A FAST MULTI-OPERAND MULTIPLICATION SCHEME

Hideaki Kobayashi

Electrical and Computer Engineering
Department
University of South Carolina
Columbia, SC 29208

ABSTRACT

Recent developments in integrated circuit
technology have made efficient schemes for computer
arithmetic possible. This paper discusses a gen-
eration-summation scheme for fast multi-operand
multiplication. Synthesis of three-operand multi-
pliers utilizing a single type of standard LSI
device is also discussed.

INTRODUCTION

Due to the current advances in LSI circuits,
large high-speed arithmetic functions such as
multi-operand addition [1]-[4] and parallel multi-
plication [3]-[8] can be performed faster and at
less cost than before. Recently, Stenzel et al.
[7] described a compact high-speed multiplication
scheme of generation-summation type using read-
only memories (ROM's). Their scheme uses a carry
lookahead adder to obtain the final product.

This paper describes a generation-summation
scheme for fast multi-operand multiplication using
a multiplier array for generation and a counter net-
work for summation. An implementation of three-
operand multiplication utilizing standard 256 x 8-
bit ROM's (Texas Instruments 745471) will be used
as an example scheme.

MULTI-OPERAND MULTIPLICATION

Fig. 1 shows an example of three-operand n-bit
multiplication using two separate multipliers in
cascade. The intermediate product is necessary to
obtain the final product. This approach is dis-
advantageous for a larger number of operands, d,
since the multiplication delay increases linear-
ly with d. Fig. 2 shows another example of three-
operand n-bit multiplication using a generation-
summation-type multiplier. Here, a multiplier
array is used to generate partial products. These
are then summed by a counter network to the final

246
CH1630-3/81/0000/0246$00.75 © 1981 IEEE

Operand 1
Operand 2
n n Operand 3
nxn Multiplier
£ N

72n

2nxn Multiplier

3n

Product

Fig. 1. Three-operand, n-bit multiplication
example using two separate multipliers.
product. This approach is much faster for a larger

number of operands since the total multiplication
delay increases linearly with the logarithm of d.
Pseudo-multipliers (or multiple multipliers) may
be used to generate the partial products.

MULTIPLE MULTIPLIERS

A multiple multiplier is a device that per-
forms simultaneous multiplication of a number of
operands. Multipliers of this type can be denoted
by

(Pys Pos vons Py’ 9)

multipliers, where p, is the i-th operand length
and q is the product11ength. An example of a (2,
2, 4; 8) multiplier is shown in Fig. 3, where QO
represents a binary digit. The product length g
is equal to the total operand length:

d
9= 1

Py
i 1

1

The ROM Tookup technique may be used to im-
plement multiple multipliers. A 2P x q-bit ROM
can be programmed to treat the p address lines as
d operands and perform a table Tookup on the pro-
duct. For example, a 256 x 8-bit ROM can be used
to implement a (2, 2, 4; 8) multiplier. ROM's
programmed in this fashion may be used to generate
partial products in larger multipliers.

LARGE MULTIPLIER SYNTHESIS

An array of multi-input AND gates may be used
to generate a partial-product matrix. The number
Nanp of partial-product bits formed by d-input AND
gates can be written as

An alternate approach using an array of multiple
multipliers rather than multi-input AND gates could
be employed to generate a smaller partial-product

matrix. The number NMUL of partial-product bits
formed by (p], Pos wnvs Py g) multipliers can be
written as
d d
n n
9 H[— <ML s a H[“
i=1 PiJ ML i=1! oyl

where | X} represents the largest integer not great-
er than X and [X] represents the smallest integer
not less than X. For a targer number of operands,
we have

NuL << Nanp-

Thus the use of multiple multipliers to generate
partial products saves a significant number of
counters for successive summation.

Fig. 4 shows an example of Lhree-operand, 4-
bit partial-product generation using four (2, 2, 4;
8) multipliers. Operand 1 and 2 are each divided
into two 2-bit sub-operands. These sub-operands
and Operand 3 are shown in boxes. Sets of the sub-
operands and Operand 3 form the partial-product
matrix(Matrix 1). A counter network can then sum
the partial products to form the final product.

247

Operand 1 Operand 3
Operand 2

n n n

Multiplier Array

Counter Network

3n

Product

Fig. 2. Three-operand, n-bit multiptication
example using a single multiplier.

O JNe)
oo Operand
] Matrix
[oo oo
OO0 00 00 00 Product

Fig. 3. (2, 2, 4; 8) multiplier example.

Fig. 5 shows an example of three-operand, 4-bit
partial-product summation using generalized coun-
ters. These counters are shown in boxes. Each
circle in Matrix 1 (Fig. 5) corresponds to a
partial-product bit in Fig. 4. In the first stage
32 bits of Matrix 1 are grouped into sets of 8
birary inputs, which the counters reduce into sets
of v binary outputs. The number v is

v = L1092 S+

where S is the sum of the counter inputs. The

Operand 1
Operand 2
Operand 3

OO0 00OO0OO0Oo

OO0 O0OO0OO0O0OO0OO0

Matrix 1
O00O00O0O0O0
O0O0O00O0O0O0
Fig 4. Three-operand, 4-bit partial-product generation.
ojlo o ©
olo lollo o ollo o
oflo o o}jojjlo o o Matrix 1
[0 o o]lo o oflojlo 00
o| |o

IO (E)_O O|O OO0 ' Matrix 2

oo oolloo oojooo o

o O]

_ Matrix 3
[coooolooooooo

OO0 O0OO0O0OO0O0O0O0OO0O0 O Product

Fic. 5. Three-operand, 4-bit partial-product summation.

248

P9 ?
P T :
—Johs 35 3
2 6 5E4
3 7 4 5
2 6
2 2 3 3
33 S
0 4 5 6 4 4
lEBS 6 4 4,5 S
7 e ;' 6
I i
2 8 L p—
3 9 5 7 v 6 —\\\\\\\\-
4
0 % 5 8 7
! 8
2 4 7 N
3(:5 7 6
06 8 7 5 (0
7 N
2 8 7Ce s 8
3 9 8 9————*——""‘lO 9l
6 'O_/BJIO"
2 4 7
3 s 31
S0 2 I
of)e“_”/,,,/——a 9
| 10
2 4%/||H'°
S —"+"
3210 3210
Operand 1 Operand 3
3210
Operand 2 Product

Fig. 6. Three-operand, 4-bit muitiplier implémentation with 256 x 8-bit ROM's,

final output(s) and the extra bit(s) outside of adder is not necessary since various counter types
these groups of 8-bit sets are passed along to the allow high-speed reduction of the indivisual por-
second stage with the counter outputs from the tions of the whole matrices (see Fig. 5). Fig. 6
first stage. The left-most counter may receive shows a three-operand 4-bit multiplier using 256 x
Tess than 8 bits. In the second stage, 21 bits of 8-bit ROM's. Note that these multipiiers (A-D) and
Matrix 2 are grouped and then reduced using a simi- counters {E-K) can be implemented with a single

lar technique. The above process is continued type of LSI device. Assuming that each ROM exhib-
through the final stage where the product is ob- its one unit delay, the tota? number of unit delays

tained in a 12-bit binary form. A carry lookahead for the circuit is equal to the number of stages.

249

CONCLUSION

In conclusion, the generation-summation con-
cept for two-operand multiplication has been ex-
tended to include multi-operand multiplication.
Multiple multipliers allow efficient generation of
a partial-product matrix. A high-sneed summation
of the partial-product matrix can be acheived with-
out a carry lookahead adder. An important advan-
tage is that only a single type of standard LSI

device is required to synthesize larger multipliers.

This proposed approach is also applicable for im-
plementing other arithmetic processors with LSI/
VLSI circuits.

REFERENCES

{11 1.7. Ho and T. C. Chen, "Multiple Addition by
Residue Threshold Functions and Their Repre-
sentation by Array Logic," IEEE Trans. Comput.,
vol. C-22, pp. 762-767, Aug. 1973.

[2] H. Kobayashi and H. Ohara, "A Synthesis Method
for Multiple Input Adders with a ROM Network,"
Trans. TECE Japan, E-62, pp. 9-15, Jan. 1980.

[3] S. Sigh and R. Waxman, "Multiple Operand Addi-
tion and Multiplication," IEEE Trans. Comput.,
C-22, pp. 113-120, Feb. 1973.

[4] E. E. Swartzlander, Jr.,"Merged Arithmetic,"
IEEE Trans. Comput., C-29, pp. 964-950, Oct.

1980.

{51 C. S. Wallace, "A Suggestion for Fast Multi-
plier," IEEE Trans. Comput., EC-13, pp. 14-17,

Feb. 1964.

[6] L. Dadda, "Some Schemes for Parallel Multipli-
ers," Alta Freq., vol. 34, pp. 349-356, May
1965.

[7] W. J. Stenzel, W. J. Kubitz, and G. H. Garcia,
"A Compact High-Speed Parallel Multiplication
Scheme,'" IEEE Trans. Comput. C-26, pp. 948-957,

Oct. 1977.

[8] H. Kobayashi, T. Yamada, and H. Ohara, "Two's
Complement Parallel Implementation of Large
Multipliers,” in Proc. IEEE 1980 Int. Conf. on
Circuits and Comput., Port Chester, NY, Oct.

1980, pp. 1085-1088.

250

