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ABSTRACT
The results of Robertson concerning
a systematic approach to the design of
Adder/Subtracter structures c¢f radix rs=

ok , k3 I are generalised to cover all
structures of radix ram® ,x3 1 and m3 2
The use of Cuasitinary representations
help reduce the numter of types of funda-
rental structures reguired . In addition
to the types encountered in the earlier
case , only one new type of fundarental
structures called Radix-m Carry Genera-
tor 1s needed . Examples in the parti
cular case of Decimal Adder/Subtracter
structures are used to illustrate the
results .

I.Introduction

A design theory for a class structu-
res for Addition and Subtraction is pre-
sented in a recent paper . An Adder/
Subtracter structure is one that trans -
forms one or wmore input operands into one
or more output operands where each input
and output operand is a digit set , i.e.
a consecutive sequence of integers inclu-
ding zero and the transformation 1s sub-
jected to scme precise rules . In essence,
the above paper demonstrates that a com-
plex Adder/Subtracter structure can be
realised as combinations of simpler funda-
mental structures with known or more easi-
ly determined implentations The input
and output operands of each type of funda-
mental structures are either two-valued or
three-valued digit sets .

A distinguishing feature for this de-
sign theory is the partition of given di-
git sets with more than three values into
binary weighted two-valued and three-val-
ued digit sets . Such a partition is re-
ferrred to in this paper as a Quasibinary
representation , in contrast to the con-
ventional Einary representations which
consist only of tinary weighted two-va-
lued digit sets . Eecause a three-valued
digit set can be replaced by two two-va-
lued digit sets , Quasibinary representa-
tions subsume Binary representations as
special cases . Furthermore , because the
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three-valued digit set is a redundant
digit set with respect to the basic radix
r=2 of the fundamental structures mentio-
ned above , the use of Quasibinary repre-
sentations incorporates in a natural way
this type of redundancy which is known to
lead to improvements in the design of

arithmetic structures 2 8.

The design process consists of two
steps . The first step involves the de-
composition of the given structure into
fundamental structures and the second
step the filling in of implementation
details of the fundamental structures
being used . There also exist relations
that provide partial measures of the
hardware costs and some guidelines in the
decomposition step of the design process.

The main restriction on the results

of I is that the Adder/Subtracter struc-
tures to be designed must have radix r of
the form r= 2% , k2 I . Since some Adder/
Subtracter structures of intrest do not
fall into the above class ( one eminent
case being the class of Decimal Adder/
Subtracter structures ) , this paper ge-
neralises those results to deal with
Adder/Subtracter structures of radix r=
mk,, k3l and m22 .

As will be seen , the Quasibinary
representation will again assume an impor-
tant role . Its use leads to a considera-
ble reduction in the number of types of
fundamental structures required in the
decomposition step . The set of fundamen-
tal structures for the case of radix r=

k . .
m, k2I, m>»2 contains those same *‘unda-

mental structures for the case of radix

rs Zk » k21 , plus a new type called
Radix-m Carry Generator . There exist
other differences between the two cases H
some of these differences appear in exam-
ples concerning designs of Decimal Adder/
Subtracter structures of radix r=1I0¥ R
k2I . This class of structures is consi-
dered not only to illustrate the theory
but also hecause of its possible applica-
tion value .

Due to space limitations , the prcofs
of all results together with many clari-
fying illustrations will be omitted . The




reader is referred to 9 for details . The
paper is organised as follows. Section 2
reviews the basic concepts and notations
Cection % contains the main results , Sec-
tion 4 presents some illustrative examples
and ection 5 provides some concluding
remarks .

2. Digit sets and Adder/
Subtracter structures
A (§+1)-valued digit set is a seque-

rce of £+1 consecutive integers including
zero{—w,-w#l,,..,—W+K}where Oswg€. 8is
called the diminished cardinality and w
the offset of the-digit sel . Let r be the
radix involved, a digit set is redundant
if §&r-1 , nenredundant if €= r-I .Since
r :an be as low as 2 , the lower limit of
§is I, There is no upper limit for & but we
use the arbitrary upper limit 2(r-I) which
is sufficiently large for most practical
purposes . The digit set is said to be
normalised if w=O , gywmetric if §is even
and w= &,
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Digit sets will be denoted ty letters
of the alphabet with a superscript indica-
ting the offset . For example a’s{0,1} ,

alz {1,0} , v’z40,1,2% , b*2{1,0,1} ,b%s

£,1,0f, ..., 1 %q0123456780} ... 1t is
important that the three-valued digit set

o" ( also any digit set with larger number
of values ) be recognised as a separate
entity , independent of its binary repre-
sentation . It is also useful to refer to
the class of digit sets of a Ziven dimi-
nished cardinality without specifying the
offset by omitting the superscript in the
digit set symbol .

A set c¢f integers A ig a Setsum of
the sets of integers 2 and ¢ if and only
if for every L €E angd c€C there cxists an
a&A such that asb+ ¢ - Using the symbol
'#! for 3Zet Additioq Operation , we can
Write either A= B4C or Az CLB due to
‘ts commutative broperty .

. A Quasibinary representatiog of a
given digit set is a Partition into binary
welghted two-valueg digit sets (a) and
thrie-valued digit sets (b) such that the
Setsum of these binary weighted components
€quals the criginal digit set A simple
algorithm to fing such reprecentations is
given in 1.

Algoritm: Given a digit set &Y
with &5 2 -
C) (ignoré the offset w ti1l]
Step 2) IVITIALISE ie0; i« 4,
I YEILE &30 DO
EEGIN IF & is 0oD , THEN
include 2tg as' a com-
-I).

ponent; &\'d = 3¢ .5 i
ELSE include 2%b as a

component, &, = %(81-2).
1e i4T |
END .
2) IF w=0 , THEN assign offset 0
to all components ; ELSE (w»0)
assign offsets to individual com-
ponents in the representation
found above so that their weigh-
ted sum is equal to w ( Note:
There may be more than one way to
do this ).
3)END.

For example , without taking cffset
into account , the digit set n (with §=14)
has the Quasibinary representation 4b%2b
b .Thus the normalised digit set n° has

the unique Quasibinary representation qbQi
Do X
26°3 80 | In contrast , the digit set o'

can have either 4o 3 280% 10 or 402w}
bo or 4bo$ 2bI$ bI as a Quasibinary re-
rresentation .

A representation is said to overrepre-
sent a digit set if it can represent va=
lues other than those belonging to the
digit set in question . A close examina-
tion of the definition and formation of
Quasibinary representations show that the
problem of overrepresentation will never
occur . In comparison , such a problem may
occur when one uses Two's Complement binary
representations {and other well-known
Einary representations ) . For example ,
the symmetric digit set {B,?,...,O,...,7,8}
has « Quasibinary representation Baly Lao}
2a°% b° ,but for Two's Complement binary re-
presentation , one is forced to use 1Ifa'}

§a°t La®t 22" 2° which can represent also
the values (I6,I5,...,3) and (9,10,...,I5)
not in the desired digit set . If the digit
set is an input operand , overrepresenta-
tion does not cause any problem in logical
design . In fact , it helps simplify the

result because the so-~called overrepresen-
tations are simply DON'TCARES . If however
the digit set is an output operand y OvVer-
representation leads to additional cons-
traint to the logical design problem so
that the combinations corresponding to
the DON'TCARES will never appear at the
the output . In practice , sometimes over-
representation of a digit set may bve used
deliberately to gain some saving ir bit
storage ; the effort irn modifying the de-
sign and/or the extra tardware cost to
achieve this may be justified in those
caseg

“ecause ar Adder tecomes a Subtracter
ty a change of sign or bty changing the
value of a single input and because some
structures in the follcwing discussion pos-
sess a mixture of properties of Adder and
Subtracter and are difficult to character-

ise , we shall use the terminology of Addi-
tion to refer collectively to all struc-




tures . An Adder structure transforms one
or more digit sets (inputs) into one or
more digit sets (outputs) such that the
Setsum of the cutputs contains that of the
inputs . To help make the decomposition
step in the design process more uniform ,
we adopt the convention that if thé& above
Set Containment is proper a Mythical Input
digit set , to the extent necessary to ma-
ke the Input Setsum equal te the Output
Setsum ,will be introduced as shown in Fig.
I . Because the Mythical Inputs are just
dummy inputs , they can be used to simpli=-
fy the structure in the final stage of the
design process . The introduction of Mythi-
cal Inputs therefore does not increase
cornplexity of the final design . Fig. 2
presents a typical example .

) Esch Adder structure has a negative
found by replacing each of the input and
output digit sets by its megative . If all
input and output digit sets are nonreduns
dant , the logical designs of a structure
and its negative are identical . For a
structure with redundant digit sets s dif-
ficulties are apparently encountered with
symmetric digit sets but these can be easi-
1y resalwed?,

In the following , an Adder structure
will be denoted By a symbol consisting of
the Setsum of the inputs on the right side
and that of the outputs on the left side
of the transformation sign 'e—"' . For
example , the class of Adder structures of
Fig. 3.a is deésignated by La+ 2a+ a e 2k
+2a+a while one of its variant , shown

ig Fig. 3.b , is designated by fal+ 2204
a” e ZbI-l'-ZaI-i- a0 .

3.General results

Tpe first four results of this section
show dlfférent types of fundamental struc-
tures required in the decomposﬁtion of
Adder structures of radix r=m +k2 I and
m32 . The last result gives a set of rela-
tions between the numbers of different ty-~
pes of fundamental structures involved in
the decompositions angd various parameters

issociated with the original Adder struc-
ure .. '

Result I : Any Adder structure of
radix r= mk » k21 , m22 can he de-
composed into at least one combination
of the following types cof fundamental

structures..

;[ Digit set} — {Digit set] ;
ma+[with Sema) *7 luith I2miy T2
D@glt set Digit sety .
with §226n-1)] ¥~ |with s=2m-s] *a

L
c - b

- g

l
i

a 4 - b

1) + a -«

Digit set | Digit set ]
[wj.th 8- 2m-3] ta <« [wi th &= 2fm-1)
Digit set ]: .IDigit set
{With 3: 2(\1\—\)] ta * ma+ [wi th §: m-l‘l

Note that the digit sets involved have
diminished cardinalities ranging from I up
to (2m~I) . The presence of allowed digit
sets with €22 creates some practical pro-
blems . It has been shown that a digit set
b (6= 2) when implemented by two binary va-
riables (two bits) has 9 different formats
; each one represents an NP equivalent
group and may lead to a differeht logical
design_and hence need be considered indivi-
dually®. A digit set with §>2 (such that$§

+ Zk-I ) will have many more formats . For
example , a digit set d (6=4) when imple-
mented with 3 bits has 30236 formats
while a digit set e (§=5) has 20580 for-
mats . The task of carrrying out logical
designs for all possible versions of a
type of fundamental structure correspon-
ding to all formats of allowed digit sets
soon becomes enormous and impractical .
This in turn makes the selection of one
among those formats to be used more diffi-
cult . To alleviate this problem , it is
decided to replace all allowed digit sets
of the given Adder structure by their
Quasibinary representations . We then only
have to deal with the digit set a with a
single format and the digit set b with ¢
different formats as mentioned above .As

a consequence of the decision to use Qua-
sibinary representations ,we also obtain

a reduction in the number of different
types of fundamental structures .

Result 2: Under the decision to use
Quasibinary representations , the set
of fundamental structures of Result I

becomes
ma + Q) Q_(am-l)
2a + a e b + a
b «— a ¥ a
a <+ a <« Db .
b+ a «— 2a + a
Q(2m-—I) <« ma +Q(m—I)
where Q& the Quasibinary represen-

tation of the digit set with the di-
rinished cardinality &=t

A further reduction follows if we
use the so-called FanOut Operators , which
in this paper take the gemeral form npa +

n,a < n3a with nI,nZ,n5> 0 and Do+ Bz

n3 .-




Result % : An equivalent set of fun-

darmental structures to that of Result
2 is
ma + Q1) < Qo)
2a + a — b %+ a
b - a + 2
a 4 a <« b .
ng ny - n3 with nI,nZ,n5>

0 and nI-‘-ngn5

Thus , in addition to the fundamental
structures of the four types ( Radix-2
Carry Generator , Generalised Hal f-Adder,
Converter and FanCut Cperator ) which are
encountered in the decomposition of Adder
structures of radix r=2% , k31 we need
only a new type , ma-iQ(T_I) “«— Q _1)
called the Radix-m Carry . Genergégr
for the general case of radix r= mk, k31,
m>»2 . As an illustration , for the class
of Tecimal Adder structures ( m =10 ) ,the
set of fundamental structures is

I0a+ha+lbta < Satih+lata
2a 4+ a<+«b 4+ a
b . «~a + a
a =4 a « b
and ny 4-n2 -« ng with nI’na,nB)O
and nI+n2= nB.
If in particular m is not a prime
integer but of the form m=z 2% v where eI
and p is a prime integer , we also have

Result 4 : If m::Zq.p with 92 I and
P & prime integer , the set of funda-
nental structures for Adder structu-
res of radix r=m* , k31I , my 2 is
the same as that for Adder structures
of radix rzp¥ k I with p as defined.

For the illustrative case of Decimal
Adder structures ( m =I0= 2'.5 ), Result L
means that ,in the set of fundamental
strqctgres » the Radix-I0 Carry Generator
I0at+4a+bta < BatLhb¥lata is replaced by
;gg Radix-5 Carry Generator Satlatb < La +

a .

_ Let dm(ﬂu¢)and @h(5m¢)denote the
numoer of a digit sets and bdigit sets
respectively on the input side (output
side) of an Adder structure . Let Nin (Pot)
denote the "information content " of the
input (the output ) of_the same Adder
structure . Following + each a digit
set is assumed to have one unit of infor-
?ation while each b digit set two units

Oor convenience .Let o 2 oy, - L3
Biu - Bout  amd - Bacs At Ninsvout s B 8
The 4«, 4P, and AN values for each type of
fundamental structures can be easily found
For the Radix-m Carry Generator ,until the
the specific value of m is known ,we do
not know the corresponding Ba, AR anddA; we
use the generic symbols e, B :
tlvgly to refer to these values , Also,
define ¥ ,€nas the number of a digit sets

and Aw, respec~

and b digit sets respectively which have
welghts that are multiples of m on the
output side of an Adder structure of
radix r=m*, k»I , m>» 2 and define 6wm
2 ¥ + 2. Finally let z » Z 3 Y & X
and u denote the number of Bach Radix-m
Carry Generators, Radix-2 Carry generator,
Generalised Half-Adders, Converters and
FanCut Operators respectively being used
in a decomposition . ‘We have

Result 5 : The following relations
hold for any decomposition of an
Adder structure of radix rz=mX 2l
m %2 using the fundamental structures

of Result 3
Zm % Sy
Z +Apza,—U = AA
Jy = X +(dm*?m)%n— u = AK-AP

If the only goal is to minimise hard-
ware cost by reducing the numbers of each
type of fundamental structures used in a
decomposition , the above relations indi-
cate that one should try to use as few Con-
verters and FanOut Operators as possible .

ach increase in u leads to an increase in
elither z or z_ or y while each increase in
x causes an iBcrease in ¥ . In practice ,
another goal in the final design is the to-
tal Time Delay due to logic gates , which
is usually in conflict with the above goal
and forces the designer to select a compro-
mise . Now for a given Adder structure ,
the parameters 8§, Myand are fixed (note
that by definition A« = AA-2AB)and the
above relations can serve another function
as a rough measure of hardware cost or
help establish lower and upper bounds on
this cost as has been done in ¥ .

Tor the particular case of Decimal
Adder structures ( m=10=2".5 ) , the
above relations take the forms =z b GEO N
z-uz8, and y - x - u = AN-DMB since the
Radix-5 Carry Generator is being used and
As = fs = A= 0 .

4. Examples of some Decimal
Adder structures Designs

“We consider designs of Decimal Digit
Slices of Decimal Adders with the Limited
-Carry-Propagatior property . Each slice is
constrained to have the form shown in Fig.
L , where X,Y,Z and the Mythical Input
are the operands and Tl(in) ' T2(in) s

TI(out) » and T2(out)
Transfer In and Transfer Cut signals res-
pectively -

The decomposition step can be summer-
ised using an Information Loss Chart
which provides traces of important para-
meters in the decomposition . These para-
meters are the quantities o , 3 ,A, the
number of a digit sets and b digit sets
of the same weights (together with their

are two-valued




offsets ) that are available at each stage
and the numbers of each type of fundamen-
tal structures to be used in that stage .
For examples , the symbol 2'in the column
8a implies that there exist one 8a°and
one 8a' digit sets , the symbol I' in the
column 4b implies that there exist one 4b'
digit set at that stage and the symbol
2@[2a + aeb +a] means that two Radix-2
Carry Generators are used . In cases of
ambiguities , more explicit symbols will
be needed . For example , the symbol 22
in column 8b may mean either two 8b!
digit sets or one 8b® plus one 8W* digit
sets . To avoid such amtiguities ,we shall
use I',I' for the former and I9,I2 for
the latter case . The first row of each
Information Loss Chart , beneath the co-
lumn headings , contain values of the
above quantities which are present on the
input sideof an Adder structure to be de-
signed . In the following rows , the va-
lues of parameters will vary ( i.e. may
increase ,decrease or remain unchanged
depending on the particular fundamental
structures being used in the row immedia-
tely above )} . This continues until a
pattern of weighted a and b digit ‘sets
exactly the same as that of the desired
output is obtained ., The Information Loss
Chart so derived contains enough informa-
tion that can be quickly translated into a
block diagram layout .

Note that in the examples given below
we only present for illustrative purposes
what appear to be "reasonable" designs and
do not claim that they are optimal ones .

' Example I : Common digit §et for the
input and output operands is n’={§7
ceesb6,7,}. _A_Mythical Input digit set ,na-
mely d={2,1,0,1,2} , is necessary in this
zase . After replacing each digit set by
its Quasibinary representation , we obtain
one as shown in the Information Loss Chart
of Table I .

Note the ' ' marks in the Informa-
tion Loss Chart which emphasise the fact
that each Transfer In signal can only be
used after its Transfer Jut counterpart
?as been generated as indicated earlier in

ig. 4 .

Example 2 :
input and output operands is o‘:{
yee+26,7 5. Again a Mythical Input digit
set ,namely ck{I,O,I,E} » 1s necessary .
After replacing each digit set by its Qua-
sibinary representation o We obtain one
decomposition as shown in the Information
Loss Chart of Table II .

Note that »in common electronic imple-
mentation of the fundamental structures
the FanOut Operators require no hardware
and hence no Time Delay » its presence can

be assimilated into the cther fundamental
structures , as illustrated in Fig.5 which

10500450,

Common digit set_for the
8,_7,,..»,0

3
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occurs in the first stage of this example.

Beyond confirming the relations of Re-
sult 5 , the examples above ( and others
not presented here )lead to the following
observations . As expected , due to the
presence of an additional type of fundamen-
tal structures ,the Radix-m Carry Generator
the decomposition process becomes moEe com=
plicated . In the case of radix r=2% , a
reasonable decomposition strategy that
seems to have always worked is to combine
the a and b digit sets of the same weights
as quickly as they become avallable to ge-
nerate higher weighted digit sets while at
the same time avoiding the use of Conver-
ters as much as possihle . This is hecause
the available a and b digit sets are always
in proper form for combinations using
either Radix-2 Carry Generators or Genera-
lised Half-Adders ( except when all inputs
are b digit sets where one is forced to use
the Converters to keep the decomposition
going ) and because there are no ouput sig-
nals with weights other than 2% |, k21, .
In contrast , in the case of radix rzm" ,
k21 with md»2 , the attention must focus
on generating output signals with weights
of the form m% via Radix-m Carry Genera-
tors . Usually , one needs to rearrange the
available digit sets before they are in
proper form ready to be used as inputs to
the Radix-m Carry Generators in order to
generate the desired outputs . These rear-
rangements often require the use of FanOut
Operators , of Converters and extra Time
Delays . This means that it is not possible
to state a,_general strategy for the case of
radix r=m ,k3I , m»2 . This also explains
the fact that while the use of FanOut Ope-
rators may be avoided entirely (except for
pathological cases of little practical in-
terest ) in the case of radix r=2% k3 I,
such is not the case for radix r®=mk , k)
I ,m>»2 ,with Example 2 as an illustration

To complete the designs of the examples
one has to fill in the implementation de-
tails of the fundamental structures . The
logical designs of all versions of all va-
riants of the last four types of fundamen-
tal structures for radix r =IO%, ky I, are
given in * ., It remains to consider the lo-
gical designs of the Radix-5 Carry Genera-
tors. There exist 14 variants of this type
of fundamental structures , each one corres
ponds to a value of the offset . Because
each such structure involves 2 & digit
sets , each one can independently assume
one of the 9 formats mentioned earlier,

81 versions of logical designs for each
variant must be considered .RBecause the
logical designs structures. which are nega-
tive of one another are identical or can

be easily deduced from one amother sWe need
only concern with 7 different variants and
hence (7 x8I) =567 different logical de-
sign problems, each one with 4 binary va-




riables as inputs and 4 variables as out-
puts . Again space limitations prevent dis-
cussions of these logical designs here.Re-
ference § contains two typical designs as
examples . When the need arises the desig-
ner can carry out similar designs which
are not difficult in nature . '

Based on our limited designs experi-
ences , we cannot ascertain which format
for the b digit sets in the Radix-m Carry
Generators would results in better designs.
However, for practical cases that we have .
come across the number of Radix-m Carry
Generators required is uasually small in
comparison to the numbers of Radix~2 Carry
Generators , and Generalised Half-Adders .
As a consequence , the observationlthat
the use of Format #2 or Format #3 would
result in overall better designs in terms
of gate counts could be expected to hold
true for the case of radix r=mk ,k> I ,m
>2 as in the case of radix r=2k, kI .

5.Conclusion

The results of Robertson‘I concerning
a systematic approach to the design of Kk
Adder/Subtracter structures of radix r=2,,
k > T have been generalised to cover all
structures of radix r=mk , ky I , m22 .
The use of the so-called Quasibinary repre-
sentations for all digit sets involved in
these structures is shown to play an impor=-
tant role here as in the earlier case . In
addition to the four types of fundamental
structures already discussed in ,only one
new type ,called the Radix-m Carry Genera-
tor , is needed .

There exist other small differences
between the case of radix rzcok s K2 1 and
the case of radix r=mk, k3T ,'m>2 .Some
examples involving Decimal Adder structures

Illustrate *these differences . The observa-
tions made for these examples hold true for
other values of m> 2 as well .As in the ca-

se of radix r=2% , k) T | it is possible
to derive a set of relations connecting
the numbers of different types of fundamen-
tal structures being used in any design

and the parameters of that design problem,

which may be of use to the designer .

) As can be seen several issues concer-
ning Fhe application of the approach to
bractical problems are left untouched .Is-
sues such as the choice of a particular
representaticon for the Mythical Input
the compromise between hardware complexity
and.speed ++«+. must be dealt with by ‘' the
designer of these problems .
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. ' = <+ 4d + 20 o*e—
2% a'e~a”i b %' + la'ed
Mythi cal T 1
Q°T \;T(;::.\“ ) o.I b 2a oT 2b' 2a' a®
FiG. 2. FUNDAMENTAL 3TRUCTURE Fie. 3.a FiG. 3.b
WiTH A MYTHLICAL INPUT  AND EXAMPLE OF A FUNDAMNENTAL
CORRESPONDING  REDUCED STRUCTURE, SYRUCTURE AND ONE oF 1TS VARIANT,
TABLE T
10 8 , 4 2 l Numbers and types of
AfBdl b a b a b a b a b a Sundameutal structuves
\ 1@la+a «b]
6 2 ) 1 1] t 3 + i
\4 L o 2 {2@[@&0\« b+a]
- \ ° \ ' l@[b « a+ C\]
Vo 2 2 l 2 {3@[204»0\*—\945\]
2:2 20 lo ll 20 {2@[5 (—G#G)
| @{2a+a«bia)
221 1] W ¢l {tefsa+2aib ~4aidbid
8 2 4 |' ‘[‘ 29 lo lo
g 2 4 ‘I ’ 2° 1° 1° (" ‘J{\@[Bf— Q+Q1
1@f2asa «bia]
I i° 1° i° v {l@ila-#a «b+al
A A N ! [1@[sa+ 2a+b«4aibia)
G ‘ l{ ‘0 zl ll ‘l
€1 4 2' PL J{Z@[b@a-&-a]
t! ! \
SUMMARY: AR = B, &p- 3 , M= 2 and  §j,z 2,
Zg=2 , 2:8 , y= 4, x= ! and wzO . TIME bdELAYz & UNITS,
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lo* v Tzk—! 2 $

(@i digiv Gl .
e . . <O T ST L T=0
K-} 1 0
Yk-l 1 TX k-1 M 1 X, *,1 Xo
f%
Z;
- ) T Tz(no'r) } Tz(in)
Hen : - = T
RN T vigiy Tatiny TRAMSEER |
ovt Ty (sun) SL§CE ) in
-~ v fe—Th (i} E(lw) Ty Gy
1
T 1 MYTUILAL
Y; X, iNpUT
;f X MYTHICAL inpUT
FiG, 4 _ DECiMAL  ADDER  wiThm  LiMITED- CARRY - PROPAGATION  PROPERTY _
TABLE I
o] 8 4 2 ! Numbers and types of
ARl Y a b 'y b a b a b a | fundamental structures
16 0 10 22 20 3° 1 3 {\@ FanouT; 4@(b «aia)
\| \1 ‘| ‘. ‘0 |° 1‘ i\@ [lq;at—b-i-dl
’ i@{5a+2a4bedaizbial
o 3 4 \! Yl 2] e \'
@ [ bea+ al
! ° i ° ¥ !
o 54 l ‘ z ! 2 4 {1@[2a4a1—\>-i-a]
1® 2! ° T 12 1@[b<«a+a]
@[ 2a+a == bia]
A I R T {\@{Sa-i)ﬂi-’pﬂ-‘mé-l\w'-o]
723 \° 2 12
: 12{b « a+al
1 ] 2 ]
723 | 2 ‘ ‘ ‘ ‘J{\@[hsa«b-‘m]
3 AL {° {18224 a « bia]
{ i\ i° \° {‘@igq.‘,a‘-b{.q]
ll ‘D ‘O ‘0
suMMARY: AA: 6 OB=0 , Belz & , 5z 2 v
222,227 ,y27, %20 ,uz}  TIME DELAY = 8 UNiTs .
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