Complement Representations in the Fibonacci Computer

P. Ligomenides and R. Newcomb

Intelligent Machines Program and Electrical Engineering Department
University of Maryland
College Park, MD.20742

Abstract

Two complement representations and a sign-
magnitude one are introduced which sllow for handl-
ing negative numbers using only binary coefficients
in Fibonacci base expansions. These are developed
for practical implementation in Fibonacci computers.

1. Introduction

Because of the desire to have fault tolerant
computers, there is an interest in pursuing various
types of computers. Among those of interest are
computers which are based upon other than binary
number systems and among these of especial interest
is the Fibonacci computerl'z. The Fibonacci
computer uses the Fibonacci numbers- as the number
base in which calculations and operations are
performed with the fault tolerance coming from the
redundancy present in this base. Thus, the
Fibonacci numbers form a complete set in themselves
or when any one of the Fibonacci numbers is deleted,
a property not present in the base two systemA. In

this context completeness means that any mnonnegative

integer can be expressed in terms of the hase
numbers with appropriate coefficients. These
coefficients in the Fibonacci base can be binary
numbers J3»> Chap.12 in which case we call the
representation the binary Fibonacci representation,
BFR. In the BFR several possible representations
are available for any given number, this leading
to the desired redundancy. For example the so
called minimum representation in which no two
adjacent coefficients are 1 and the so called
maximum representation where as many l's as
possible can be cited (though in some cases the
minimum and the maximum representations are iden-
tical).

The thesis of Hoang2 treats various aspects
of arithmetic operations, including the basic ones,
as addition, while in previous work it has been
shown how the minimum and maximum representations
can practically be generatedd and how other than
binary coefficients can be used through ternary
and quaternary logic6. Here we return to the
binary coefficient case and present complement and
sign magnitude systems such that negative numbers
can be handled in the Fibonacci computer without
going beyond binary coefficients and without using
negatively indexed Fibonacci numbers in the base
system. The details are presented in the next
section. Following the next section we give some
discussion on the results including comments on

CH1630-3/81/0000/0006$00.75 © 1981 [EEE

the consistency of the derived representations and
their use in physical implementations.

II. BFR and Conversion Algorithms

We take as given a positive number M of the
special form

m
M=2 F, (la)
j=2

where Fj is the jth Fibonacci number, that is

j -1 - §-2° FO = 0 and Fl = 1. (1b)
This M represents the maximum number which can be
held in an (m-1)-bit Fibonacci computer, and, thus,
M+l serves as a modulus for a modular number
system.

For our purposes we take the complement of a
nonnegative number N with respect to the positive
number A to be A - N. O0f special interest to us
are two choices, those for which A = M, giving the
M's complement, and for which A = M + 1, giving
the (M+1)'s complement, keeping in concert with
the reduced radix (RRC) and radix (RC) complements
of standard binary computers.

I1.1. Magnitude Conversion Algorithm - A given
number +N in sign-magnitude (SM) form can be
converted into a binary Fibonacci Representation
(BFR) either in SM or in '"'M Complemented' or in
"(M + 1) Complemented" forms, in the range (-M,M)
defined by the m-bit Fibonacci representation
which is based on the completeness of the represen-
tation3

m
N=2Z% b,F, (2)
j=2 I

where M is as in (la) above. It should be noted
that the RRC fcrm in this case refers to the M's
complement number system, while the RC form refers
to the (M+l)'s complement number system.

The conversion algorithm shown in the flowchart
of Figure 1 will convert the magnitude N into the
BFR designated by equation (2). The algorithm may
be implemented if the number +N is provided in
some physical form, such as an analog voltage
(e.g., the output of a sensor device) or a binary
number (e.g., the output of present analog-to-

digital converters). The required components are
voltage comparators and common binary arithmetic
circuits. The Fibonacci numbers Fm, Fm«l""’F s
must also be provided, either through a memory
look-up table or by some "Fibonacci number
generator' circuit, like the one discussed in
Section II.5 of this paper.

It is of interest to observe that the N-to-BFR
conversion algorithm shown in Figure 1 does provide
the minimum form of the BFR, as is seen by tracing
through the flowchart. That is, the algorithm
produces naturally the minimum number of 1-bits in
the resulting binary code.

I1.2. Sign-Magnitude Representation - Having
obtained the BFR for N the SM Fibonacci represen-
tation of +N is obtained by simply appending a sign

bit, bs, in the most significant bit (MSB) position.

Thus, the SM-BFR

N — (bsbm"'bz) (3
is accomplished, where we designate (bqbn...bz) as
the code of the given number. -

I1.3. M Complemented Representation - One may
observe that the (m-1)-bit Fibonacci representation
(obtained through execution of the algorithm in
Figure 1) of M - N is the 1's complement of the
coefficients in the (m-1)-bit BFR of N. This is so
because the BFR of M has a string of 1-bits, i.e.

n
M= 2 F, — (11...1) (4a)
j=2
so that
N —— (b b,) (4b)
m 2
- L} L
M N — (bm ...bz) (4c)
where
b. ®b! =1, 1i=2, ...m (4d)
i i
such that
' ! = (
(bm...bz)] (bm...bz) (11...1) (be)

Because of this relation holding in the
Fibonacci representation of N and its M's
complement, M - N, we may use the common techniques
available for deriving and manipulating the RRC

in base-2 representations and arithmetic operations.

The algorithm for obtaining the M's complemen-
ted BFR representation of a given number +N is:

1. Form the {(m-1)-bit code for N, i.e.

(b --b2), using the algorithm of Figure 1.

2. Append a zero sign bit in the MSB position,
i.e. (Obp...b2).

3. If the given number is positive, i.e. +N,
the M's complement code is ready to be stored,
i.e. (bgbnm...b2) where bg=0.

4. 1f the given number is negative, i.e. -N,
the augmented binary code (Obgy...bs) is complemen-
ted and stored as (lby...b)). The negative

number is now recognized by a 1-bit in the sign bit
position.

It is of interest to note that the minimum forms
of BFR, i.e. those with the minimum number of l-bits,
may reduce the number of carry operations in addit-
ion procedures, and, therefore, they allow for
faster execution of arithmetic operations in the
binary Fibonacci number system.

In order to secure the minimum form in the M's
complemented BFR step 4 of the above algorithm is
modified as follows:

4', If the given number is negative, i.e. -N,
the binary code (bm...bz) is first maximized
(i.e. placed in maximum form by exchanging 100 with
011 combinations”), a zero is then appended in the
MSB position and the resulting code is complemented
and stored. The negative number is now recognized
by a l-bit in the sign bit position and the comple-
mented code is in minimum form.

One must observe that in order to maintain the
minimum forms during the execution of arithmetic
operations in the BFR using this algorithm comple-
mentation should be preceded by maximization of
the form. Thus, if the subtraction Ni-Ny is called
for, the addition Nj + (M - N3) is performed
instead. If the minimum forms of the operands are
to be maintained, the BFR code for Ny is recalled,
maximized, and then complemented before it is used
in the above addition. Note that the preservation
of minimum forms in storage and arithmetic
operations in BFR is not essential but only used to
simplify and speed up the arithmetic operations.

As an example of application of the conversion
algorithm consider -—N = -31 which is to be conver-
ted into the 8-bit M = 53 complemented BFR.

a) Conversion of 31 to minimum-BFR:

Since 31-53 < 0 the number N = 31 is
"within range'. We have

M=53=F8+F7+F +F5+F&+F3+F2 = 21+13+8+5+3+2+1.,

6
F8 31 - 21 >0 b8=1 using the algorithm of
Figure 1
F7 10 - 13 <0 b7=0
F6 10 -8 >0 b6=l
F5 2-5 <0 b5=0
F4 2-3 <0 b4=0
F3 2-2 =0 b3=l
F2 0-1 <0 b2=0

b) Codes for -31:
The above process has given the 7 digit
minimum BFR code for 31

31— (1010010)min

A sign bit is added to give an 8 digit code for +31
which can be maximized as per step 4'

+31 —— (OlOlOOlO)miﬁ~—”—* (OOlllllO)max

-31 — (10101101) —_—
max

(11000001) |

min
It is to be noted that in forming a BFR for -31 one
for +31 tained. It is also noted that in the
M's conwpiement system there is a +0 (the all 0 code)

and a -0 (the all 1 code).

II.4. (M+1l) Complemented Representation ~ The
(Mt1)'s complement representation is obtained by
adding one to the M's complement representation
when the number is negative or leaving it as in
the M's complement form if positive. In this
system +0 = -0 is the all 0 code while the all 1
code represents -1.

I1.5. The Fibonacci Number Generator - For the
implementation of the conversion algoriichm of Figure
1 it is required that the sequence of Fibonacci
numbers, F, Fp-15.-+,Fy, be available. The algori-
thm may be programmed on a digital computer or
implemented in an autonomously operating circuit,
with the required Fibonacci number sequence stored
before-hand in a table in memorv. A generator which
will produce the sequence of Fibonacci numbers in
real time is also possible.

The solution to the Fibonacci numbler generat-
ing linear difference equation, equation (1b)
above, may be obtained in closed form bv use of the

Z-transform as />P-62.
1 145 5 1-V5
F. o= (5 - G52 (5a)
v 2
= —%: [ad - b7] {5b)
5
where a and b are the two roots of xz - x~1=0,

This solution may be programmed to yield a routine,
providing on demand in real time the required Fibo-
nacci numbers, and it may be incorporated in the
program which implements the conversion algorithm
of Figure 1.

Alternatively, a hardware implementation of
a Fibonacci number generator is alsc possible by
directly implementing the relation (1b), tle
circuit being given in /»P+62. The circuit consi-
sts of two unit delays and a summer, and it is
clocked to provide the sequence FZ,F3,...,Fm,
given the initial values Fp and Fy. But for the
algorithm of Figure 1 the reversc seguence,
Fos Fo1»--+->Fp, is required. This can be imple-
mented %rom the linear difference ecuation

F .=F

- m-j+2 " Fm—j+l » J =0, 1, ..., m. (6)

through the circuit shown in Figure 2. Equation
(6) and the circuit of Figures 2 are supplied with

PR S .
initial conditions Fm+2 and P,

III. Discussgion

In the above we have presented representa-
tions which allow negative numbers to be conven-
iently represented in the Fibonacei computer using
only binary coefficients and positively indexed
Fibonacci numbers in the base. Indeed we have
begun the base with F; though the whole theory
carries through when starting with Fgo or Fl (where
starting with Fj is convenient for criror ccrrect-
ion while starting with F, gives a more “efficient
system'"; we used F2 to il%ustrate the generality).

Conversion to Fibonacci representations from
decimal is relatively straightforward and simply
implemented as clearly illustrated in Figure 1 lor
the BFR where only simple subtractions and compari-
sons are required. The addition of numbers in BFR
is also relatively easg to perform and a treatment
can be found in Hoang 2>CPaP-3- {iLewise arithme-
tic operations may be performed consistently in the
Fibonacci representations derived in the previous
section. That is, the addition, subtraction,
multiplication, or division, of two numbers repres-—
ented in any one of the previously derived represcn-
tations must result in a number also conforming to
the representation chosen. Work in this direction
is continuing. It should also be noted that
complete equivalent termary or quaternary Fibonacci
representations in sign magnitude or complement
form can be directly derived from the algorithms
discussed in Section II. The ternary and quaternary
representations of a positive number N are derived
directly from the BFR, as discussed in our previous
paper

Complete representations in the range (-M,M)
may be accomplished in various ways. The extension
to negative even subscripted Fibonacci numbers used
as weights in the ternary and quaternary Fibonacci
representations is one way which follows from the
discussion in our previous work6. The complement
representations are directly derivable following a
similar algorithm to the one discussed in Section
IT. The ternary and quaternary complement repres-
entations, together with a complete set of rules
for consistent arithmetic operations in these
number systems, will be discussed in forthcoming
works.

References

(1] R. Newcomb, "Fibonacci Numbers as a Computer
Base', Conference Proceedings of the Second
Interamerican Conference on Systems and
Informatics, Mexico City, November 27, 1974.

[2] V.-C. Hoang, "A Class of Arithmetic Burst-
Error-Correcting Codes for the Fibonacci
Computer", Ph.D. Dissertation, University of
Maryland, Department of Electrical Engineering,
December 1979.

{3] V. E. Hoggatt, Jr., "Fibonacci and Lucas
Numbers', Houghton Mifflin Company, Boston,
1969.

[4] J. L. Brown, Jr., "Note on Complete Sequences
of Integers'", The American Mathematical Monthly
Vol. 68, No. 6, June-July 1961, pp. 557-560.

[5] P. Monteiro and R. W. Newcomb, "Minimal and
Maximal Fibonacci Representations: Boolean
Generation", The Fibonacci Quarterly, Vol. 14,
No. 1, February 1976, pp. 9-12.

[6] P. Ligomenides and R. Newcomh, "Equivalence of
Some Binary, Ternary and Quaternary Fibonacci
Computers”, Proc. 1llth Int'l Symp. on Multiple~
Valued Logic, May 27-29, 1981.

[7) J. A. Cadzow, 'Discrete-Time Systems', Prentice
Hall, Englewood Cliffs, NJ, 1973.

Set’
(bt

Figure 1
Flowchart for Algorithm
to Obtain BFR.

Fm—j+2

Figure 2
Reverse Sequence Fibonacci
Number Generator, F , F s eeay F
m’ m-1 0

