut Va3t Uyt Vg5 =00 ()

First of all, we perform the local matrix inver-
sions of all diagonal submatrices to generate
vpp = U;; for p=1,2,3. Such inversions are always
possible due to the strong nonsingularity of the
given matrix U.

Using the inverse submatrices just generated, we
generate two additional submatrices of V by Eq. 15
as follows:

Vig ™ Vgt Wyp V)
v e L an
Vo3 = Vpp T Wpg 7 V5
The last submatrix of v can be computed by

33
rearranging Eq. 16 as follows using the two subma-
trices generated in Eq. 17.

V13 = —V11 . (U12 . V23 + U13 . V33) (18)

The above recursive steps of generating subma-
trices, qu for 1 < p,q < k, of the inverse matrix

225




v = gf1 are summarized in Algorithm 2.

ALGORITHM 2
Inputs:

Submatrices U__ of matrix U = (u..) for all
pq = ij
A>P=1,2, vy ke
Qutputs:
ke (k+1)/2 submatrices qu of the inverse ma-

trix v = gf1 for all q 2p=1,2, «.., k.

Procedures:
1. For p « 1 to k step 1 do
_ 1
Yop = Yop
Repeat
For g « 1 to (k=-1) step 1 do
For p + 1 to k-q step 1 do

q
= L)
L Yy per

2.

H .
popta & ptr,p+q”  (19)
= - " .
VD,D+Q vpp p,p+q
Repeat
Repeat
The partitioned multiplication of two large

n xn matrices, say A x B = C, is rather straight-

forward. We include 7t in Algorithm 3 for com-
pleteness. Basically, each m x m submatrices Cpq

of the product matrix C is obtained by performing
the accumulative multiplicaticns in a Type-111

module. ALL k2 modules operate in parallel.
ALGORITHM 3

Inputs:
m x m submatrices A
pr

the
(aij) and matrix B = (bij)’ for p,a,r = 1,2,... k.

and qu of matrix A =

OQutputs:
m x m submatrices Cpq of the resulting product ma=-

trix € = (cij)' for p,qa =1,2,...,k.
Procedures:

For p + 1 to k step 1 do
For q « 1 to k step 1 do

k
= « B

cpq z; Apr rq 20

Repeat

Repeat

6. PARTITIONED VLSI SOLUTION OF TRIANGULAR SYSTEMS
After L-U decomposition of a dense system
A x=Db, we obtain (L *U) * x =L * (W * x) = b.

This actually represents the solution of = two tri-
angular subsystems, The forward elimination is
specified by L *d=b and the
substitution corresponds to U ' x = d. The solu-
tions to these two subsystems lead to the solution
of the dense system A * x =Db. A systematic parti-

backforward

226

tioning procedure is described below to achieve the
modular VLSI solution of any triangularized system.

By the old coefficient

- T _
b= (b1,b2,...,bn) = (a1,n+1,a2,n+1,...,an’n+1) ,
we can expand the n x n characteristic matrix
A= (aij) into an n x (n+1) matrix A' = (A,b) with

b as the rightmost column.
of agk)
1)
tended to cover all n*(n+1) elements for 1<i<n
and 1 < 3 < ntt. The transformed coefficient vec—

denoting vector

T

The iterative computa-

tions for k = 1,2,...,n in Eq. 1 are ex-

tor d = (d1,d2,...,dn)T is generated by solving the

forward system Le+d= b as follows:

k>

k,n+1 for k

1

de = a 1,244vu,n @n
Comparing Eq. 2 and Eq. 21, we realize the simi-
larity between computing ukj for all k < j and com-

puting dk for k = 1,2,...,n. Therefore, the same

L-U decomposition hardware used to generate the
triangular matrix U= (uij) can be used, with minor

modification, to generate the new column vector d
to be used in the backward system U * x = d. we

use the following system with order A = § to illus-

trate the partitioned solution method of U x=d
with knoun U = (u; ) and d = (d,d,,...,d,0 7.

U4 “12; 13 ”14: Ys Yie] [x] [44]
Dot Ve M e Vel | 1%

0 0 | ugy Usy) Ygs Uze| [xs| |dg

0 0 10yl vyl ANER 22
TG g g [ [

0 0 : 0 0 5 0 ugl [ dﬁ

- ] - - J L

Three (k = n/m = 6/2 = 3) partitioned solution
subvectors are generated sequentially in the fol-
lowing order.

[*s [Uss use]=1  [ds
Xg 0 ug de
3| [Usz Uzs]-T d3 Uss  Ysg] [Xs
AN uafj 4 Uss  Yue| |*6
- _ r
P1 Yt YTt 94 Tugs ugg] 3
xgj 0y, 9ol 1923 Yaa| |%4
Y15 Y1e| %1
Yas Y| %2




In general, the matrix U can be partitioned into
ke(k+1)/2 m x m submatrices as shown in Eq. 11.
Similarly, we can partition the solution vector X
into k subvectors and so can the transformed vector
d. The above partitioned VLSI solution procedures
‘are summarized in Algorithm 4 for a general ized
triangular LSE of order n.

ALGORITHM 4
Inputs:

m x m submatrices qu of U for q > p =
1,2,...,k. The coefficient subvectors gp for p =

1,2,...,k, each having m consecutive elements of
the vector d.

Outputs:
The subvectors 59 for p=1,2,***,k, of the solu-

] T
tion vector x = [x vee,) :
X 17%57 ,Kn] , ‘where each x_ has

m consecutive elements of X.

procedures:
For p + k to 1 in step (-1) Compute

1
Upp from Upp,

k
8 =d - 5 u_-x; 23
™ TP 5 PO W
=1 .4
% Upp E:>'
Repeat

It should be noted that Up,k+1 = 0 and L 9

were assumed in  computing the subvector ﬁ; in

Eq.23. Type-II VLSI mcdules are needed to perform
the local matrix dinversion in Algorithm 4. The
computations specified in Eq. 23 are very similar

to those 1in Eq. 6, except the matrices (aij) and
(Cij) has been replaced by the column vectors Ep

and 59 respectively. Modified Type-III VLSI

modules reduced from the design shown in Fig. 3 can
be used to implement these accumulative matrix-
vector muttiplications.

7. PERFORMANCE ANALYSIS AND DESIGN TRADEQFFS

It has been projected by Mead and Conway (111
that by the late 80's it will be possible to fabri-

cate IC chips, each of which contains 10' or 108
individual transistors, The VLSI computing struc-
ture requires not only large number of processing
cells and latch memories, but also large number of
interconnection paths throughout the integrated
chip. The length and organization of these commun—
jcation paths set a lower bound on the chip area
and time delay required for system operations.
Furthermore, the 1/0 and packaging constraints of
monolithic IC chip set further Limitation on the
applicability of VLSI chips in digital system
design.

Speed performance and hardware complexity of the
above partitioned VLSI matrix computation algo-
rithms are analyzed below. The time delays of
Type-1, Type-I1 and Type-III VLSI arithmetic
modules are respectively 2m, 2m, and m*r+{ units of
time, where each time unit is essentially equal to
the delay of one multiply cell (M cell) or of one
divide cell (b cell) in those designs shown in
Figs. 1-3. With typical operand length of 32 bits,
the cell delays can be as low as 100 nanoseconds
with projected bipolar technology. This cell delay
determines the period of the clocked VLSI arithmet-
ic devices.

To implement Algorithm 1 in hardware, only one
Type-I VLSI module is sufficient to perform the
successive local L-U decompositions of all diagonal
submatrices | and Upp (for p=1,2,...,k). Two

Type-11 modules are needed to compute the inverse

matrices L;; and U;; of those diagonal submatrices

being decomposed. As shown in Table 1, the number
of required Type-III modules varies from 2(k=-1) un-
its in Step 2, to 2(k-2) units in Step 32, and

(k-1)- Be-
sides, Type III modules are needed to compute Qpp

eventually down to 2 wunits in Step 3

for p=2,3,...,k. 0f course, many of the Type-I1I
modules can be shared by the successive steps.
Even without resource sharing, at  most

20142+, a4 (k=11 + k = 2kCk=10/2 + k = k& = (n/m)2
Type-I11 modules are needed in Algorithm 1.

A minimum-delay analysis is performed 1in Table
1. In other words, as many as parallel VLSI
modules are employed in each computation step of
Algorithm 1. The start times and time delays of
the computation steps are given. Many of the ma-
trix computation steps can be performed in a looka-
head fashion, as long as there is no data depen-
dence problem. The Llookahead operations can be
seen by the overlapped start times in Table 1. The
minimum time delay of Algorithm 1, is obtained with
maximized overlapping operations in the VLSI
modules.

T1 = 6n + %ﬂ - (4m+2) = 6n, if n>> m>> 1 (24)

With overlapped operations, many of the Type-III
modules are shared by the successive computation
steps in Algorithm 1. Figure 4 shows the actual

Type-111 module counts in the recursive substeps 3q

for ¢=2,3,...,k-1. Ffor g > 13, the effect of the
resource sharing becomes apparent. The hardware
demand increases essentially linearly after the in-
itial transient. The peak of each curve indicates

the necessary hardware M1 required to achieve the

minimum delay T1 in Eq.24. Through some tedious

algebraic derivation, we obtain the following
result on the minimum number of VLSI modules re-
quired to achieve the minimum delay T1.

M, = %T « (/m°, if n >> m. (25)

In Table 2, we show the time delays and module
requirements in using Algorithm 2 to compute the




inverse of a triangular matrix of order n. The to-
tal time delay is a linear function of the system
order n.

T,=20 +hao2 = 2n, if n>>m>> 1 26

To implement Algorithm 2 requires k Type-II modules
to dinvert all the diagonal submatrices, U;; for

p=1,2,...,k in Step 1. As many as k-q Type-III
modules are needed in each Substep Zq for

a=1,2,-..,(k=1). Therefore, at most k(k=-1)/2
Type~1I1 modules are needed. Wwith overlapped
operations in all Substeps, many of the Type-III
modules are shared to yield the following minimum
package count.

" (n/my%, if n > m. @n

=1
2 6
The variation of the required numbers of Type-IIl
modules in successive recursive steps of Algorithm
2 is demonstrated in Fig. 5. The peak of each
curve indicates the minimum module count MZ'

The partitioned matrix multiplication specified
in Algorithm 3 requires T3 delays and M3 Type-II1

modules, both are minimum values.

T if n>> 1

3

mek+1 = n#¥1 = n ,

(28)
K2 = (n/my° ,

M if n>m

3

The detailed matrix computations in Algorithm 4
are illustrated in Table 3. The minimum time delay

T4 and minimum number of required Type-I1I modules
M4 for Algorithm 4 are obtained as
T, =201 + 5 + 1) = 2n
4 m ’
1 (29)
M4 =5 (n/m), if n>> m >> 1

The number M4 is obtained by considering all possi-

ble ways of sharing the Type-~III modules in succes~-
sive cycles in Table 3. The fact M4 being Llinearly

proportional to n/m is due to the multiplication of
a matrix by a column vector.

In the above complexity analysis, the minimun
time delays were obtained at the expense of using
as many parallel VLSI modules as possible as demon-
strated in Figs. 4 and 5. 1In what follows, we con-
duct a tradeoff study between the computation time
and the required hardware packages. [In each of the
four partitioned matrix algorithms the hardware
module requirement 1is primarily determined by the
use of Type-III VLSI modules. Therefore, it suf-
fices to study the variation of computation time
delays versus the available number of Type-III
modules.

Oour tradeoff study was carried out by simulating
all the possible ways of carrying out the required
computations among submatrices with various numbers
of available VLSI modules. The simulation results

are plotted in Fig.6 for Algorithm 1. ALl the time
delays are monotonic decreasing functions with
respect to the increase of available VLSI modules.
when the module counts exceed the Llower bound M1,

the minimum time delays are achieved as shown by
the Llower flat portions of the curves. These
results demonstrate the possibility of design tra-
deoffs between speed and hardware cost. By preset-
ting a speed requirement, one can always use the
curves in Fig. 6 to decide the minimum hardware re~
quired to achieve the desired performance.

On the other hand, one can predict the speed
performance of the above partitioned matrix algo-
rithms under prespecified hardware allowance. The
speed performance (time delays), as a function of
the system order, k = n/m (for fixed m), can be
visualized by drawing vertical lines which inter-
sect all the curves in Fig. 6. The intersections
correspond to speed variations with respect to the
growing orders k. Such a speed function for Algo-
rithm 1 is illustrated in Fig.7 under four imposed
hardware bounds.

For small systems, say k < JTIN  (derived from

Eq. 25 and k%/11 < N, where N is the maximally al-
Llowed number of VLSI modules), the computation time
varies linearly with increasing k and is almost in-
dependent of the imposed hardware Limitations. As
the system order increases, the time delay in-
creases quadratically. This information should be
extremely wuseful to designers of hardware linear
system solvers, especially when the design has to
be conducted with limited hardware resources.

8. CONCLUSIONS

ALl the partitioned algorithms being developed
have Linear computation time O(n). Hardware modu-

Llar requirements are proportional to 0(n2/m2) in
partitioned L-U decomposition, matrix inversion and
multiplication. The partitioned VLSI solution of a
triangularized Linear system requires only 0(n/m)
VLSI modules. For n >> m >> 1, the minimum delays
and package counts for the four algorithms are sum-
marized in Table 4.

The systolic arrays [9,10,11] and the pipelined
VLSI structure presented in our earlier paper (6]
are bath designed for global matrix computations.
The rew partitioned approach presented in this pa-
per compares favorably over those global VLSI ar-
rays in at least three practical aspects:

(a) Linear matrix computation time, O(n), is
preserved in the modularization process with
only minor decrease in speed. For example,
our partitioned L~U decomposition can be done
in 0(4n) time, while the corresponding global
systolic array of size n x n has a delay of
0.

(b} The partitioned matrix algorithms are shown
implementable by VLSI array modules with
feasible sizes. By feasibility, we have con-
sidered the practical constraints imposed by
limited chip capacity (area) and Llimited 1/0
Lleads on VLSI chips.

228




(c) Our partitioned approach offers, better expan=-
dability, maintainability and flexibility to
system designers, The design tradeoffs

between speed and hardware can be used to op-
timize the performance/cost ratio in develop-
ing special-purpose vector/matrix computers.

Toward the eventual realization of VLSI archi-
tecture for large-scale matrix computations, there
are still many practical issues yet to be answered
suth as the tayout of VLSI circuits, the 1/0 pack-
aging constraints, and the operand buffering prob-
lem etc. We firmly believe that the partitioned
matrix computations and modular VLSI hardware
development are and will be the logical and feasi-
ble approach to the design of special-purpose ma-

trix computing machines, until innovative schemes
can be developed to alleviate the 1/0 bottleneck
problem associated with any globally-structured

VLSI computing structures,
REFERENCES

[1] c¢sanky, L., "Fast Parallel Matrix Inversion
Algorithms",  SIAM J. Computing, vol. 5, 1976,

pPp. 618-623.

[21 Horowitz, E., "VLSI Architectures for Matrix
Computations,”  Proc. of Int'l cConf, on
Parallel Processing, IEEE Catalog No. 79

CH1433-2C, Aug. 21-24. 1979, pp. 124-127.

£3] Foster, M. J. and Kung, H. T., "The Design of
Special~Purpose VLSI Chips", Computer
Magazine, IEEE Computer Society, Jan. 1980,
pp. 26-40.

Hwang, K., "Global and Modular Two's Comple-~
ment Array Multipliers", IEEE Trans.
Computers, vol. €-28, No. 4, April 1979, pp.

300-306.

£41

Principles,
Wiley, New

Arithmetic:
John

[5] Hwang, K., Computer
Architecture, and Design,

York, 1979. Chaps. & and 8.

(61 Hwang, K. and Cheng, Y. H., "vLSI Computing
Structures for Solving Large Scale Linear Sys=-
tem of Equations," Proc. of 1Int'l cConf.

Parallel  Processing,

1EEE ~Catalog No. 80
CH1569-3, Aug. 26-29, 1980, pp. 217-230.

"Vector
Tech-

(7] Hwang, K., Su, S. P. and Ni, L. M.,

Computer Architecture and Processing

229

£81

£91

101

£113

121

133

143

£153

£161

173

niques," Advances in Computers, vol. 20 (M. c.

Yovits, editor), Academic Press, New York,
1981.

Kant, R. M. and Kimura, T., "pecentralized
Parallel Algorithms for Matrix Computations",
Proc. of the Fifth Annual Symp. on Computer
Architecture, Palo Alto, CA, April 1978, pp.

96-100.

Kung, T. H. and Leiserson, (. E., "Systolic
Arrays (for Ww.SI1)," in Sparse Matrix Proc.,
(buff. I. S. et at. editors), Society for In-
dust, and Appl. Math., Pa. 1979, pp. 256-282.

Kung, H. T., "Let's pesign Algorithms for vLSI
Systems,”" Proc. Caltech. conf. VLSI, cal.
Tech. Pasadena, Calif., Jan. 1979, pp. 65-90.

Mead, C. and Conway, L., Introduction to wLsI
Systems, Addison Wesley Pub. Co., Reading,
Mass. 1980, pp. 263-332.

Preparata, F. P. and Vuillemin, J., "optimatl
Integrated-Circuit Implementation of Triangu-
lar Matrix Inversion,” proc. of Int'l Conf.
Parallel Processing, Aug. 23:?9, 19§b,—fEEE
Catalog No. 80 CH1569-3, pp. 211-216.

Stable Pparaltlel
of ACM, vol, 25,

A. and Kuck, b., "on
System Solvers", J-
Jan. 1978, pp. 81-91.

Sameh,
Linear
No. 1,

Savage, J. E., "Area-Time Tradeoffs for Matrix
Multiplication and Related Problems in VLSI
Models," Tech. Report No. Cs-50, bDept. of
Computer Science, Brown University, August
1979. (19 pages).

Swartzlander, E. E., "VLSI Architecture," in
very Large Scale Integration (VLSI):
Fundamentals and Applications, (Edited by D.
f. Barbe), Springer-verlag, New York, 1980.

Thompson, C. bp., "A Complexity Theory for
VLSI," Ph.D. Thesis, Dpept. of Computer Sci-
ence, Carnegie-MelTon uyniv., Pittsburgh,
Penn., Sept. 1979.

Wing, 0. and Huang, J. W., "A Computation
Model of Parallel Solution of Linear Equa-
tions," IEEE Trans. Comp., July 1980, pp.

632-638.




— U= (u,j)—-’\ L= (EU)_—/\

ty U”
ts Yz Y3 v R Ry 4
ty U
Outputs t5 U23 Yoy, 232 ll,z
te Y33
Yy
B =5 a/b
LCtL——j
Lﬁnl. b —b
7. | % a

ST

t a” a Latch
! Multiplexer
t2 Demultiplexer
t a Multiplier

A= (a.) t3 22 Divider

ij 4

Inputs t5 333 331. ah}
'
7 %y

Fig. 1 Type-1 VLSI Computing Module for Local (4x4) L-U Decomposition

1 -
12 S P by by by — i
a
-1 -1 [ B
V= ) = = ! !
v (V.J) Y (“U) A @ @ 1y !
21 R B N F I o
o 1S
12 - 1, d
Yy S A @) 2y oy " LT
22 %12 %22 Y2 S22 G L )
(r) () (2) (2) (1) (1) Fo e e -
b
ugq “s 22 P17y by by by, i . _4:_.d2,
e 491 T o _ J
HMi: Accumulated I; —————————— bl
D u23 u|2 Hultiply Unit 3y, R | d22
1 —_—— e e
Y33 Va2 vy i
Y d ; ro| (i) (i} (i) (i) 4
b, ot ot ot ¢ oY) 1P 9y IR ST !
3 M4 s 6 Y7 = - . o N ‘ -
d d A bao! b(l) h{l) (i) (i) ]
21 %22 2t % 20 P S < :
V22 V23 V2u r 0 0 0 0 ‘
- _ i, i i), i |
Gy == 2 by el v by e 1
< . i=1 P
v * r . . . . 3
33 Y dy,=a, - 3 pli) L) <D 3
\ . ,«<D , 7 %2 T & T 12 12 2 3
. i =a _i b L L) G () 3
21 21 ¢ 21 H 22 21 g
v d=a b+ i=1 ]
4y 9« ~elf r £
_ iy (i) (i) (i) 1
922= 35, ;Z;'. a1t T Cip t 0y c <y E
Fig. 2 Type-II VLSI computing module for the Fig. 3 Type-I1i VLS| computing module for accumulative <
inversion of x4 triangular matrix. multiplication of 2x2 submatrices.

230




Hardware Module Count

Compute Time Delays T><IO6

Algorithm 1

231

2
6,57 M: Mocule Count (Type-111) be5 7
k = n/m = (System order)/(Module size)
IOH MZ
6.0 I g ——
6.0 - 1.53x10°
_ 2 k = 3,000
5.5 | 6.8x105
5.5+ IOQIOM . k = 2,000
6.0 - 5.0 4 1.7x105
o / k = I,OOO
c
3 4.5 /
h.51 o7 =
/ k = 1,000 2 / . ?/m )
3
° M, = = (n/m)
hao M= 3y (n/m)? £ k.o A 2%
4 )
B -
Recursive steps in Table | 2 .. Recursive Steps in Table 2
3.5 q = 2,39'-~’ k-1, -E 3¢5 4
:‘g q = ]:2’3’-00’k-]
3.0 ] _— 3.0
0 1 2 3 4 5
~ecursive steps Iogloq 2.5 r | ' ; .
_ 0 | 2 3 4 5
¥ige & Hardware demand in successive . —
recursive steps of Algorithm 1. Recursive steps IOQ]QQ
Fige 5 Hardware demand in successive
.80 + recursive steps of Algorithm 2
.70 .35 N = 25K
3 K = 1000
Partitioned Algori?hm k = n/m
for L-U Decomposition N: Maximally allowed N = 50K
60 o k = n/m «30 A number of VLSI
modules (Type-111
primarily)
»25
N = 75K
0
(=
£ .20
B N = 100K
8 .15 ]
o
£
) -
e .10
c
\ f
®
\\\\\\‘\:::::~‘\ g . ///
N S _—
— T
T T .00 T T T L
.6 . 1.0 L0000 L0510 15,20 .25
Module Count Mx10° — System Order leOA -
Fig, 6 Tradeoffs between computation time . .
and available hardware modules for Fig. 7 Speed performance of Algorithm I

using limited number of VLSI
computing modules,




Table 2.

Tabel 1. Time and Hardware Complexities of the Time/Hardware Complexit f the P .-
s PR ¢ . m a wa 1 ]
Partitioned L-U Decomposition (Algorithm 1) ime/Ma ¢ Lomp.exity of the Partition Matrix
Inversion (Algorithm 2).
Time Complexity+ VLSI Module Count VLSI Modules
Submatrix Type [ Type Type Submatrix Type Type
itep Computations Start Time Delay 1 1 111 Step Computations Start Time Delay 11 I
)
1 A = v a 2m 1 1 v =y 1] 2m k
1 1
L pp e (for p=1,2,...,k)
M, 2n 2m 2 2 Wt .
ey 1 Yoo+t Vpet,p01 T ¥ 00 ém e
-1 a1 k=1
2 L, =h -y = N . o S
pt pl M o ot (91} Vp,p,1 —Upp Yoo for p=1,2,...,k=1]m1
- L-1_‘ (for p=2,3,...,k) 2(k=1) 2
LA % et Vot ez T Y per | 3 2w
A Sm1 1 - st k-2
22 " ! S B N for p=1,2,...,k-2| m
Ry * LYy one2 2 1 : : . . .
3, -
-1 - . 2
Loas Uay 8mr2 2n 2 2 i%te Vpre,ora T ¥o0eg | @ Dme2 e grmet
’ v = ‘U'1~u k=q
R, % It at P,p*q PP "p,p*q for p=1,2,...,k-q|m+1
P2’ "2p (for p=3,4,...,k)
-2 : : : : :
Lo Yy 10m+2 2(k-2) . : . : :
per e (for p=3,4,...,k)| m+1 —r
Ry 10m3 2m1 1 R AR k(m2)-4 Getom
1
Rie = Laxol toek=hl v, = U ew 1
33 = L3ztUss 12mes 2n 1 T "L 2n+2(n/m - (m3) e
p=1
3 oo 12m3 2n 2
3 330 Uss )
Total Detay Time 72 = 2n+2(n/m}=2 = 2n for n >> a >> 1
R4, R 12m4 2m1
p3” T3p Total VLSI module counts for n >> m >> 1 nim) ;—m/m)‘
( +3) 2tk-31
Lp3e Usp Teara 1 Note: q is the looping index in Algorithm 2 and k * n/n.
. . . . . Table 3.
. - . - .
. . . N . . .
Time/Hardware Complexity of the Partitioned VLS]
Rt e (5mr2) (k=2)-1 (-23m1 1 SOLUt1?n of Triangular Linear Algebraic System
. (Algorithm 4),
L HRY VLSI Modul
-1 k- -1 k- - 1 odules
k=1,k-1% -1, 51 (6m+2) (k=2) 2m Submatein feal tooules
_ -1 Step Computations Start Time Delay 11 11}
(D] Yot Ykt | mareziizn |2 2 B AR
Pk e 470 0 2n 1
LYPRTE N (Sme2)* (k=2) =210t ”
+eh ) AR 2 1 :
ket? Been i Bm2) (k=+hm | w1 21 1
Yeet, k-1 2me2 2m t
Kk (5a+2) Ck=1)-1 k=121 1 2
4 PR d g T gy Ytk " X 3m1 mt 1
*u (bm*2) (k-1 2m 1 -1
kk kk kk X1 Uk-1,k_1 ) &_1 4m2 a1 1
Total Time Pelay T,' = 6n + :_n = {emt2) = 6n for n > m o> 1 . . .
1 2 . : : : :
Total Module Counts for n >> m >> 1 1 2 ﬁ(n/m)
-1
LPYS 2¢k=2) (at1) 2m 1
Note: q is the looping index used in Algcrithm 1 and k = n/m.
k
=2 | & :4, - 1u N . N
o L% a3 2q g (k=2)(m+2)+QRm-1) ] (k-2)m+1 1
. Lo . 1
Tanle 4, Complexity of Partitioned Matrix 27Uy 0 8 2k=2)(m1342m | me1 1
Algorithms -
U 2(k=-1) (me 1) 2n 1
Time VLSI p=1 .
Matrix Algorithm Delay | Module Count B o=d - tu v« =1 (w214 1) [ ey met 1
S B PR
_ o ] 2 -1
t. L-U Decomposition 6n T (n/m) = U - 4 Pty (w1 ez |med ! .
T |
2. Matrix Inversion 2n z (n/m)2 Total Time Delay T = 2m2(nim) 4 (1) = 20 for 3> x>
1
. . . . I M le € ts f > > 1 1 /o)
3. Matrix Multiplication n (n/m)2 YLST Modute Counts for 02> { l’(""
4. Solution of 2n %‘ (n/m) Note: Type-III module used here are slightiy medificd (reduced) from
Triangular System the regular Type-111 in Fig. 3.




