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ABSTRACT

Recent developments in integrated circuit
technology have made efficient schemes for computer
arithmetic possible. This paper discusses a gen-
eration-summation scheme for fast multi-operand
multiplication. Synthesis of three-operand multi-
pliers utilizing a single type of standard LSI
device is also discussed.

INTRODUCTION

Due to the current advances in LSI circuits,
large high-speed arithmetic functions such as
multi-operand addition [1]-[4] and parallel multi-
plication [3]-[8] can be performed faster and at
less cost than before. Recently, Stenzel et al.
[7] described a compact high-speed multiplication
scheme of generation-summation type using read-
only memories (ROM's). Their scheme uses a carry
lookahead adder to obtain the final product.

This paper describes a generation-summation
scheme for fast multi-operand multiplication using
a multiplier array for generation and a counter net-
work for summation. An implementation of three-
operand multiplication utilizing standard 256 x 8-
bit ROM's (Texas Instruments 745471) will be used
as an example scheme.

MULTI-OPERAND MULTIPLICATION

Fig. 1 shows an example of three-operand n-bit
multiplication using two separate multipliers in
cascade. The intermediate product is necessary to
obtain the final product. This approach is dis-
advantageous for a larger number of operands, d,
since the multiplication delay increases linear-
ly with d. Fig. 2 shows another example of three-
operand n-bit multiplication using a generation-
summation-type multiplier. Here, a multiplier
array is used to generate partial products. These
are then summed by a counter network to the final
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Fig. 1. Three-operand, n-bit multiplication
example using two separate multipliers.
product. This approach is much faster for a larger

number of operands since the total multiplication
delay increases linearly with the logarithm of d.
Pseudo-multipliers (or multiple multipliers) may
be used to generate the partial products.




MULTIPLE MULTIPLIERS

A multiple multiplier is a device that per-
forms simultaneous multiplication of a number of
operands. Multipliers of this type can be denoted
by

(Pys Pos vons Py’ 9)

multipliers, where p, is the i-th operand length
and q is the product11ength. An example of a (2,
2, 4; 8) multiplier is shown in Fig. 3, where QO
represents a binary digit. The product length g
is equal to the total operand length:

d
9= 1
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i 1

1

The ROM Tookup technique may be used to im-
plement multiple multipliers. A 2P x q-bit ROM
can be programmed to treat the p address lines as
d operands and perform a table Tookup on the pro-
duct. For example, a 256 x 8-bit ROM can be used
to implement a (2, 2, 4; 8) multiplier. ROM's
programmed in this fashion may be used to generate
partial products in larger multipliers.

LARGE MULTIPLIER SYNTHESIS

An array of multi-input AND gates may be used
to generate a partial-product matrix. The number
Nanp of partial-product bits formed by d-input AND
gates can be written as

An alternate approach using an array of multiple
multipliers rather than multi-input AND gates could
be employed to generate a smaller partial-product

matrix. The number NMUL of partial-product bits
formed by (p], Pos wnvs Py g) multipliers can be
written as
d d
n n
9 H[— <ML s a H[“
i=1 PiJ ML i=1! oyl

where | X} represents the largest integer not great-
er than X and [X] represents the smallest integer
not less than X. For a targer number of operands,
we have

NuL << Nanp-

Thus the use of multiple multipliers to generate
partial products saves a significant number of
counters for successive summation.

Fig. 4 shows an example of Lhree-operand, 4-
bit partial-product generation using four (2, 2, 4;
8) multipliers. Operand 1 and 2 are each divided
into two 2-bit sub-operands. These sub-operands
and Operand 3 are shown in boxes. Sets of the sub-
operands and Operand 3 form the partial-product
matrix(Matrix 1). A counter network can then sum
the partial products to form the final product.
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Fig. 2. Three-operand, n-bit multiptication
example using a single multiplier.
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Fig. 3. (2, 2, 4; 8) multiplier example.

Fig. 5 shows an example of three-operand, 4-bit
partial-product summation using generalized coun-
ters. These counters are shown in boxes. Each
circle in Matrix 1 (Fig. 5) corresponds to a
partial-product bit in Fig. 4. In the first stage
32 bits of Matrix 1 are grouped into sets of 8
birary inputs, which the counters reduce into sets
of v binary outputs. The number v is

v = L1092 S+

where S is the sum of the counter inputs. The
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Fig 4. Three-operand, 4-bit partial-product generation.
ojlo o ©
olo lollo o ollo o
oflo o o}jojjlo o o Matrix 1
[0 o o]lo o oflojlo 00
o| |o

IO (E)_O O|O OO0 ' Matrix 2

oo oolloo oojooo o

o O]

_ Matrix 3
[coooolooooooo

OO0 O0OO0O0OO0O0O0O0OO0O0 O Product

Fic. 5. Three-operand, 4-bit partial-product summation.
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Fig. 6. Three-operand, 4-bit muitiplier implémentation with 256 x 8-bit ROM's,

final output(s) and the extra bit(s) outside of adder is not necessary since various counter types
these groups of 8-bit sets are passed along to the allow high-speed reduction of the indivisual por-
second stage with the counter outputs from the tions of the whole matrices (see Fig. 5). Fig. 6
first stage. The left-most counter may receive shows a three-operand 4-bit multiplier using 256 x
Tess than 8 bits. In the second stage, 21 bits of 8-bit ROM's. Note that these multipiiers (A-D) and
Matrix 2 are grouped and then reduced using a simi- counters {E-K) can be implemented with a single

lar technique. The above process is continued type of LSI device. Assuming that each ROM exhib-
through the final stage where the product is ob- its one unit delay, the tota? number of unit delays

tained in a 12-bit binary form. A carry lookahead for the circuit is equal to the number of stages.
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CONCLUSION

In conclusion, the generation-summation con-
cept for two-operand multiplication has been ex-
tended to include multi-operand multiplication.
Multiple multipliers allow efficient generation of
a partial-product matrix. A high-sneed summation
of the partial-product matrix can be acheived with-
out a carry lookahead adder. An important advan-
tage is that only a single type of standard LSI

device is required to synthesize larger multipliers.

This proposed approach is also applicable for im-
plementing other arithmetic processors with LSI/
VLSI circuits.
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