AN INTEGRATED RATIONAL ARITHMETIC UNIT

Peter Kornerup
David W. Matula

Computer Science Department, Aarhus, Denmark
Computer Science Department, Southern Methodist University, Datlas, Texas

Abstract

Based on the classical Euclidian Algorithm, we
develop the foundations of an arithmetic unit per-
forming Add, Subtract, Multiply and Divide on
rational operands. The unit uses one unified algo-
rithm for all operations, including rounding. A
binary implementation, based on techniques known
from the SRT division, is described. Finally, a
hardware implementation using ripple-free, carry-
save addition is analyzed, and adapted to a
floating~-slash representation of the rational
operands.

Keywords: Rational numbers, Floating-slash,

Euclidian Algorithm, SRT-techniques,
Carry-save addition.,

1. Introduction and background

This paper develops the foundations and possible
implementations of a unified arithmetic unit capable
of performing the standard arithmetic operations
on rational operands. The fundamental idea used

in the implementation is that the classical Euclidian
algorithm, when applied to the numerator and dec
nominator of some rational number p/qa, can be
used to define some transformations on a given

2x 2 matrix. With initialization of the matrix de—
pending on the operand r/s and the operation to be
performed, the exact same algorithm computes
successive approximations to the result wanted.

This work is a continuation of previous work on
the fixed- and floating-slash rational number re-
presentations [1], the underlying number system
2, 3] and rational arithmetic [4]. However the
previous work on arithmetic has been concentrating
on the properties of the "natural" rounding proce-
dure used, which is called the mediant rounding.
This rounding is based on choosing the ''last
representable' continued fraction convergent,
which in the number theory is called the ''best
rational approximation'. The "last representable!
convergent is chosen as to fit suitable size con-
straints on numerators and denominators, depend-
ing on the packing of these in a computer word.
In fixed-slash it is assumed that two fixed and
equal size fields are used to represent numerator
and denominator respectively. In floating-slash
the boundary between the two fields can be moved
(an extra field is used to position the "slash!),
thus providing a more flexible representation, and
greater range of representable numbers.

CH1630-3/81/0000/0233$00.75 © 1981 IEEE

In section 2 the foundations of the arithmetic unit
are developed and a number of observations con-
cerning its operation is made. Section 3 deals with
a binary implementation of the Euclidian algorithm
and its adaption to the arithmetic unit. In section 4
it is demonstrated that a redundant "'carry-save'
representation may be used in a hardware implemen-
tation of the algorithm, to speed up the additions/
subtractions needed. Finally, section 5 autlines a
hardware implementation of a unit based on floating-
slash represented operands.

The paper assumes only a very limited knowledge
of number theory; some good references are [5]
and [6]. The previously mentioned references by
these authors provide a background on the under-
lying number system. The terminology on continued
fractions used in this paper is fairly standard,
however we will extend the standard notion of a
canonical continued fraction expansion to include
expansions of negative numbers {by negation of all
partial quotients).

2. The foundations for an arithmetic unit

An implementation of the mediant rounding may be
based on the fact that the well—-known Euclidian
Algorithm can be extended to compute the continued
fraction convergents pi/qi of a rational number

p/q = [ao,al, .. .,am], utitizing implicitly the
quotients a;.
Algorithm EC (Euclidian Convergent Algorithm)
For any p=20, gz 1, let

b o=pi p_,=0; a,=1

b_'=q; p_T=1; a_;=o.

For i=0,1,..., while b, 1# 0, determine a, as
the quotient and bi as the non-negative remainder

of the division of bi—” by bi-l’ so

(*) bi=-b,_;+a,+b,_

i [2!

and compute

Pi=Pioy 3 tpi2

TG G O

‘Notice that the algorithm works as well if p and/or
g are negative, q#£ 0, by choosing the remainder b.
of the same sign as the dividend b, in(¥). 1f !
q=0, p 1/q 1= 1/0 may be considered the (only)
convergent,

We may now observe that the initial matrix (the
seed) of Algorithm EC

P_y 9

may be substituted by an arbitrary 2 x 2 matrix:

a

b

c
d

to yield a sequence of pairs (ui’vi) instead of the
(pi,qi) pairs, where u; and v; are linear combina-

tions of P; and q;-

Algorithm EAA (Euclidian Arithmetic Algorithm)
FFor any ip,qf, q# 0and a, b, ¢, d let
b_2 c;

b_1 q; d.

For i=0,1,..., while bi—1 # 0 determine a, as
the quotient and bi as the remainder (of the same

sign as bi—z) of the division of b,_, by b,_y, so

by = =bi_;+ 3, +b,_,
and compute
I S R T AT
V., = v, 2

10 3T Vi

Then the proof of the following is obvious:

Lemma 1: The (u,,v.) i

o,1,..
by algorithm EAA with'_se'ed T

., m determined

a C

b d

satisfies the following relations

ui = aqi + bpi,

v,
i

=0,1,...

= qu + dpi

,ym are the convergents

where p,/qi, i
ad

of p/q. '

Lemma 2: Given any bilinear form

a + bx

f(x) c + dx

234

and any rational number p/q, then Algorithm EAA
computes (ui’vi) such that

fpi/ap) = w/vy,

0,1,...,m are the convergents of

where pi/qi’ i =
el

p/a.

H

Observe that although pi/qi is in reduced form,
ui/vi as computed by EAA need not be so. Also note
that ui/vi does not in general form a sequence of

convergents of f(p/q).

If f hasnopole intheclosed interval ‘pi/qi’pi+1/qi+l

(or equivalently vy and Vi1 Are non-zero and of

t+1
same sign) then

u. u.ou,

i +1

Lo - = -
i i i+1
< | 3dv_ be 1 for i < m,

it

where the numerator (ad - bc) is the determinant of
the "seed-matrix!,

We may now pick particular seed matrices to real-
ize basic arithmetic operations. These will corre—
spond to '"curried' operations of LISP, e.qg. thev
combine an operation with an operand, the operand
being a rational number.

Theorem 1 Algorithm EAA, when seeded with the
following matrices:
r s -r s 0 s 0 r
, , and
s 0 s o] r 0 s 0

implement the curried operations:

Add r/s, Subr/s, Multr/s and Div r/s
respectively, applied to the operand p/q.
‘With:

a C r

Proof

it follows that
ui = r‘qi + spi and Vi = sqi,
hence
r‘qi + Sp;
sqi

< L_C
[/ ke

Pj
4+
i 9;

The other three cases follow equivalently. [

Observation 1 Applying a unit operator (e.g.
Add 0/1 or Mult 1/1) produces the sequence u =p;,

vi=ap, i.e. performs the EC algorithm. 0

Observation 2 The computed ui and v; are the very

same numerators and denominators that would have
been obtained using standard arithmetic rules on

1:0i/qi and r/s. 0

Observation 3 p/q need not be in reduced form, as
only its convergents will affect the growth of ui

and Vi p/q may thus be the (possibly unreduced)

result of a previous arithmetic operation. 0

Theorem 1 and these three observations form the
key ideas for an arithmetic unit working on ra-
tional operands.

Observation 4 Consider p/q represented as an in-
teger tuple placed in a pair of registers, which
together may be identified as one "accumulator!
(out of possibly many). Take an operand r‘/s (say
fetched from a memory in fixed or floating slash
packed format), together with an operator, forming
the seed matrix, The arithmetic unit then performs
the EAA algorithm, running it to completion, or
until u, and/or v, exceeds predetermined bounds

(in which case the previous Ui g and Viog will be

chosen). Then write the resulting u and v into the
registers originally centaining p and q, thus form-
ing the new accumulater contents.

When the rational number in an accumulator is to
be stored away in packed format, a unit operator
seed matrix is used in the EAA algorithm, and the
algorithm is stopped with the last values of u and
v which will fit the packed representation, thus
realizing the mediant rounding. O
We may picture the unit as consisting of 6 regis~
ters organized and initialized the following way:

C

d

a
b

p

q

In the next section we will discuss a possible im-
plementation of such an arithmetic unit, but before
that we will make some final observations on the
functioning of the unit.

Observation 5 Assume the arithmetic unit is capa-
ble of holding u's and v's large enough to hold the
numerator and denominator of the result of any
dyadic arithmetic operator (+, -, *, /), applied to
any pair of operands from F, e.g. for the add op-
erator to hold u = ps + rq and v = gs.

Assume r/s € F, where F is a rational number

system (e.g. a particular fixed or floating slash
system). Now given any p/q, p/q can be rounded
into F by the mediant rounding &, say @F(p/q) =

pk/qk (the k'th convergent of p/q).

When the arithmetic unit is initialized with p/q and
seeded with /s and any operator, the resulting
u/v will be the exact result of the operator applied
to r/s and some convergent pj/q.i of p/q, where

i2 k. That is, the unit will compute a result u/v
such that

u r r r
|;-%9g|s|q>f:(p/q}s>g_%og|

where © is the operator applied.

235

Having noticed that the unit needs registers large
enough to hold results which correspond to '"double
precision" one might ask whether there is any way
that say two '"'normal precision! words could be used
used for storing a '"double precision' result. The
following observation provides a partial answer to
this question.

Observation 6 When the result of a mediant round-
ing of some M"accumulator contents! has been built
up as described in observation 4, the (ui’vi) pair

which has been packed away represents the "most
significant part'' of the original p/q. However the
partial remainders b. and b, ., represent all the in-
formation needed to éomputé"'t?'\e "'remaining' quo-
tients of the expansion of p/q. Hence, if after
storing (ui’vi) away, the unit is seeded again with

the identity matrix, the unit can go on computing a
rounded value of the bi/bi-i-l’ and so on until all in-

formation from the original p/q has been extracted
in the form of "packed" rational numbers. The orig-
onal p/q can later be restored {in reduced form)
from its components, by seeding the unit with the
identity matrix, and successively loading the com-
ponents into the "p!" and "q! registers and breaking
them down into quotients, while building up (u, v)
pairs. 3

The previous observation only provides a sketch of
handling "multiple precision' operands. There are
some problems concerning very large quotient
values, whose solution requires floating-slash re-
presentations allowing the slash to move 'outside!!
the word, thus providing scaled representations.
We will not discuss the details here, but raise an-
other obvious question. Since the integers form a
subset of the rationals, the arithmetic unit as de-
scribed handles integers in a natural way, but what
about efficiency ? Say if the unit is to divide two
integers i and j, represented as i/1and j/1. Thus
the unit will be initialized as follows:

i lo
Tt o

and the unit will divide 1 into i, while multiplying 1
by the quotient found (i). By shifting out the top
row and adding the new, the result is:

1 {1 0
o |1

which is fine, but it was a cumbersome way to get
i/i. Also the add and subtract operation on integers
looks inefficient, but fortunately there is a trick:

Observation 7 When the arithmetic unit is seeded
and loaded with values

p |a c
q b 0
such that | g} = |b], then the following initializa-

tion

b [

alp 0

will yield the same result of the EAA algorithm
(in one cycle), except possibly for common factors

of u, and v in the (ui,vi) pairs. O

a

Observation 8 When the arithmetic unit is loaded
and seeded with values

p 0 c
q b 0
such that |p| = |¢|, then the following initializa-

tion

PO g
b 0

will yield the same result of the EAA algorithm
(in one cycle), except possibly for common factors

of u, and 2 in the (ui,vi) pairs. |

C

3. A binary implementation

It is obvious that in an implementation of the EAA
algorithm it is only necessary to store two con—
secutive values of bi's, ui‘s and vi"s, and it is not

necessary either to record the quotient values a. -
not even to have these exist explicitly. In [4] a :
shift-subtract binary implementation of the EC al-
gorithm was described, based on the idea that bits
of the binary representation of ai (the quotient of

bi—Z and bi-l) can be determined and immediately

used to accumulate multiples of pi 1 and qi thus

-1
building up P and q; respectively. Utilizing hard-

ware parallelism, the subtractions of the division
and the additions involved in the multiplications
can be executed in true parallel.

FFor the implementation of the EAA algorithm we will
use a binary, 2's complement representation of the
integers, and gain some speed by using techniques
known from the SRT division algorithm. Let us
assume the existence of 6 registers, named P, Q,
A, B, C and D corresponding to their initializa—
tions in EAA. The registers are pairwise connec~
ted to an add/subtract circuitry, controlled by the
signs of the contents of the P and Q registers,

| C

[add/ |add/subtr.]

L Q1] L

Furthermore & shift-register K is used to keep
track of any un-alignment of the contents of regis-
ters. The capacity (size) of the registers is for
the moment left unspecified.

B | | 5)

236

Assuming proper initialization with (p,a) # (0,0) in
the P and Q registers, and seeding of the A, B, C
and D registers, the extended Euclidian algorithm
may be implemented as follows:

Algorithm BNE (binary normalized/nonrestoring
Euclidian algorithm)

{K is an auxiliary register initialized to 1]

while | P or Q register not normalized |
do { leftshift P and Q|
while Q # 0 do
begin
L: while {Q register not normalized|
do |leftshift Q, B, D and K| ;

loop

while { P register not normalized} do

begin
exitloop if K = 1,
[Teftshift P and rightshift B, D and K|

end,

i sign (P) = sign (Q)

then P:=P-Q and A:=A+B and C:=C+D
else P:=P+Q and A:=A-8 and C:=C-Dj;

end,;

wap (P,Q) and swap (A,B) and swap (c,D);
end;

Possible parallelism has been expressed using and
between statements, as opposed to ;1" for sequen-

tial execution.]
Upon exit the registers B and D contain values u and
v such that (u, v) =(un,vn) or (u,v) = (—un, —vn) with
= +
Yn T 39, bpn
Vi T an * dpn’

where pn/qn is the reduced version of p/q, and a,

b, c, d are the original values of the A, B, C,D

registers.

We are interested in possibly stopping the algorithms
prematurely based on certain size limitations of the
ui,vi values computed by the algorithm, Unfortunately,

the BNE algorithm does not compute the pairs (ui, Vi)

correspond ing to ''convergents! (defined in the usual
way) based on a signed continued fraction expansion

where the partial quotients a; are arbitrary inte—

gers, except that a <y] £0

i # 0 and [’ai,a.
for 1< i< m. ' '

+17°
The sequence of ai's used in the BNE algorithm in
computing (u‘.,vi), i.e. determining the convergents
pi/qi, are the partial quotients of such a signed

continued fraction. To see this, and to analyze the

sequence of convergents computed by the BNE al-
gorithm, we need the following lemma.

Lemma 3: The sequence of partial quotients a5y
implicitly computed by the BNE algorithm, satisfies
the following

i)|a].|21 for1 <i<m
i) [ai[=1 :;sign(ai)= si’gn(aiﬂ} for1 <i<m
iii) !ai _[ai’ai+l""’arr|“ <1 for1<i<m-1
and for i = 0 when m = 2.

Proof For 1 <i<mlet b, be the i'th partial re~
mainder, as found in the register Q at label L of
the algorithm BNE, after the i'th execution of the
outer loop. Also bi_'1 is in P at label L, bi—l is

normalized in P, bi--l and b. are scaled to the same

position of unity. b. is not normalized in Q, as the
only way to escape 'the inner loop is with P not
normalized (which is later swapped with Q). Hence
[ail 21, as the inner loop will execute at least
once, which proves (i).

Frem the same considerations it also follows that
]bi_l/bi[z 1, where the inequality is sharp for
i <m. Now notice that bi—‘l /bi represents the re-—

mainder term from which the rest of the quotients
35 8;,4s-++,8_ are to be determined, i.e. bi—l/bi=

[ai’ai+l""
that the sign of a; is the same as that of bi—l/bi'

, am] - Also note from the algorithm

For 1 =i <m, assume that [ai] =1. Since biyq =
bi—l-aibi’ it follows that bi-H /bi = bi—l/bi_ai’ so
bi/bi+l will have the same sign as bi—l/bi’ from
which (ii) follows.

(iii) follows for 1 <i <m-1 from [ai, sy am]
-a; = bi+1/bi’ and in case i = 0, m 2 2 from the
fact that the value of such a continued fraction

cannot be integral when it has 3 or more nonzero
quotients. O

Theorem 2 Let [30,‘ 31, .

continued fraction expansion of p/q, and
o~ A g A A JA
po/Qo, P,/ql, o ~,pn/qn
be the canoncial convergents of p/q. The BNE al-

gorithm, seeded with the unit matrix, and applied
to p/q, computes a sequence

po/qo, pl /ql 3y pm/qm,

where (pi, q;) = (ui, Vil 1=0,1,...,m, satisfy the
following

A .
»a_] be the canonical

i) QCd(pi’qi)= 1 i=
. _ A A

ip /a. = Pn/a, R
ii) If for some i, 1 <i<m-1, p;/a, # Sj/qj for all

I=0,1,...,n then there exists a k, 0 <k <n-1
such that

O,1,...,m

237

A A
Pi-1 _ Pk Pis1 Pr+1
3. 9y g
i k i+1 K+1
iv) If for some i, 1<i<n Si/ai ;é pi/qj for all j =
0,1,...,mthen there exists a k, 0 <k < m-1
suchAthat
Piy Pr Pi+1 _ P
R T m— and N T —_——,
i1 K i1 e+
v) If sign(ai) = sign(ai_H) then there exists a k such
that N A
p;/a; = B, /4,
vi) If sign(ai)# sign(aiH) then there exists a k such
that
p. - p, P
i - i-1 _ 7(‘_k] 0
9T % Kk

The proof of the theorem is quite lengthy and will

be left out. It may be based on Lemma 3, the fact
that the canonical expansion is unique, and the
following transformation rule for continued fractions:

If Ju| = 1 and 0 <i<n-1 then
[ao,al,.'..,ai,u,ai+z,ai+3,...,an]
= [ao, 3150+, 8,40, -)ai+2+u), B ITR TR —an:l.

The theorem can be used to modify the BNE algo-
rithm such that, when stopped prematurely, it is
possible to recover a (u, v) pair corresponding to
a canonical convergent.

4. Implementation using Carry-Save representation

Since the BNE algorithm uses repeated additions
and subtractions, the use of redundant number re—
presentations may be beneficial, in avoiding the
time delay of carry propagation through registers.
One possible redundant representation is the binary
Carry-Save form, which is convenient when per-
forming addition/subtraction. A number R is repre-

sented as two bit strings R = RS + Rp, where R
denotes the set of carries, and RP the set of

"place-values!", If R = A+B, R® and RP can be
computed from A and B by parallel, bitwise logical
operations, i.e. without carry propagation. If the
operands (A and B) themselves are in carry-save

form, R and RP (hence R) can be computed in two
levels of bitwise adders (3 to 2 adders), without
carry propagation (see Fig. 1).

Let us, for the present analysis, assume that we
have numbers represented in pairs of registers,
each of n+1 bits:

carry reg. [[1 1 1
on 2 n
place reg. [T [|]

Negative numbers are represented in 2's complement
hotation, andthe positional value of a bit is the same
whether placed in position i of the carry reg., or

in position i of the place reg. Hence the represen—
tation is symmetric in the two registers, and the

?

value represented can be found by adding the con-
tents of the two registers, interpreted as numbers
having the same unit position.

Xi+1°

0

2

Add/subtract
control

2D

Figure 1. Bit slice of add/subtract circuitry
computing R = A% B in carry-save representation

When adding two numbers, each represented in two
such registers, through the two levels of 3-2 ad-
ders, two ¢arry values will be generated in the left
end of the registers, and these will be discarded.
At the right end, twice a carry may be brought in,
and in the add operation these will be filled with
zeroes,

In subtraction the contents of both registers repre-
senting the subtrahend must be inverted, and the
two righthand carries brought in have to be ones.

As usual with redundant representations, there are
some problems with normalization, sign determina-
tion, zero- and overflow-detection, which will be
needed in the BNE algorithm.

For the analysis of normalization let us assume that
the unit position of the carry and place registers

is position 0, and furthermore that the number re-
presented is in the half open interval [—l, 1). Hence
irrespective of which permissible number is chosen,
it can always be represented in one of the registers,
the other register containing all zeroes.

238

Without computing the sum of the contents of the
carry and place registers (i.e. full carry propaga-
tion) it is not possible to normalize a humber in
carry-save form to be within two powers of two.
However it turns out that using just addition with
carry propagation of the leading 3 bits, a carry-
save represented, nonzero number can be scaled
to be in the interval [-1,-1/4)Yor [1/4,1), and
smaller intervals adding more positions.

To see this in the 3 bit case, notice that the contri-
bution from positions 3 through n (which have not
been added in) represents a variation h, 0<h<1/2-2"".
The following table shows the 8 possible combina-
tions of the 3 bit result of the addition of pos. 0-2.
pos. 0-2

case range

[0,1/2)

1/4,3/4)

1/2,1)

3/4,1) or [-1,-3/4)
—1,-1/2)
=3/4,-1/4)
-1/2,0)

[-1/4,1/4)

Table 1

—~———<wp000O
-—~00—~=00
—-—o~0—-0=0

NoOOpLpWN—O

Clearly, cases 2, 3 and 4 represent properly nor-
malized numbers, however the cases 1 and 5 repre-
sent numbers which may or may not be normalized
in the ordinary sense.

The BNE algorithm uses normalization of the P and
Q registers to compute a ''distance' d(p, q) =

p - q * sign{pq) which is then substituted for p in
the P-register. Actually normalization of p and g
is used to get an approximation to the value

min | d(p - ZI,Q) | which may not be achieved just
i

using ordinary normalization (e.g. | d(3/8, 1/2) L<
|d(3/4,1/2)|). Considering the cases 1 through

as representing properly scaled numbers implies
that we accept values of p and q belonging to the
intervals [-1,-1/4) or [1/4,1).

Unfortunately, this choice may cause the BNE al-
gorithm to get into an infinite loop. E.g. in the case
p€[1/4,1/2) and q € [3/4,1), where d(p, q) €
(-3/4,-1/2) will be substituted for p to be used in
the next step. Since d(p, q) will be considered pro-~
perly scaled (e.g. fall in one of the cases 1 through
5), the next step will compute d{d(p, a), a)=(p-q)+q=p,
hence the algorithm will loop forever unless special
precautions are taken.

In the ""reversed" example p € [3/4,1) and q €
[1/4,1/2) where d{p, q) € (1/4,3/4), the algorithm
may again go through two steps computing d{d(p, q), q)=
(p-a)-q=p-2q € (-1/4,1/2), or possibly {when p-2q

€ [1/4,1/2)) a third step computing d(d(d(p, q), g}, q)=
p-3q € (-1/4,1/4),

Checking the various cases one finds that an attempt
by the algorithm to do more than three add/subtracts,
without intermediate scaling of the contents of the
P-register, implies that the algorithm is in an in-
finite loop. However noticing that only in the infinite
loop does the algorithm alternate between performing

an add and a subtract operation without intermediate
shifting, this can be used to force a shift after the
second add/subtract step.

In the BNE algorithm it is necessary to determine
the sign of the contents of the P and Q registers,

to compute dip, q). Considering the cases 1 to 5 of
Table 1, only in case 3 is the sign not uniquely de-
termined by bit zero. However the bit pattern 011
cannot be the resultof a computation of dip, q) as
previously described, since an accepted value (sub-
stituted for p in the P-register) will always be in
the interval [-1/2,1/2). Neither can this bit pattern
appear by shifting (scaling) of a register contents
previously falling in one of the cases 0, 6, 7. The
only remaining possibility for a case 3 situation to
occur is through a forced shift (to avoid infinite
looping) of a number which was previously in one of
the cases 1, 2, 4 or 5, but then the sign is already
known.

Finally it is necessary to detect the presence of
Zero to stop the algorithm, and avoid an attempt to
"mormalize" the Q-register with zero contents,
However, if the algorithm keeps track of the unit
position of the actual integer contents of the Q-
register, the "normalization' of the Q-register may
be used to detect the presence of zero (when the
unit position has been moved into position 2, and the
value falls in case 0).

In this section we have only analyzed the use of
carry-save representation of the contents of the P-
and Q-registers of the BNE algorithm, where we
have demonstrated that the flow of the algorithm
can be controited, apart from possible overflow
situations in the A, B, C and D registers. The
handling of these situations is closely reiated to the
external representation of operands, and will be
dealt with in the next section.

5. A floating-slash arithmetic unit

Let us assume that the representation of rationals
external to the arithmetic unit {i.e. the storage re-
presentation), is a floating slash representation:

n

0
Ll 7]
— %

where s is the sign, p and q are the (unsigned)
numerator and denominator, and k is a pointer to
the "slash-position'', to be interpreted as follows:
When k has value i, p occupiés positions i through
N, and q occupies (bits reversed) positions 0
through i-1, plus a non-existing position -1 which
has the value 1. In this way an extra position is
gained, at the expense of not being able to repre-
sent zero denominators,

If g=1and k=0 the word can be interpreted as
"mormal'' sign~-magnitude represented integer in the

+
range -2" ! <p< 2n+!. If k> n there is no room

for p, which then will be assumed to have the value
1, thus p and q have the same range,

239

The registers of the arithmetic unit have to be able
to contain the numerator and denominator of the re-
sult of any operator © € {+, - ¥, /} applied to any
pair of such operands, p/q and r/s. This implies
that the registers have to have at least 2n + 2 bits,
plus room for sign and possibly overflow detection.
We will choose N = 2n 4 4 bits for all registers,

In section 4 it was described how the control of the
BNE algorithm, using carry-save representation of
operands, could be based on the contents of the P
and Q registers, which we will consider the (only)
"accumulator' of the arithmetic unit, The A, B, C
and D registers and the associated add/subtract
circuitry just operate as slaves, except for the
probliem of overfilow which was postponed. We assume
that these registers and associated logic are built
much the same way as the P- and Q-registers, in.
cluding shift capability, but with a four bit standard
adder on the leading bits. Also associated with the
A,B pair of registers is a shift register |, and with
the C,D pair a shift register J. These will be used
to keep track of the unit position of the (integer)
contents of the associated register pairs, as the
register contents are normalized in the same way
as discussed for the P, Q pair.

Since we want to operate in the leftmost part of the
A, B, CandD registers, we will again slightly mo-
dify the BNE algorithm such that instead of left-
shifting the contents of the B and D registers when
normalizing Q, we will rightshift the A and C reg-
isters (with sign extension), and also rightshift the
t and J registers to adjust for the change of the po-
sition of unity. Similarly when the P register is
normalized, the B and D registers are rightshifted
(but not | and J).

When the unit is seeded with an operand (and opera-
tor) the A and C registers are loaded left adjusted,
the position of unity determined by the operand con-
taining most bits, i.e. in general one of the operands
will have to be shifted to be aligned. During the
execution of the algorithm, when adding A,B pairs

of same sign (and similarly with C,D pairs), the
growth of the A (and C) register contents can at

most require one extra bit position. The "normali-
zation" thus has to provide one extra safeguard po-
sition, which means that the scaling just uses the
three least significant bits of the four, but uses the
same decision rules as described in section 4. Only
once during the outer loop is it necessary to check
the leading three positions (of the four), and perform
a rightshift if they fall in one of the cases 1 through
5.

The | and J registers are checked whenever right-
shifted to detect whether growth has moved the unit
position beyond the rightmost end of either the A,B
or the C,D pair. This can only occur outside the
inner loop, and, based on the contents of all reg-
isters, it is then possible to find or possibly recover
(cfr. Theorem 2) a {u, v) pair corresponding to a
canonical convergent, which then can be transferred
to the P, Q registers (the "accumulator),

If the contents of the P, Q registers are to be rounded
by the mediant rounding for storing in the floating
slash format, then the BNE algorithm has to be

stopped by a different criteria. To estimate the
total number of bits needed to represent the nume-
rator (u) and denominator (v), the | and J registers
are not convenient. However it is possible to keep
track of an approximate value of the number of bits
needed in an extra shift register (call it S), accu-
mulating the total number aof shifts in the | and J
registers. The initialization of 5 is simple since
in this case the seed is the identity matrix.

Unfortunately the S register cannot give the pre-
cise amount of bits needed, due to the slack in the
normalization. But during packing of the external
representation, an adder with carry-look-ahead
is needed anyway, for the conversion from carry-
save to 2's complement (and sign-magnitude), and
can be used to get the exact amount of bits, in
connection with the recovery of a canonical con-
vergent.

6. Conclusions and future work

An arithmetic unit, which can perform all the stan-
dard arithmetic operations, has been described.
The unit seems will suited as an "add-on! unit for
a microprocessor, providing powerful arithmetic
capabilities, which could easily be implemented in
high-scale integratjon.

Of particular concern have been considerations
concerning the speed of the unit. In particular it
has been shown that the BNE algorithm can be im-
plemented using carry-save representation,
speeding up addition by avoiding the carry ripple
of standard adders, at the expense of slowing down
the normalization shifts. Whether this trade off is
beneficial depends on the ratio of number of add/
subtracts to shifts, in the BNE and other possible
algorithms (e.g. the SS algorithm in [4]), and
deserves further analysis.

Also the possibilities of supporting mulitiple pre-
cision operations needs further study. In [7] it

has been proposed to use continued fractions, in
the form of quotient sequences, as a number re-
presentation for '"demand driven'' expression eval-.
uation. The scheme seems promising, but suffers
the same problems with very large quotient values.
Although rarely occurring, the large quotient
values are crucial to the underlying number system.
Using an extended floating-slash representation,
where the "slash-position" is allowed to move be-
yond the field assigned for the numerator and deno-
minator, it seems likely that large quotients can be
handled, besides providing extra range for ''single-
precision! operands.

References

[1] D.W. Matula: "Fixed-Slash and floating-slash
rationa!l arithmetic!. Proc. of the 3rd IEEE
Symposium on Computer Arithmetic, Dallas,
1975,

[2] D.W. Matula & P. Kornerup: "A feasibility
study of fixed-slash and floating-slash
number systems''. Proc. of the 4th |IEEE
Symposium on Computer Arithmetic, Santa
Monica, 1978.

By

40

[3] D.W. Matula & P. Kornerup: '"Foundations of
finite precision arithmetic''. Computing,
Suppl. 2, 1980.

[4] P. Kornerup & D.W. Matula: "A feasibility
study of fixed-slash arithmetic!. Proc. of
the 4th IEEE Symposium on Computer Arith-
metic, Santa Monica, 1978,

[5] G.H. Hardy & E.M. Wright: "An introduction
to the theory of numbers!. 4th ed. Clarendon
Press, Oxford, 1959,

[6] A.Y. Khintchin: "Continued fractions',
translated from Russian by P. Wynn,
P. Noordhoff Ltd., Grooningen, 1969,

[7] W. Gosper: Continued fraction arithmetic".
tnpublished manuscript.

