A RATIONAL ARITHMETIC PROCESSOR

Mary Jane Irwin
Dwight R. Smith

Department of Computer Science
The Pennsylvania State University

Abstrng

An arithmetic processor based upon a rational
representation scheme is examined. The key feature
of this rational processor is its ability to ef-
ficiently reduce a result ratio to its irreducible
form (the greatest common divisor of the numerator
and denominator is unity). The reduction algorithm
presented generates the reduced ratio in parallel
with the evaluation of the ratio's greatest common
divisor. Hardware designs for the reduction algo~
rithm and the basic arithmetic operations are given.

Introduction

The storage of information in computers usu-—
ally becomes an attempt to pack the most meaning
into the least amount of space. Consequently,
numeric data is normally restricted to two forms--
integer (or fixed point) and floating point. An
alternative number representation scheme examined
in this paper is the rational number systemliz’
One instance of rational representation allows
for the storage of two integer values which repre-
sent a ratio; that is, the numerator and denominator
are kept as distinguishable quantities. A compari-
son between a floating point representation and a
rational representation for the fraction 1/3 is
given below. Assume a 24 bit floating point system
with an implied binary base, a fractional mantissa,
and an excess-64 exporent. As can be seen, the
floating point representations are inexact as de-
picted by the continuing string in parentheses,
whereas the rational representation has several
numerically equivalent, exact representations for
1/3.

Floating Point Example:

0 0111111 1010101010101010 (1010 . . .)
0 1000000 0101010101010101 (0101 . . .)
0 1000001 0010101010101010 (1010 . . .)

Rational Example:
0 00000000001 0 00000000011
0 00000000010 0 20000000110
0 00000000011 0 N00000N1001

Consider the several numerical representations
for 1/3. It is generally desirable to specify one
of these as the unique normal form for storage in
memory. In the floating point system that normal
form is the representation which is normalized;
that is, the representation in which the most sig-
nificant digit of the mantissa is non-zero. In the
rational system, a number is defined to be normal-
ized when either the numerator or the denominator
is odd. 1If both are even then a normalization or

. 241
CH1630-3/81/0000/0241$00.75 © 1981 |IEEE

"partial reduction" procedure must be employed
which involves shifting both the numerator and
denominator to the right until either the numerator
or the denominator has a one in the right most bit
position. This simultaneous shifting does not
change the value of the rational number since the
original ratio has merely been divided by unity in
the form of 2/2. Note that this rational normal-
ization process results in fewer equivalent repre-
sentations, but does not reduce all representations
to one unique one.

In order to achieve one unique representation,
rational numbers can further be defined as irreduc-
ible. For a ratio to be irreducible, the greatest
common divisor (gecd) of the numerator and the de—
nominator must be unity. Reducing rational numbers
to this form both eliminates redundant representa-
tions and helps to prevent overflow2*/ of the
numerator and/or denominator contents. Unfortu-
nately, producing these irreducible forms does not
appear to be a straightforward process. Since, by
definition the gecd must be unity, the determination
of both the gcd and the consequent reduced ratio
requires some evaluation process other than just
the simple shifting process required for normaliza
tion. Reducible ratios may be introduced during
processing by a simple arithmetic operation on two
irreducible ratios as follows:

Z00011 -, 00100 _ 01100
00010 01001 10010 | |
(3/2 % 4/9 = 12/18 rlr
1 mio
|
! ajc
v 1le
(2/3 < 6/9 ils
00010 reduction 00110 2 €
00011 process 01001

The next section of this Paper presents a re-
duction algorithm which produces a reduced ratio in
parallel with the evaluation of the greatest common
divisor. Then the hardware requirements for this
proposed reduction algorithm and for the basic
arithmetic operations (addition, subtraction, mul-
tiplication, and division) when using a rational
system are examined.

The Reduction Algorithm

As has been discussed, all operations involv-
ing rational numbers should ultimately yield
results that can be stored in reduced form. In ad-
dition to diminishing the chances of overflow, this
simplifies the use of stored results in future

arithmetic operations such as comparisons. An
obvious way to reduce the ratio would be to calcu-
late the greatest common divisor of the numerator
and denominator and then divide the numerator and
denominator by that gcd. However, the hardware
and time requirements of this scheme are usually
unacceptable. Another reduction method which does
not involve division will now be proposed.

In reviewing Euclid's schemels% for finding
the gcd of two numbers, a suitable method for gen-
erating the reduced form of a rational number as
the ged 1s being computed which does not require
any explicit divisions can be derived. Euelid's
method involves continually subtracting the smaller
of two terms (in this instance, the numerator and
the denominator) from the larger and then saving
the smaller of the two along with the difference
for the next iteration. When the difference and
the smaller term are the same, the process termi-
nates with that resultant number being the gcd.
Only the basic operations of subtraction and com-
parison need be used. The method proposed in
this paper determines the reduced form in parallel
with the computation of the gecd according to
Euclid's algorithm. The algorithm requires just
four additional variables along with the arithme-
tic operations of addition, subtraction, and
shifting. A formal definition of this reduction
algorithm is shown at the right.

A correctness proof of the reduction algo~
rithm will now be given. The proof consists of
two parts: 1) the reduction algorithm correctly
generates the ged, and 2) the terms a, b, ¢, and
d are, in actuality, the results of division of
the numerator and ‘the denominator by that ged.,

Theorem 1

The reduction algorithm correctly generates the
gcd in a fashion similar to that of EKuclid's ged
algorithm,

Proof:

The correctness of Euclid's algorithm depends upon
the fact that at all iterations, the value of

the Y and X terms are just multiples of the gcd.
This is true at all iterations, for if it were
not, then at some time the subtraction of a multi-
ple from another multiple would yield a non-multi-
rle. This is an obvious contradiction. If, at
all times, X =F * gcd and Y =H #* ged then
the difference Y - X dis H * ged - F * ged =

(H - F) * gcd. Thus, 1t can be seen that the dif—
ference of Y and X must also be a multiple of the
gcd. The same is true for the reduction algo~
rithm; i.e., at each iteration the values of Y

and X are multiples of the gcd. The major dif-
ference between the reduction algorithm and
Euclid's algorithm in computing the gecd is the
fact that Y and X are kept as odd values in the
reduction algorithm, The reduction algorithm
first partially reduces the ratio to a normalized
form. The gcd of two numbers, of which at least
one is odd, must also be odd. Thus, forcing the
remaining even term odd will not affect the odd
ged. Now, as before, 1f X = F * ged and

Y =H * gcd where the ged, X, and Y are odd, then
Y- X= (- F) * ged. Since the ged is odd and
the difference of two odd numbers, Y - X , must

Reduction Algorithm

PROC (NUM , DEN);
/* NUM and DEN are non-zero positive integers */
INTEGER NUM, DEN, X, Y, a, b, ¢, d
/* Normalize the rational number; i.e., force */
/* one of the pair (NUM, DEN) odd */
WHILE NUM mod 2 = 0 & DEN mod 2 = 0 DO
NUM = NUM/2; DEN = DEN/2;
ENDWHILE;
/* Initialize */
X = NUM; Y = DEN; a, d= 1; b, ¢ = 0;
/* Force the remaining even term odd if necessary *
WHILE X mod 2 = Q DO
X =X/2; a=a*2;
ENDWHILE;
WHILE Y mod 2 =
Y =Y/2; d-=
ENDWHILE;
/* GCD iteration */
WHILE X .NE. Y DO

[
=N
*
o
N

SWAP : IF Y < X THEN
SWAP (X, Y);
SWAP (a, c);
SWAP (b, d);
ENDIF;
SUBT: Y=Y - X;
a=a2a-+c;
b=">b + d;
FORCE_ODD: WHILE Y mod 2 = 0 DO
Y =Y/2;
c=c*2;
d=d* 2;
ENDWHILE;
ENDWHILE;

/* GCD is the common value of Y and X and the */
/* reduced NUM and DEN are computed from a, b, */
/* ¢, and d */

GCD = X;

NUM = a + c;

DEN = b, + d;

RETURN;

ENDPROC;

be even, then H -~ F must also be even. Therefore,
forcing this even difference odd once again does
not affect the odd ged. Thus, the values of Y and
X are always multiples of the ged.

Theorem 2

The additional terms (a, b, ¢, and d) maintained in
the reduction algorithm during the gcd evaluation
are the effective results of division of the nor-
malized NUM and DEN by the ged.

Proof:

The ged iterative cycle in the reduction algorithm
maintains the sums

NUM =a * X+ ¢ *Y

DEN=Db *X+d*Y
under the conditions

1) X and Y are both odd and
2) Y is greater than X.

The following equivalence relations based on these
sums can be used to prove the validity of the SUBT
portion of the reduction algorithm.

NUM=a*X+c*Y~c*X+¢c*Yx
(a+c)X+c(Y—X)

i

and
DEN=Db*X+d*Y-d*xX+d+*X=
(b+d) X+d Y - X)

i

These equations reveal the following iterative
equivalences as used in the reduction algorithm

a=a+c¢c,
b b + d, and
Y=Y - X.

1]

By continued application of the above equations,
while guaranteeing that conditions 1) and 2) are
maintained, the algorithm will terminate when X
and Y are equal. After the last iteration, a, b,
c, and d can be used to determine the reduced
forms of NUM and DEN since when

X =Y = GCD
then

NUM=a*X+c*Y=(a+c)*x
and
DEN=b * X+ d=*Y= (b + d) * X

Because X is the ged of NUM and DEN, the ratio
NUM/DEN can be converted to its irreducible form
as follows

NUM _ NUM/X _

NUM _ NUM/X _ (a + ¢)
DEN ~ DEN/X (b + d) °

Hardware Requirements for a Rational Processor

The hardware requirements of a rational pro-
cessor will now be presented. Such a processor
should be able to perform both the reduction
algorithm and the basic operations of add, sub-
tract, multiply and divide with a minimum of
complexity and a maximum of speed. It should also
be configured to return the truth values of com-~
parisons between pairs of operands.

The four basic arithmetic operations on
rational numbers require only hardware multiply,

Example

Given NUM = 420 and DEN = 231 find the reduced
rational representation.

INITIALIZATION:
NUM/DEN = 420/231 (normalized)
NUM = 1 % 420 + 0 * 231 = 4 % 105 + 0 * 231
DEN = 0 * 420 + 1 * 231 = Q0 * 105 + 1 * 231

GCD ITERATION:
SWAP SUBT FORCE ODD

1) NUM=4*105+0%231= 4#%1054+0%126= 4*105+0%63
DEN=0*105+1#%231= 1%*10%+1*126= 1*10542%63
2) NUM=0# 63+4%105= 4% 63+4% 42= 4% §3+8%21
DEN=2% 63+1%105= 3% 63+1% 42= 3% 6342421
3) NUM=8% 21+4% 63=12% 21+4% 42=12% 2148%2]
DEN=2%* 21+43* 63= 5% 21+3* 42= 5% 21+6%21
GCD RESULTS:
GCD = 21

REDUCED RATIO:
NUM = (12 + 8) = 20
DEN = (5 + 6) = 11

add and subtract units as follows:

J ¢ K _ IR+ KL J_K_ JIMM - KiL
L m LM L™ L1

J o« K _ I J K _

L M~ I3 L/ ®7~ I*

The necessary operations for the common comparisons
are shown below. The equality test assumes oper-

ands are irreducible. The other comparisons are of
of the form (opl # op2) where # is any of the con-

ditions >, <, >=, or <=. Not equals would be the
inverse of the condition for equality.
J

K
S =2 => J= =
M J=L & L=M

- - =D X *
L I # # J*M # L*K

By examining the above relations, it appears
that three hardware multiply units are necessary to
accomplish the most basic of operations - addition.
This number can be reduced to two multiply units if
the numerator logic is changed from that of adding
the results of two multiplies to that of shifting
the sum of two single digit multiplies. Mathemat-
ically the problem can be expressed as follows:

n-1 , n-1 .
J*M + K+ => ¢ (2! *3 %M+ 5o2b i, *1)
1=0 i=0

n-1 1
=> I 2*(ji*M+ki*L)
i=0

In the binary case, the multiplies can be pro-
cessed through a register file consisting of four
registers containing the values

Register 0) 0
Register 1) M
Register 2) L
Register 3) (M. + L)

This register file would be addressed by a concate-
nation of the low order bits of K and J, respec-
tively. Then each multiply could be performed
either bit-wise with the output of the register
file as the quantity iteratively added to the
partial product or, in a fast multiply scheme,

with the output of the register file feeding a
carry save adder tree. A sample hardware configu-
ration for the numerator logic is given in Figure 1.

iy
0 To
M Iy 4xn
L Iz_ MUX nbit
LM L ADDE

-
| K[g1 [~wm |
v

RIGHT SHIFT

Figure 1. The Numerator Hardware

The values loaded into the register file ini-
tially would determine the operation to be performed
by the numerator hardware. Loaded as given in
Figure 1, the final output would be the numerator
portion for rational addition. If instead, regis-
ters 2) and 3) are also set to zero, the numerator
for the multiply or divide (and compare) could be
obtained by placing either K or M, respectively,
into register 1). The execution would then con-—
tinue as before to obtain the product of either K
or M by J. For subtraction, -L and M - L should
be loaded into registers 2) and 3), respectively.

The denominator hardware could be a standard
n bit multiplier. The denominator hardware would
multiply either K or M by L. The denominator
multiply hardware should be of the same basicstruc~
ture and require a similar execution time as that
of the numerator hardware to enable parallel comp u-
tation of the two values. The output of the numera—
tor and denominator hardware could be used at this
point to set condition codes or could serve as in-
puts to the reduction hardware shown in Figure 2.

ol
— DEN

I e L
e |
bt 2nbit

B DDER

5 X5

T 2 = o
STOP _(X=Y)

| SWAP_(Y<X) |

; J
"‘”ﬁﬂ;m
JM»ER
K
(o]
s%. %
i)

Figure 2. The Reduction Hardware

The very nature of the reduction algorithm as
an iterative method yields a variable time opera-
tion whose worst case processing time is
0(max(log(NUM), log(DEN))}. This may or may not be
of importance, If the rational prccessor represents

one segment of a pipeline, then the worst case per-
formance must be allowed for. On the other hand,
the reduction can be done at the end of the pipe-
line immediately before the values are to be stored.
In this case the register widths would have to be
expanded in the pipeline to prevent loss due to
overflow.

Summary

A rational representation scheme has been
shown to be a viable, implementable scheme. The
key feature of the proposed rational processor is
the ability to efficiently reduce ratios according
to the reduction algorithm presented. Several
other important questions remain unanswered by this
paper. What are the possible expansions of the
rational representation to extend the representable
range of numbers? Does using the rational format
provide a "better" or "worse" representation of
numbers than that of standard floating point for-
mats? How does reduction affect the possibility of
overflow? The reader is referred to the litera-
ture2>3:5,6,7,8 £op further insight into these
issues.

References

(1] Hardy, G. H. and E. M. Wright, "An Introduction
to the Theory of Numbers," Clarendon Press,
Oxford, 1954.

[2] Hehner, E. €. and R. N. Horspool, "A New Repre-
sentation of the Rational Numbers for Fast Easy
Arithmetic,” Siam Journal on Computing, Vol. 8
No. 2, May 1979.

’

[3] Hwang, Kai and T. P. Chang, "An Interleaved
Rational/Radix Arithmetic System for High-Pre-
cisien Computations,'" Proc. of the Fourth
Symposium on Computer Arithmetic, Santa Monica,
CA, 1978.

[4] Knuth, D. E., "The Art of Computer Programming:
Vol. 1, Fundamental Algorithms" and "The Art of
Comp. Prog.: Vol. 2, Seminumerical Algorithms/
Addison-Wesley, 1969.

[5] Kornerup, Peter and David Matula, "A Feasibil-
ity Analysis of Fixed-Slash Rational Arithme-
tic,” Proc. of the Fourth Symposium on Computer
Arithmetic, Santa Monica, CA, 1978.

[6] Matula, David W., "Fixed-Slash and Floating~
Slash Rational Arithmetic" Proc. of the Third
Symposium on Computer Arithmetic, Dallas, TX,
1975.

[7] Matula, David W. and Peter Kornerup, "A Feasi-
bility Analysis of Binary Fixed-Slash and
Floating-Slash Number Systems,' Proc. the
Fourth Symposium on Computer Arithmetic, Santa
Monica, CA, 1978.

[8] Smith, Dwight R., "A Study of Fixed-Slash
Numbers in the Context of a Comparison to
Floating Point Numbers,'" M.53. Paper, Department
of Computer Science, The Pennsvlvania State
University, University Park, PA, 1980.

