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Abstgact

This paper describes an evolving Arithmetic
Design System (ADS) to support the quantitative
evaluation of alternate number systems with
respect to a given application and realization
technology. In computer arithmetic we are con-
cerned with establishing a correspondence between
abstract quantities (numbers) and some physical
representation (symbols), and with simulating the
operations on these symbols. The ADS is intended
to help study the cost and performance of alter-
nate simulations. A finite number system is a
triple consisting of a symbol set (elements are
called "digit-vectors"), an interpretation set, a
mapping between these two sets, and a set of
operators (digit-vector algorithms) defined on its
symbol set. A set of these digit vector algo-
rithms are proposed for conducting arithmetic
design. A number system matrix defines the digit
vector algorithm for numerous number systems and
a method for computing time and space complexity
of compositions of these algorithms is proposed.
An example of how the system could be used to
compare addition, with and without overflow detec-
tion, for three number systems is given.

Background and Motivation

The design of high-performance arithmetic
processors involves a complex interaction between
choice of algorithm, application of parallelism,
and hardware realization. This paper describes an
evolving Arithmetic Design System (ADS) to support
the quantitative evaluation of alternate number
systems with respect to a given application and
realization technology. Although computer arith-
metic is a relatively old subject and a large
number of alternate methods are described in the
literature, 1little has beer done to offer a uni-
fied treatment suitable for comparative studies.
Furthermore, methods which have been described and
evaluated in the past shculd be re-examined in
view of the potentials and requirements of VLSI
circuit technology. The need for computation far

exceeding present capability will require optimi-
zation at all levels of design including the exe-
cution of primitive arithmetic operations: the
inner-most, inner loops.

Much of the computer arithmetic literature
has been devoted to characterizing various number
systems and realizing the basic arithmetic opera-
tions of these number systems. Not only conven-
tional decimal and binary number systems but also
non-conventional ones, such as residue number sys-
tems [GARS9], [sza62], (sza67], FBAN69]], [BANT4],
negative radix number systems FWAD57 , [SON65],
FRBG67J, [SAN73], FAGR75 , p-adic number systenms
Ra075], TKRI75], [GRE78], signed digit number
systems [MET59], [R()Bsgr], Ifszsog, Faviet], ima-
ginary number systems [KkNU60O], [SLE76], [SLE78],
and & _modified reflected binary number system
[LUc59], have been considerably investigated. It
is well-known that all these number systems are
homomorphic to each other. They all "simulate” the
same input-output functional specifications. It is
generally unclear, however, which among the astro-
nomical number of possible number systems, includ-
ing variations in radix as a special case, is best
suited for implementing a given arithmetic task.
It is extremely useful to know which simulation
best matches the requirements, especially the time
and space complexity, with respect to a given
implementation environment.

There are several 1levels at which we can
analyze the time and space complexity of these
alternate simulations. At the application level,
arithmetic algorithms are usually specified using
the basic operators and elementary functions of a
high-level programming language such as FORTRAN,
ALGOL, or PASCAL. A complexity analysis can be
conducted in terms of the number of executions
required and the number of processors employed.
This level lacks details concerning the represen-
tation of numbers and thus does not reflect the
relative advantages among number systems. At the
realization level, where arithmetic tasks are

realized using logical devices, we can count the
number of devices used as well as the operation
time. However, the numerous details of logic
design are tedious and sometimes severely obscured
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arithmetic properties. We therefore need an inter-
mediate level of abstraction to compare and evalu-
ate arithmetic algorithms and thus propose an
arithmetic design level as introduced by Avizienis

Tavi7i].

To enable comparison and 2valuation at the
arithmetic design level, a set of primitives must
be provided with which arithmetic algorithms can
be composed. They serve as the basic building
blocks. Once the functional dezcription and com-
plexity measures of these primitives are well-
defined, one can compose them to perform more com-
plicated arithmetic tasks and analyze their com-
plexities.

The goal of the ADS project is to develop a
design and study tool for digital computer arith-
metic. This tool will not only allow the user to
describe and simulate arithmetic tasks, but also
present the designer with a wide range of choices
and a method for assigning a figure of merit to
various number systems and structures with respect
to a given implementation environment. The major
subtasks of the ADS project which will be dis-
cussed in this paper are:

(M

Characterization and classification of finite
number systems.

(2) Development of a suitable language for the
ADS.

(3) Description and simulation of arithmetic
algorithms.

(4) Case studies of the application of the ADS to

cost/performance in the context of

VLSI.

analysis

Finite Number Systems

Computer arithmetic deals with the simulation
of algebraic systems which are at least abelian
groups under addition. Each of these algebraic
systems consists of a set of rumbers and n-ary
operations on the set. The number may be defined
as a symbolic abstraction, while the operations
may be described by the postulates which specify
certain assumed properties. In computer arith-
metic we are concerned with establishing a
correspondence between these abstract quantities
(numbers) and some physical representation (sym-
bols), and with simulating the operations on these
symbols. Due to the finiteness of digital comput-
ing systems, only finite sets of numbers can be
physically represented.

Representation of Numbers

Definition 1 : A Pinjite Number Representation
System (FNRS) is a triple FNRS = (S,1,FJ,
where S is the symbol set (set of n-tuple
vectors),
I is the interpretation set (set of abstract
numbers), and

digit

F is the evaluation function which maps S

onto I.
Tigure 1 shows the sets associated with a
finlte number vrepresentation system. Note that
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Definition 2

this case,

Definition % : A FNRS
positional, if the evaluation function F is depen-

Definition 4

TN
~ _:/) "

Figure 1 The sets associated with a FNRS.

all elements of the interpretation set have at
least one corresponding representation in the sym-
bol set. TFigure 2 is an example of a formal, APL
definition of the convensional radix complement
FNRS [ATK78].

‘ A FNRS = (S8,I,F) is said to be
redundantT. if F is a many-to-one function. In
there is at least one element of I
which corresponds to more than one element of S.

= (S,I,F) is said to be

dent on the order of the

vector.

elements of the digit

A FNRS =

n 4 (5,1,F) is weighed, if F
is defined such that

i=1 B
where (Xn'xn-1" ,x1) =X <S8,
(W ow . ,ee.,w,) = W is a weight vector, and
n'¥n-1
c 1s a constant.

A special subclass of weighed FNRS are those
in which the weight vector is obtained from a
radix vector B = <bn'bn—1""’b1)' If

SYMBOLS USED IN DEFINING RADIX COMPLEMENT FNRS:
58 = RADIX. S§B22.
N = THE LENGTH OF DIGIT VECTORS.
z8 = (0,1, »5B-1) = THE SET OF ALLOWED DIGITS.

SYMBOL SET: § = N-ARY CARTESIAN PRODUCT OF SET 2B.
INTERPRETATION SET: [ = (-1, ,71,0,1,

WHERE K1=(LSB+2)xSB+(H-1).
K2=(([ SB+2)xSB*(N-1))-1.

2K2),

SI FUNCTION: P: & » [.
F(X) = (SBLX)-{(14X)25B12)xSB*N.

Figure 2 Formal definition of radix complement FNRS.




W 1 and

1

W, = w,

. oo .
1 ioq X bi—1 for i 2,3, ..,n,

the weighed FNRS is called a (weighed) radix sys-
tem. PFurthermore, if all elements of B are the
same then it is a fixed radix system, otherwise it
is a mixed radix systenm.

The Singularities of Digit Vector Algorithms

The algorithms for

mechanizing arithmetic
operations on a symbol set, S, are called Digit
Vector Algorithms (DVAS). It is obvious that the
arithmetic properties on the interpretation set
must be preserved. Thiz implies that F be a
homomorphism. For example, the digit vector algo-
rithm, SUM, corresponding to the addition, +, of
two numbers needs to be defined such that

F(SUM(X,Y)) = F(X)+F(Y) = +(P(X),F(Y))

where X, Y € S.

We commonly take finite subsets of numbers
to be the interpretation sets, and provide singu-
larity symbols tc indicate that the result of an
arithmetic operation in the given algebraic system
does not have a corresponding digit vector in the
symbol set. Formally,

Definition 5 Given FNRS = (S,I,F), let /A be a
DVA corresponding to the arithmetic operation, *,
of a given algebraie system. For X, ,X_,...,X <3,

. X . 1772 n
AﬁX1,X2,...,Xn)1s singular, if

FQQ(X1,X2,...,XH)) # *(F(X1),F(X2),...,F(Xn)).

The interpretation set, I, of a given FNRS
can genmerate a minimum convex region, CR(I), which
we shall call the range of I. One singularity,
so-called out-of-range, is defined as follows:

Definition 6 Given FNRS = (S,I,F), let N be a
ova corresﬁanding to the arithmetic operation, ¥,
of a given algebraic system. TFor X1,X2,...,Xn<S,
ﬁ(x1,x2,...,xn) is out-of-range, if

*(F(X1),F(X2),...,F(Xn)) & CR(I).

For example, as shown in
{a,b,c,d,e,f,g,h} the shading region is the
minimum convex region of I. Let A and B be the
representations of a and b, respectively. If
*(a,b)=x, then ANA,B) is out-of-range.

In case the set I isa ordqggg,
exist MAX(I) and MIN(I) < I suoh that

Figure 3, if I =

i.e. there

MAX(T) > x > MIN(I)

for every x ¢ I, an out-of-range singularity can
be further specified as follows:

Definition 7 Given FNRS = (S,I,F), where I is
an ordered set. Let /\ be a DVA corresponding to
the arithmetic operation, *, of a given algebraic
system. For X, PIRERES o1 ﬁgx1,x2,...,xn) is
overflow if
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g

I = {a,b,c,d,e,f,g,h}

Figure 3 An example of out-of-range singularity.

*(F(X1),F(X2),...,F(Xn)) > MAX(I).
Definition 8 Given FNRS = (S,I,F), where I is
an ordered set. Let /\ be a DVA corresponding to

the arithmetic operation, ¥, of a given algebraic
sygteq. Eor X, oree X 48, £§X1,X2,...,Xn) is
underflow if

*(F(X1),F(X2),...,F(Xn)) < MIN(I).

As shown in Figure 4, given I = fa,b,c,d,e,f,} we

have f = MAX(I) and a = MIN(I). TLet A and B be
the representations of a and b, respectively.
A(A,B) is overflow if *(a,b)=x, and ANA B is

underflow if *(a,b)=y.

Another direct consequence of the finiteness
of digital computing systems is the loss of preci-
sicn in some arithmetiec operations. A truncation
signal will be issued as specified by the follow-
ing definition:

Definition 9 Given FNRS = (S,I,F), let /\ be a
BVK_EBrresﬁanding to the arithmetic operation, *,

of a given algebraic system. For YW,XO,...,Yné
ﬁgxﬂ,xg,...,xn) is truncated if -
y fi b c d e fl x

14 ' b o

I = {a,b,c,d,e,f}
MAX (I ) = ¢
MIN (I ) = a

Migure 4 Singularity examples of overflow and under-

flow,




*(F(X1),F(X2),...,F(Xn)) < CR(I), and
PR, 0K ) 4 *EX )L FX,), e B(X))).

For example, if I = {a,b,c,d,e,f,g,h} as shown in
Figure 5, then the minimum convex region of I is
the shaded region. Let a and b be represented by
A and B respectively. /\(A,B) is truncated if
*(a,b) =x.

When a singularity signal is issued, the DVA
produces a pseudo-result instead of the expected
result. These singularity detections impact the
complexity analysis which we shall discuss later.

Classification of Finite Number Systems

Note in the previous section that we have
made a distinction between a "finite number sys-
tem" and a "finite number representation system.”
A finite number representation system is a triple
consisting of a é&ﬁ%@l set, an_interpretation set,
and a mapping between these two sets. A finite
number system consists of a finite number
representation system together with DVAs (opera-
tions) defined on its symbol set.

In order to apply a single complexity
analysis to a set of finite number systems, it is
useful to clasEZ?& them. Figure 6 summarizes the
traditional classification of a large set of fin-
ite number systems, based on the nature of the
evaluation functions, F. An alternate taxonomy
which we are attempting to establish is based not
only upon evaluation functions, but also upon com-
plexity measures.

Arithmetic Design Language

Introduction

The designer using the ADS works with build-
ing blocks such as shown in Figure 7.

I ={a,bﬁnd,edgg,h}

Figure 5 An example of truncation singularity.
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fixed radix
radix
weighed mixed radix
redundant positional non-radix
]
non-weighed

non—redumiantj non-positional

Figure 6 Traditional classification of finite
number systems,

operands parameters
PEY] ‘.'C
to e LA AN ]
results singularity time g
signals space
complexity

Figure T Inputs and outputs of a building block,

The inputs to each block are:

(a) One or more operands (digit vectors)
presented in predefined formats.

Parameters to fully specify the number
system (e.g. base) and to specify the im-
plementation model to be used for comple-

xity analysis.

re-

(v)

The outputs from each blcck are:

(a) One or more results (digit vectors) re-
presented in prefined formats.
{b) Singularity signals.

{¢) Time and space complexity measures.

Since there is no unique composition of these
building blocks 1o realigze a given arithmetic
task, it is useful to have an executable language
to describe, simulate, and compare aglternate
structures.

The objectives of the arithmetic
language (ADL) [0NGBO] are as follows:

Provide both functional and structural
descriptions of the building blocks.

design

Allow composition of building blocks to per-
form arithmetic tasks.




--- Be directly executable as a simulation pro-
gram.

--- TFacilitate the complexity analyses of alter-
nate approaches tc¢ implementing arithmetic
tasks with respect fto a well-defined cri-
teria.

~--- Allow manipulation to suggest new approaches.
--- Be compact and easy to use.

The arithmetic design language includes two
types of operators: processing operators and con-

structive operators. Processing operators estab-
lish the operﬁ?iahal behavior (the function),
while constructive operators describe structure.
Using the basic processing and constructive opera-
tors, the designer can define a set of building
blocks which he/she feels is adequate for the
given implementation environment and then extended
them as necessary. The building blocks are in
turn composed to build more complex arithmetic
processors.

Processing Operators

As suggested by Avizienis EAVI71], the primi-
tive operators of the language APL [GIL70] [PAK72]
appear to be a good choice for the processing
operators of an arithmetic design language. The
constructive operators of the language include the
control-flow constructs of APL augmented by other
functions which will be described.

Constructive Operators

For a given DVA functional specification we
want to describe alternats structural options and
analyze their complexity. We are particularly
interested in specifying parallelism, iteration in
time, and hardware replication in the context of
computer arithmetic. Constructive operators are
used to describe both the internal structure of
the building blocks and the structure of the com-
positions of blocks. In order to compare and
evaluate alternate compositions, by means of simu-
lation, constructive operators must also update
the complexity measures properly.

The synchronization primitives fork and Jjoin
can be used to specify parallel computations
explicitly [CON63]. The ADL constructive operator
FORK activates concurrent operations at the same
time, while JOIN waits until all precedent opera-
tions finish. These operators zlso keep track of
the processing time required for each concurrent
operation, and thus the overall processing time
for the algorithms.

Figure 8 lists an APL-implementation of FORK
and together with the two functions used to imple-
ment the JOIN operator. LEB is a list of statement
labels of concurrent operations except the one
immediately following +the FORK statement. Note
that JOIN operator as defined must be constructed
using three contiguous statements ag shown in
lines [5], [6] and (7] of the function DEMOFJ in
Figure 9. TMAX computes JTC, the latest time when
concurrent operations finish, and COUNT counts the
number of concurrent operations finished. M is
the number of precedent operations to be finished
before the successive ones are activated. A stack
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<1

FORK LEB;X
[1]  X+«p,LEB
[2] STACK«((2,X) pLEB,XpTCPX) ,STACK

V Z«IMAX JTC
(1) 2«rCPY«JTCT TCPX

V Z«COUNT M
[1]  (0=2M-1)/7
[2] DONE+0)
3] PTR*,STACK[ORG;ORG]
(4] TCPX*,STACK[ORG+1;0RG]
[5] STACK+ 0 1 +STACK
(6] =0
7] DONE<1.
v

Figure 8 An implenentation of FORK and functios
used to implenment JOIN.,

is used to keep track of timing such that the time
complexity of the parallel construct can be
derived correctly. Figure 9§ shows an example of a
flowchart and the corresponding program. Note
that, all concurrent operations, even if they are
data independent, must terminate with a JOIN.

Conventional APL loop instructions make no
distinction between iteration using one unit of
hardware (iteration in time) and iteration using
unlinited hardware (iteration in space). More-
over, it is not clear whether the physical repli-
cation of identical units has the form of parallel
structure (type O0*) such as logical AND of two
vectors, or the form of linear recurrence struc-
ture (type 1*) such as carry ripple adders. In
the ADL, the replication of identical hardware
units in parallel is directly expressed by APL
operators and functions. We designate the APIL
looping constructs for representing the recurrence
structure. For the other case, iteration in time,

we introduce TIB-TIE operators.

TIB (time iteration begin) and TIE (time
iteration end) describe the structures using a
unit of hardware repetitively. An implementation
of TIB and TIE is listed in Figure 10. STREND con-
sists of two parameters, STR ang END, which are
the starting and the ending values of the itera-
tion index respectively. DIR indicates the direc-
tion of increment: increasing by 1 if DIR=0;
decreasing by 1 if DIR=1. A flag HOFF, which is
initialized to zero, is used to indicate whether
the iteration is over. HOFF is also wused to
derive the space complexity of algorithms. Note
that TIE operator must be used with an auxiliary
statement as shown in lines [13] and (14] of the
function DEMOTI in Figure 11. Figure 11 illus-
trates how a 2-segment pipeline can be described
using TIB-TIE and FORK-~JOIN operators.

* Type O has a maximum speedup of O(T ), and
type 1 has a maximum speedup of O(Tj/log T1)
[kucTs].




[
[2]
{31
[u]
(5]
(6]
(7]
8]
[9]
[103
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
{19]
[20]
[21]
£22]
[23]
[2u]
[25]}

Y DEMOFJ ;M1;M23M3;JTC13JTC23JTC3

MA+M2«M3+2
JTC1+JTC 2+J TC 340
FORK LEB
A LBB
LEE:JTC1+TMAX JTC1 A B
M1+COUNT M1
+{~DONE) / PTR
E LDD:
LHH : JTC3«TMAX JTC3 o b
M3«COUNT M3
+(~DONE) /PTR
H LEE: >
+0
LBB:B E F
FORK LDD ‘\\
¢
FORK LEE
F
LGG:JTC2«TMAX JTC?2
M2+COUNT M2
+(~DONE) /PTR u
G
~+LHH
LDD:D
+LGG
v
Figure 9 Example of use FORK-JOIN.
V TTE DIR
(11  +(DIRY/7
Y TIB STREND [2]  ~(ENDINDEX<I«I+1)/5
[11 +(HOFF)/Q [3] HOFF«1
[2]  I<1ASTREND (4] -0
[3]  ENDINDEX< 14STREND [S]  HOFF<0
v [6] +0
£73  >(ENDINDEX>I<I-1)/S
[8]  HOFPet
¥
Figure 10 An implenmentation of TIE and TIE.
V DEMOTI sMTR;SVR;JTC 1M
[1] MTR+0 T o
[2] JTC+0
(3] TI7B 1 11 I
[4] M«
[5]  SVR«MTR x
(6] FORK LADD
{7] MTR«STORE I DEMOMPY 2
(8} =190
[9] LADD:SVR DEMOADD 5 latch 5
[13] JTC+TMAX JTC ~
[11) MCOUNT M N /
[12] -+(~DONE)/PTR
[13] TIE 0 +
[14] +(HOFF)/3
: l
Figure 11 Example of use TIB-TIE together with FORK-JOIN.
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Number System Matrix

To compare and evaluate alternate approaches
in arithmetic design level discussed earier, a set
of primitive DVAs will be provided as building
blocks. The proposed set which is motivated by
Avizienis [AVI71] includes SUM (sum), DIF (differ-
ence), INV (additive inverse), SGN (sign test),
EQZ (equal zero test), REX (range extension), RCN
(range contraction), SDN (scale down), SUP (scale
up), and PRD (product of a digit and a digit vec-
tor). One can compose these building blocks
together with auxiliary logic to perform more com-
plicated arithmetic algorithms. Figure 12 is an
example of a radix complement multiplication
using REX, SUM, PRD and INV.

The Number System Matrix (NSM) is a database
in the Arithmetic Design System. Conceptually, the
Number System Matrix, as shown in Figure 13, is a
matrix with a row per primitive digit vector algo-
rithm, a column per finite number system, and a
set of descriptions at each intersection. A set
of finite number systems which is extendible is
provided. This set includes unsigned (US), sign-
magnitude (SM), radix complement (RC), diminished
radix complement (DRC), unsigned residue (USR),
sign-magnitude residue (SMR),' modular complement
residue (MCR), symmetric signed digit (SSD), p-
adic (PAD), modified k-imaginary (IMG), negative
radix (NR), and modified reflected binary (MRB)
finite number systenms. Every astral mark in Figure
13 indicates that a functional description of the
primitive digit vector algorithm for the finite
number system has been implemented. The implemen-
tation, as well as the formal definitions of these
finite number representation systems, is available
and the interested reader is invited to contact
the authors.

One can compose these primitive digit vector
algorithms to perform more complicated arithmetic
algorithms. To evaluate the time and space com-~
plexity of a composed arithmetic algorithm, it is
necessary to know the time and space complexity
measures of these primitives. It is very much
dependent on the technology employed and the
decomposition to match feasible physical elements
to realize these building blocks. Hence the com-
plexity measures vary case by case. In Nnumber
System Matrix, some suggested implementations are
supplied. If the existent alternatives can not
meet the complexity specification, one can create
private library for new implementations.

In next section, we shall compare and evalu-
ate some PLA-based implementations of a given
arithmetic task. As indicated in [ATK81J, we can
crunch the PLA, using folding and/or rearranging,
to minimize the silicon area used. Programs to
estimate the area for minimized PLAs are under
development. In the meantime we choose unminim-
ized binary coded PLA as a model for complexity
measures. The model gives an upper bound on com-
plexity measures using PLAs to realize arithmetic
tasks. TFigure 14 shows the simple model we are
presently using and its complexity measures. TC
corresponds to the units of gate delay, and SC
indicates the number of cross points in the AND
and OR planes.
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D is the number of all possible inputs,
TC = 3,

SC=Dx (p+ 2 xm).

Figure 14 A model of complexity measures,

Preliminary Example of Application

In this section we will give a simple example
of how the ADS could be used. We shall quantify
the time and space complexity for the addition
operations in radix complement, modulus complement
residue, and symmetric signed digit number sys-
tems, with and without out-of-range detections.

Residue number systems [GAR59], [SZA62],
[sz467], [BAN69], [BAN74) and signed digit number
systems [METS9]. [ROB59], [av160], [AVI61] have
been considerably investigated. Probably the most
notable feature of these number systems is the so
called carry-free addition, i.e. the time required
to perform addition is independent of the length
of digit vectors. Despite this fact, even if
addition is the only operation implemented, it may
not be justified to conclude that residue and
signed digit number systems are superior to radix
complement number systems which require a carry
propagation.

Figure 15 shows an implementation of addition
with out-of-range detection for radix complement
number systems, of which the twos complement is g
very special case. Out-of-range detection for odd
radices is more complicated than one might think
based on experience with the binary case. Note
that the out-of-range signal, OOR, is a function
of x1, y1, and Z., the most significant digits of




V Z<MD MPYRCSFA MR;JTC M7 LMD IMR; LAST ;XY ;5 CIN

(1) s MULTTPLICATION DVA FOR RADTX COMPLEMENT ENS. MR

[2)  LMD«<pMD

[3)  LMR<pMR

[4)  LAST<LMD+ILMR-NORG =

[5)  I+«IMR-NORG

[e] JTCe0 ] |

[7)  Z+SFTREG(IMDpQ) ,MR | !

i8] TIB I,0RG . i

[9] M2

{10 FORK 13 !I l/r

[11]  X+1 BEXRC LMD+Z ////

[12] 14 /

[13] Y«GENRC Z[LAST)

(4] JTCTMAX JTC REXRC GENRC

[15) Me«COUNT M

[16] +(~DONE)/PTR N 2

[17] S«X SUMRCCRN ¥ §§§

[181 2« 145,IMD+Z

(191 TIE 1 §§§\

[20] ~(HOFF)/8

v SUMRCCRN
Figure 12 Multiplication for radix complement FNS.
us SM RC DRC usn SMR MCR SSD PAD IMG NR MRB

SUM * * w * * * * * * * * *
DIF * * * * * * * * * * * *
INV NDEF * * * NDEF d * * * * * NDEF
SGN NDEF * * * NDEF * * * * NDEF * NDEF
EQU * * * * * x * * * * * *
REX * * * * * * £l * NDEF * * *
RCN ”* * * * * * * * NDEF * * *
SDN * * * * * * * * * * * *
sup * * * * HNDEF NDEF MNDEF * * * * *
PRO * * * * NDEF | NDEF | NDEF | * * * * NAVL

Figure 13 The Number System Matrix of the ADS.

MD




V Z<X SUMRCCRO YiLENC; K3 MA; SGNX ; SGNY s Z0RG s COUT s NAD" s NAD2 3 M5 JTC
[1] n SUM DV4 FOR RADIX COMPLEMENT FNS.
[2)  LEN<p,X
(3] Cc«((LEN-1)p0),CIN
(4}  K«LEN-NORG
[5]  NADV\<NAD2<«LENpSB
(6] »(SB=2x[S$B:2)/28
(71  JTC+0
(8] Meu
[9] FORK 24 26 X X ¥ CIN
[10) MA«<x ADD Y r
[11) »>(0RrRG=K) /14
[12) CCK-11«MALKICRYUSY CLK] GERC
[13] +(ORG<Kk«K-1)/12
{141 FORK 22 \
£15] zZ<M4 4ADDUSY ¢
(18] ZORG+1+,Z
{17) JTC+TMAX JTC
(18] M«COUNT M
(191 +(~DONE)/PTR

f20] O0R«(SGNX ,SGNY)OSRC24A ZORG ,COUT
[21]1 =~»0
(221 COUT<~MATORG1CRYIISA CLIRG)

LCRYUSI ADDUSL

[23] =17

[24] SGNX«GERC 1+.,%

[25] =17

[26] SGNY«GERC 1+.,Y

[27] =17

[28] JTC«0;Me3

[29] FORK u1 u43

{301 Ma«x ADD Y

[31] ~+(0RG=K)/3y

[32) CLK-1)+MALKICRYUS1 C[K]
[33] ~+(ORG<K<K-1)/39

[34) ZzZ«M4 4DDUSY C

{351 2Z0RG«1t,Z

[36] JTC«TMAY JTC OSRC2
[37) M«COUNT M

[381 ~(~poNE)/PTR

[39] O0OR«<(SGNX,SGNY)OSRC2B ZORG
(401 =0 GOR
[41] SGNX<GERC 14,x

[u2] 386

[43) SGNY«GERC 1+,Y

[u4] 386

Figure 15 Addition with out-of-range detection for radix complement FNS.
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%, Y, and Z respectively.

A Dblock diagram and the corresponding
description of addition with out-of-range detec-
tion for symmetric signed digit number systems are
shown in Figure 16. The DVA, SUMSSDO, is a gen-
eralized description for all radix SB > 3. Due to
the fact that symmetric signed number systems are
redundant, an (N+1)-digit intermediate result
might be represented by an N-digit vector. There-
fore, the out-of-range signal, OOR, can not be
determined until the conversion procedure is done.
Tn the worst case, using a carry ripple scheme, it
will take N units of time to convert.

FPigure 17 shows a block diagram and the
corresponding description of addition with out-
of-range detection for modulus complement residue
number systems. The result obtained, Z, is
congruent to the expected result modulo M. M is
the product of all elements of the radix vector.
Po detect out-of-range, one should convert the
obtained result to the corresponding mixed radix
representation. Unless more efficient algorithms
can be developed, it will take time, which is
linear in the length of digit vectors, to perform
the conversion.

A comparison in terms of time and space com-
plexity as functions of digic: vector length is
shown in Figure 18 (a) and (b) respectively. The
complexity analysis is conducted with B=(32 31 29
27 25 23) for modulus complement residue, SB=29,
A=16 for symmetric signed digit, and SB=32 for
radix complement number systems based on the
assumption that 10 input-variable PLAs are avail-
able. To implement addition without out-of-range
detection, modulus ccmplement residue number sys-
tems are the fastest and require least space, and
symmetric signed digit number systems are faster
but require more hardware than radix complement
number systems. However, if we alsc require out-
of-range detection, it will take less time and
hardware for radix complement number systems to
perform addition than the other two. Figure 19
{a) and (b) shows the simulation results. This is
not surprising since, as we pointed out earlier,
modulus complement residue and symmetric signed
digit number systems require linear time and extra
hardware to detect out-of-range.

Let N be digit vector length, and X denote
the percentage which requires cut-of-range detec-
tion over all operations in a given addition-only
application. According to the simulation results,
we can derive the threshold as a function of X and
N such that one of these three number systems is
best suited. Table 1 summarizes the thresholds
between any two rumber systems where the delay
time is the only concern.

Table 2 displays some corclusions from trial
computations. For N equal 2 through 10, it shows
the conditions such that one of three number sys-
tems is the fastest. Note that, under the assump-
tions made, symmetric signed digit number systems
offer no advantage over the other two for N ( 6.

N

MC is faster than RC X <

2(N-1)

N=-2

sD is faster than RC X &
N+1
2

MC is faster than SC X <
N-3

MC denotes Modulus Complement residue number systems.
SD denotes symmetric Signed Digit number systems.
RC denctes Radix Complement number systems.

Table 1 Thresholds

between RC, SSD, and MCR.

§ emplement Tomea ¢ radix
residue digit complement

2 X <100% - -

3 X <75% - X > 75%

4 X <66.7% - X >66.6%
5 X <62.5% ~ X >62,%%
6 X <60% - X > 60%

7 X <50% 50% <X <62.5% X >62,5%
8 X < 40% 40% <X <66.7% X>66.7%
9 X <33.3% 33,3% <X <70% X > 70%
10 X < 29% 29% £ X 4 73.3% X>73.3%

- denctes not-suited.

Table 2 Conditions such that a number system

30

ig fastest.




V Z+X SUMSSDO Y
(1] A SUM DVA FOR SYMMETRIC SIGNED DIGIT FNS.
[2] 2+X SUMSSDN Y
[3]  Z«WORSSD 0T.Z

NORSS
Figure 16 Addition with out~of-range detection for '
symmetric signed digit FJS,
OOR 2

V Z«X SUMMCRO Y;MOD;NADY;NAD2 3JTCA 3 JTC2 ;M1 ;M2 ; FX s FY ; FF 3 SGNX 3 SGNY
[1] = SUM DVA FOR MODULUS COMPLEMENT RESIDUE FNS.
[2]  MOD«NAD1<NAD2<«B
[31 JTC1+JTC2+0
(4]  +(BLORG1=2x[BLORG]%2)/28
[5] Mie2
[6] M2ey

[7] FORK 15 24
(8]  Z«X MODADD Y
[9]  FZ«14CONTOMR g

[10] JTC2«TMAX JTC2 i

[11]  M2«COUNT M2 X ¥ X ¥
{12] +(~DONE)/PTR

[13] OOR+(SGNX ,SGNY)OSMC2A FZ,FF ’
[18] =0

{181 FY+«14CONTOMR Y CONTOM coNTO!

{161 FORK 19 " MODADD
[17] SGNY+GEMC FY

{181 =+10 \

[19] , JTC1«TMAX JTC1 z
[20) M1«COUNT M1

[211 +(~DONE)/PTR

[22] FF«FX SRTMC FY M

[23] =10

[2u] FX«14CONTOMR X GENC SRTMC GEMC CONTOMR
[25] FORK 19

[26] SGNX<«GEMC FX \

[27]1 =+10

[28] M2+3 \ /
[29] FORK 37 40

[30] Z2«x MODADD Y

[31] FZ«14CONTOMR 7

[32] JTC2«TMAX JTC2

[33] M2<«COUNT M2

[34] ~+(~DONE)/PTR osMC2

[35] OOR«FZ OSMC2E SGNX,SGNY

[36]1 =+0

[37] FY+<14CONTOMR Y

[38] SGNY<GEMC FY

{391 =32 OOR

[40] FX«<14CONTOMR %

(411 SGNX«GEMC FX

[42] 32

Figure 17 Addition with out-of-range detection for modulus complement residue FNS,
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Operational delay versus digit FTigure 18 (1b) Required space versus digit vector
vector length for addition without length for addition without out-of-
out-cof-range dstection of RC, range detection of RC, 538D, and MCR,

SSD, and MCR,

Figure 18 (a)

3 4 5 — 6 omd
. - mﬂ\ S S—
rigure 19 (a) Operational delay versus digit vector Figure 19 (b) Required space versus digit vector
length for addition vith out-of-range length for addition with out-of-
detection of RC, SSD, and i/CR. ‘range detection of RC, SSD, and MCR,
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