COMPOUND ALGORITHMS FOR DIGIT ONLINE ARITHMETIC

Robert Michael Owens

Department of Computer Science
The Pennsylvania State University
University Park, Pennsylvania 16802

Abstract

This paper describes a systematic method
which has been. successfully used to create several
digit online algorithms. Basically, the method
entails converting in a systematic way a known
continued sums/products algorithm and combining
the converted form of the continued sums/product
algorithm with a generalized digitization algo-
rithm. Not only does the method seem to have wide
applicability in the creation of digit online
algorithms for many elementary functions but the
algorithms which have resulted from this method
themselves have several desirable properties.

Introduction

Continued Sums/Products, CS/P, algorithms are
a family of iterative algorithms which generate an
increasingly better approximation to either the
additive or multiplicative inverse of each inde-
pendent variable and, thereby, generate an
increasingly better approximation to each dependent

variable®. CS/P algorithms can be used, in a

natural way, as the basis for the implementation

of segmented arithmetic units (e.g. pipelines)g.
Since the segmented arithmetic units so implemented
possess several desirable properties, CS/P algo-
rithms are an important family of iterative algo-
rithms. Furthermore, since CSP/P algorithms have
been formulated for addition, subtraction, multi-
plication, division, logarithm, expcnentiation, sine,

cosine, hyperbolic sine, and hyperbolic cosine3’2’11’

12’16’4’5, CS/P algorithms enjoy wide applicability.
Digit Online Continued Sums/Products, DOCS/P,
algorithms are yet another family of iterarive
algorithms. DOCS/P algorithms differ from CS/P
algorithms in that each independent variable is
supplied to and each dependent variable is gener-
ated by the algorithm in a digit online manner.
That is, at the j'th iteration of the algorithms,
only the first (j + k) digits of each independent
variable must be supplied to the algorithm, where
k is a small predefined constant. An algorithm
which possesses this property is digit online with
respect to its input(s). Also, at the j'th
iteration at least the first (j - k) digits of
each dependent variable has been generated by the
algorithm, where is a small predefined con~-
stant. An algorithm which possesses this property
is digit online with respect to its output(s).
The sum of the constants k and corresponds
to the digit online delay of the algorithm as a

CH1630-3/81/0000/0064$00.75 © 1981 IEEE

64

whole. Furthermore, these constants are dependent
for the most part on the specific algorithm and
number system being used.

DOCS/P algorithms can be used, in a natural
way, as the basis for the implementation of seg-
mented arithmetic units which possess a similar
digit online property. Since this property im-
plies that segmented arithmetic units with high
throughput and minimal online delay can be imple-
mented, DOCS/P algorithms are an important family
of iterative algorithms. While DOCS/P algorithms
have been formulated for addition, subtraction,
multiplication, division, square root, logarithm,

exponentiation, sine, and cosine5’6’7’9’l3’14’15,

the algorithms did not at least on the surface
appear to share a common, exploitable structure.
Furthermore, given a CS/P algorithm there did not
appear to be a systematic way to go about formula-
ting an equivalent (in the sense that they both
evaluate the same function) DOCS/P algorithm. This
paper explores a method which has been used to
formulate several DOCS/P algorithms. Furthermore,
the algorithms so formulated possess several
advantages over the equivalent algorithmspreviously
known.

The second part of this paper covers the
method which has been successfully used to convert
several known CS/P algorithms. The converted form
of the C5/P algorithm will be digit online with
respect to its input(s) but will act be digit on-
line with respect to its output(s). The converted
form of the CS/P will, however, generate a sequence
of better approximations to each dependent variable
Supplied with a sequence of approximations to a
dependent variable, a digitization algorithm will
generate that dependent variable in a digit online
manner. This digitization algorithm will be
covered in the third section. The fourth covers a
new DOCS/P divide algorithm and describes the
advantages of the new algorithm over the previously
known equivalent algorithms.

Conversion

Unless otherwise stated, this paper implicitly
assumed that a fixed point number system is being
used. That is, the seguence of digits
represents the value v, if

where di R is an element of

]
the digit set of the number system, r is the
radix of the number system, and p is some pre-
defined constant. Also (v)j , =1, 2, n,

of the

ji=1, 2, n,

vees

will represent the j'th digit, di ,
3

implied representation of w.

A CS/P algorithm can be expressed in such a
way that each iterative squation within the algo-
rithm serves one of two purposes. That is, each
iterative equation is either being used to help
generate the approximations to the inverse of
each independent variable or being used to help
generate the increasingly better approximations to
each dependent variable. Furthermore, the itera-
tive equations being used to help generate the
approximations to each dependent variahle are not
directly dependent on the independent variable(s).
Hence, attention can be turned to only those
iterative equations being used to help generate
the approximations to the inverse of each inde-
pendent variable.

Each of these iterative equations has one of
two forms depending on whether an additive or
multiplicative inverse is being approximated. The
case where the additive inverse is being approxi-
mated will be considered first. Let Sl’ SZ’ ey

A
Sn each be some small set of predefined constants.

These sets are dependent on the number system
being used and the CS/P algorithm itself. Then,
an iterative equation in this case has the form

i=0
X, = x
1
i=1,2, ...,
Xg 7 % 5y

where x 1is an independent variable and §i,
i=1, 2, ..., n, is an element of §i' Further-

more, the constant §i , i=1, 2, n,

caey

selected from Si is such that the quantity

. + 8,
|Xl—l 51[
is minimized.

The sets él’ §2, P §n are so defined
that it is always possible, given some x in the
domain of the algorithm, to select §1, §2, v
§i , 1= 1, 2, ..., n, so that

s -1

%] <k,

where K 1is some predefine constant and r equals

the radix of the number systembeing used. Note that
r neednot necessarily be equal to the radix but con~-
sideration of this generalization is not necessary
for the purposes of this paper. Note that

i=1, 2, ..., n

1
lx+ ¢ 8
j=1

65

Hence the sum of §1, §2, ce, §i becomes a better

approximation to the additive inverse of x as i
gets larger. To make the process of selecting the

§i's almost independent of i, a scaling
U, = r" X,
i i
of Xi is used. This scaling transforms the
original iterative equation into
i=0
U, = x
i
i=1, 2, ..., n
i A
U, =r U, + r° s
i i-1 i
Note that
i=1,2, ..., n
IX.’ <Kr’
il —

implies that
lu.] < &.
it —

If a redundant number system1

random error ey s i=1, 2, ...,
to U,
i

is being used, a
n, can be added
1
-1 i ®
whose sum still sufficiently approximates the ad-
ditive inverse of x. The only restriction on

while allowing the selection of §

e; » i=1, 2, ..., n, is that it be bound by some
constant e. The constant e 1is dependent on the
sets § and, therefore, on the

1 SZ’ cens Sn
number system being used and the algorithm itself.
In particular, the constant e 1is dependent on
the redundancy of the number system being used.
For example, if a non-redundant number system is
being used, the constant e equals zero. Note
that only the first

[tog (R)1 - |log, (2e) |

digits of Ui—l , i=1, 2, ..., n, are needed to
select §,.
i
The converted form of this iterative equation
is
i=0
~ k P
X, = I (x), 7Y
1 .
j=1
i=1, 2, ..., n
S _ 3 p-i-k A
X=X+t +8,.

Note that this iterative equation is, as desired,
digit online with respect to x.

Again, when scaling is used to make the pro-
cess of selecting the si's almost independent of

i, the converted iterative equation is transformed

into

i=0
k —
Ui = I (x). P
=1
i=1, 2, ..., n
A ~ p-k 14
Ui r Ui-l + (x)i+k r + 1 5, -

Equivalently, this iterative equation can be writ-
ten as follows.

i=20

s
~ ~ i A

= + + .
Ui r(Ui—l ei) ros,
where

i=1, 2, ..., n
n

pHi-j-] -k
el = | = o, 7 o< PR,
j=i+tk+1
R Assume that only the first j digits of
.., i=1,2, ..., n, are used to select §,.
i-1 i
Therefore, if
rp—k + .5 powr(ﬁ) r—J_i e,
where
flog (01
pow (x) = r) ,

§i's whose sum sufficiently approximates the ad-
ditive inverse of x will still be selected.

The case where the multiplicative inverse is
being_approximated_will now be considered. Again,
let Sl’ SZ’ oy Sn each be some small set of

predefined constants. These sets are dependent on
the number system being used and the algorithm
itself. Then, the iterative equation in this case
has the form

i=20
X, = X
i
i=1, 2, , n
X =% %

where x 1s an independent variable whose multi-
plicative inverse is being approximated and 8;

i=1, 2, ., n, 1s an element of §i. The con-

stant Ei , i=1,2, ..., n, 1is selected from
§i such that the quantity
Ixi-l 8; = l,

The sets S . S s eeey S

1 2 n
defined that it is always possible, given some x
in the domain of the algorithm, to select

B1» Sg» +rey Sy i=1, 2, ..., n, so that

is minimized. are o

|x1-1likr—i,

where K is some predefined constant and r

equals the radix of the number system being used.
Note, therefore, that

i=1, 2, , 0
o = -1
[x T s, - 1| <Kr .
j=1
Hence, the product of 51, 52, ey Ei becomes a

better approximation to the multiplication inverse
of x as 1 gets larger.

To make the process of selecting the Ei's

almost independent of i, a scaling

i
Ui =T (Xi -1
of Xi is used. This scaling transforms the

original iterative equation into

i=20
U, = x =1
i
i=1, 2, s N
_ O 1%
Ui =r Ui—l s; +r (si 1).
Note that
i=1, 2, , N
|x, - 1] <R "
i =

implies that
lu | <R
i =
Again, if a redundant number system is being
used, a random error e; i=1,2, ..., n, can
be added to U,
i-1
si's whose product still sufficiently approximates

while allowing the selection of

the multiplicative inverse of x. The only re-
striction on e i=1,2, ..., n, 1is that it he

bounded by some constant e. The cdgstant e 1is
dependent on the sets Sl’ SZ’ ey Sn and, there-

fore, on the number system being used and the algo-
rithm itself. Note, therefore, that only the first

[og, (®)1 - Llog,(2e)]

digits of U i=1, 2, ..., n, are needed to

i-17?

select s, .
i

The converted form of this iterative equation

is

i=0
Ti =1
~ k -
o= 3 (o, P

=1

i=1, 2, ..., 0
Ti = T1—1 Sq
S - p-i-k
X, =X 8t Ti(x)i+k ba .

Note that this iterative equation is, as desired,

digit on line with respect to x.

Again, when a scaling of the %i's is used to

= !
almo
s;'s Imost

iterative

make the process of selecting the

independent of 1, the converted
equation 1s transformed into

i=20
T, =1
i
R k .
U= @ @, -1
=1
1i=1, 2, , N
Ty = T41 84
A = i- } p-k
Ui =r Ui—l si-+r (si 1).+Ti(x)i+k.r .
Equivalently, this iterative equation can be
written as follows.
i=20
T, =1
Al
U, = x -1
1
i=1, 2, , n
Ty =T 84
A A - i,
Ui = r(Ui_l + ei)si +r (si -0,
where
i=1, 2, , N
a .
’ei] = lTi-l L (x) . rp+i“J_l] <
T =ikl)
m p-k
7yl
1 = 1-1i
< .
lTi_ll‘_ ToT (L +Kr ™ h).
When the properties of the number system being
used are known, a tighter bound on Ti—l can be
found.
n Assume that only the first j digits of _

Ui—l , 1 =1, 2, ., n, are used to select sg-
Therefore, if
n K .
max(|T1_lI)rp + .5 powr(K)r J < e,
i=1 -

si's whose product sufficiently approximates the

multiplicative inverse of x will still be

selected.

In the way of an example, the following il-
lustrates the material covered in this section.
Let z equal the quotient of vy, ly] <1, the
dividend, and x, 1/r < !x] < 1, the divisor.
Then supplied with x and vy, the following,

previously known CS/P algorithm3’2’ll generates

increasingly better approximations to z.

67

Algorithm ODIV

1i=20
Xi = X
QG =v
i=1,2, ..., n
X=X
Q = Qyq 84
where Qi and the product of gl’ §2, e Ei are

respectively the i'th approximation to the dependent
variable z and the multiplicative inverse of the
independent variable x. Observe, however, that
the iterative equation

i=0
Q=v

i=1, 2, , N
Q = Qg 85

which is used to generate the approximations to

the dependent variable z 1s directly dependent on
the independent variable y. Rewriting algorithm
ODIV to remove this dependence produces the fol-
lowing algorithm.

Algorithm BDIV

i=0
T, =1
Xi = X
Y, =y
Qi =0
i=1, 2, , n
Ty =Ty 8y
X = %15
e Y v
STy sy - Ty 8y,

where Qi » the product of and

815 Sps +ees By

the sum of §., 8,, ..., 8§, are respectively the
1 2 i

i'th approximation to the dependent variable =z,
the multiplicative inverse of the independent vari-

able x, and the additive inverse of the indepen-
dent variable y. Furthermore, s, and §i,
i=1, 2, ..., n, are respectively elements of

Si and Si'

To make the process of selecting the Ei's and

the §i's almost independent of i, two scaling

i
U =r (Xi -1
and
_ 1
Vi =r Yy
are used. These scalings transform algorithm BDIV

into the following algorithm.

Algorithm FDIV

i=0
Ti =1
U, =x -1
i
v, =
1
Q =0
i=1, 2, , N
Tl = Ti—l Sl_
Ui =r Ui—l 55 +r (.i - 1)
. _ i
Vi =7 Vi—l + T si
Q = Qg Sy~ Ty 5y

To complete this example, assume that a fully
redundant, quaternary, fractional number system
is being used. Furthermore, assume that

1=1
§; = {Gl3 = -3, -2, ..., 2, 3}

i=2,3 ..., n

S, = {1+ 34 Y5 =23, -2, ..., 2, 3}

i=1, 2, ..., n
i =-3, -2, ..., 2, 3}

Note that if
i=3,4, ..., n

<
lu,_; 1 <3.011
then Ei can be selected so that

= i .
[r v, s, + 0 Gy - D] 22,371,
Hence

Ju.] < 2.371.
i1 2

Therefore, an error, e i=1, 2, ..., n,
which is bounded by .640, can be added to Ui—l
while allowing the selection of Ei's whose product

still sufficiently approximates the multiplicative
inverse of x. This implies that a digit omline
delay of

0 - [log4(.640/4.60)] =2
with respect to the independent variable x is
possible.

Also note that as 1 becomes large, if
<3.5

LA

then 'Ei can be selected so that

[r oy, 5, + ri(si - 1| < 2.0.

i-1

Ju.] < 2.0.
il —

Therefore, an error, el i sufficiently large,

68

which is bounded by 1.5, can be added to Ui—l
while allowing the selection of Ei’s whose pro-

duct still sufficiently approximates the multi-
plicative inverse of x. This implies that an
asymptotic digit online delay of

0 - |log,(1.5/4.0)} = 1
with respect to the independent variable x is
possible.

Furthermore, note that if

i=1,2, ..., n

]vi_l| < .875
then §i can be selected so that
lr v, |+ r §;1 < .s.
Hence
|Vi| < .5,
Therefore, an error, éi i=1,2, ..., n,

which is bounded by .375, can be added to Vi—l

while allowing the selection of §i's whose sum
still sufficiently approximate the additive
inverse of y. This implies that a digit online
delay of

0 - [1og4(.375)1 =1
with respect to the independent variable vy 1is
possible.

Converting algorithm FDIV so that it is digit
online with respect to its inputs produces the
following algorithm.

Algorithm RDIV

i=20
T, =1
i
~ 2 -
U, = I (x), 7 -1
i .
j=1
~ 2 _.J
V.= L (y). r
i j=1 j
Q =0
i=1, 2, , n
Ti = Yie1 84
A ~ R O
U1 =r Ul-l sl + r (si 1) +
T (x). . 12
i i+2
V. =r 79 + (y) r_2 + ri s
i i-1 742 i
0. = Q. 5, - T. 8§
i i-1 Ui i

Note¢ that at the i'th step of the algorithm only
the first (i + 2) digits of each independent
variable must be supplied to the algorithm.
Hence, the algorithm is, as desired, digit online
with respect to its inputs. Also, note that only

the first two digits of Ui— and the first digit

of Vi~l’ i=1, 2, ...,

select respectively §i

1

n, are required to

and §i.
The following is given as_an example for
algorithm FDIV. Note that 1, 2, and 3 are used to

represent respectively the values -1, -2, and -3.
Also, note the all number are given in base four.
x=.2I21 y=.,1121

si Ti Ui si vi Qi
i=0 NA 1.000000 O.ZTOOO _ NA .1100 .000000
i=1 2.0000 2.000000 0.10000 .1000 .1200 .200000
i=2 1.0000 2.000000 1.02000 .0100 . 2100 .220000
i=3 1.0100 2.020000 0.10200 .0020 .1000 . 212100
i=4 1.0000 2.020000 1.02000 .0001 .0000 212102
i=5 1.0001 2.020202 0.20102 .0000 .0000 -212211
i=6 1.0000 2.020202 2.01020 .0000 .000C .212211

Digitization
The following algorithm was originally used9
to create a digit online algorithm for exponenti-
ation. There was, at that time, some question
concerning the wider applicability of this algo-

rithm. The following, albeit tersely, addresses
these questions. A more complete discussion can
be foundlo.

Let Zl’ ZZ’ ceny Zn be any suitable ap-

proximations to some value z.
exists a constant C such that

That is, there

i=1,2, ..., n

|z -z, <cr?,
where r again equals the radix of the number
system being used. Furthermore, let D be the

digit set of this number system. Also, assume

that z 1is bounded. That is, there exists a
constant € such that
2] < T

Supplied with Z, at its i'th iteration the fol~-

lowing algorithm generates z 1in a digit online
manner. That is, at the i'th iteration, the algo~
rithm generates the (i - k) digit of 2.

Algorithm DISC
i=0

R B R |

i=k+1, k+2, ..., k+n
k+p-1i
= -7 -
Ay T A P Tt B s T
where S5k is selected from D so that the
value Ai is minimized and the constant k is

yet to be defined. Then assuming only that the
number system being used is fully redundant and
the original premise, that is there exists con-

stants C and C such that

69

and
Izi_i c,

it is claimed that there exists a comstant C such

that

s, ¥ J

-i
3 .

- z!_ﬁ Cr
j=1

That is, the value formed by concatenating together

the digits 815 Sy wee, 84 becomes an increasingly

better approximation to z as i gets larger.

Let the constant k be such that

i=k+2, k+3, ..., k+n
. k+p-1i
fz; =z, | < 5¢: - Dr
i=k+1
IZiI_i (r - .5)rk+p_i.

The existence of the constant k 1is assured by
the original premise. Observe that if

i=k+I1, k+2, ..., k+n

z

[Ai_l +z, - < (r-.5)

zi_l[

then s, can be selected so that

i-k

[a,] < .5 &P-1,
il =

Furthermore, observe that

i=1,2, ..., n
i .
{jzl %3 T Al <
_'_k
12 —2l + o I <C7 4+
1454 |-

Therefore, if it can be shown that there exists a

constant B such that
i=%k+1, k+2, ..., k+n
A, <3t

then the claim can be proven via a corollary.
An inductive proof for the second claim,
i=1, 2, ., N
IAi|_i B r_l,
is given by the following.
Base i = k+1
Note that

IZilli (r - .5)1'k+p_i

implies that

p k4p—~1i
- = |7 <(r -
la, | +24 z, L=l <x- .5 .
But this implies that
Ia.] < .5 P70
I =
Step i =%k+2, k+3, ..., k+n
Note that
k+p~i-1
lAi+1| <.5r
implies that
Ay 3 + 20 - 23l < lag q I +lzy -2 412
5 r LA 5(r - l)rk+p_1 =
i
(r - .S)rk Pt
But this implies that
|Ail < .5 PN

Both claims are now justified.

The following continues the example started
for algorithm FDIV.

S, Z, A,

i i i
i=0 NA .000000 .000000
i=1 NA .200000 .200000
i=2 NA .220000 .220000
i=3 2 .212100 .012100
i=4 1 .212102 .002102
i=5 2 .212211 .000211
i=6 2 .212211 .000011

Hence
y/x = .2122.
Division

The example started in the second section
will now be completed. To create a single fully
digit online algorithm from aigorithms RDIV and
DISC it must be shown that there exists constants

€ and C such that
i=1, 2, ..., 1
IZ - Qll f_e r—i
and
|z < €.

The following shows the existence of these con-
stants. First, note that

max(|y!)

ax < — =r
o (lzl) — min(|x])
However, if

lz| > 1,

then overflow has occurred. That is, =z cannot
be represented by the number system being used.
Second, note that

The necessary premises for the use of algorithm
DISC with algorithm RDIV have now been shown.

The following finds a smaller ¥ than would
be found by directly using the constants K and
K. Observe that

i =1, 2, ..., M
r-i o =
|z - Qil f_T;T R +K)

implies that ~

i
o, | < Iz +ﬁﬂ (K +B).

Furthermore, observe that

i=2, 3, , n

i -

IQ -Qi—II_
| i i i-1 i-1
(T s)(L §)- (0 sHCE 5 =
R A E N R
| i i-1_ i-1 |
s. Ms.+(s. -1D(CN s)(EL §)| <
e 2 =1 3 g T

- Dr oy -
" [R 8+ 1) +

(ﬁ rl_i + y)(i rlui + l)I <

1

r(r - 1)1 11149 + (1.125)(1.592) |

.5(r - l)rz_i.

Hence, with a suitable restriction on the quotient
of y and x, k equals 2. Again it can be
shown that, for large i, k can be made to equal
1.

In the algorithm which results from combining
algorithms RDIV and DISC, three values must be
selected. Two are due to algorithm RDIV and one is
due to algorithm DISC. It is possible, however,

using a different methodology7’13’l["15 to formu-

late an algorithm such that the selection of only
one value is necessary. There are, however,
advantages in not doing so. The total digit online

70

delay of the algorithm which results from combin-
ing algorithms RDIV and DISC is four (asymptot-
ically two). This is better than the digit online
delay of five (asymptotically three) which is
required by the single selection algorithm.

a word length of at most only two digits are
needed to select each of the three values in the
algorithm which results from combining algorithms
RDIV and DISC. Whereas, the single selected
algorithm needs at most a word length of five
digits to select its single value. Therefore,
the algorithm which results from combining algo-
rithms RDIV and DISC has a smaller online delay
and a much smaller comparison table than the
single selection algorithm. Finally, the other
algorithms which have been formulated using the
method described in this paper share a common
structure. This characteristic can be used when
the algorithms are implemented in hardware.

Also

Conclusion

This paper, as promised, presented a method
which has been successfully used to create
several digit online algorithms. In general,
these algorithms have a smaller digit online delay
and .smaller comparison tables than the previously
known algorithms. Furthermore, these algorithms
share a common structure. Sufficient detail is
given so that a reader familiar with CS/P algo-
rithms should be able to apply the method.

The paper also presents a new digit online
divide algorithm. For the case of a fully redun-
dant, quaternary number system, correctness proofs
are given.

Bibliography
Atkins, D. E., "Introduction to the Role of
Redundancy in Computer Arithmetic," Computer,
Vol. 8, No. 6, pp. 84-96, June 1975.

Baker, P. W., "More Efficient Radix-2 Algo-
rithms for Some Elementary Functions," IEEE
Transactions on Computers, Vol. C-24, No. 11,
Nov. 1975.

DeLugish, B. G., "A Class of Algorithms for
Automatic Evaluation of Certain Elementary
Functions in a Binary Computer,'" Ph.D. Thesisg
Report 399, Department of Computer Science,
University of Illinois, Urbana, June 1970.

[1]

Ercegovac, M. D., "Radix~-16 Evaluation of
Certain Elementary Functions,” IEEE Trans~
actions on Computers, Vol. C-22, No. 6,
pp. 561-566, June 1973.

Ercegovac, M. D., "A General Method for
Evaluation of Functions in a Digital
Computer,'" Ph.D. Thesis, Report No. 750,
Department of Computer Science, University
of Illinois, Urbana, Aug. 1975.

Ercegovac, M. D., "An On-Line Square Rooting
Algorithm," Proceedings of Fourth Symposium
on Computer Arithmetic, Santa Monica, CA,
Oct. 1978.

Irwin, M. J., "An Arithmetic Unit for On~Line
Computation,'" Ph.D. Thesis, Report No.
UIUCDCS-R-77-873, Department of Computer Sci-
ence, University of Illinois, Urbana, May 1977.

{71

71

[91

[10]

(11]

[12]

[13]

[14]

(15]

[16]

Ruck, D. J., The Structure of Computers and
Computations, Vol. I, John Wiley & Sons,
Inc., 1978.

Owens, R. M. and M. J. Irwin, "On-Line Algo-
rithms for the Design of Pipeline Architec-
tures," Proceedings of the Sixth Annual
Symposium of Computer Architecture, Phila-
delphia, PA, pp. 12-19, April 1979.

Owens, R. M., "Digit On-Line Algorithms for
Pipeline Architectures," Ph.D. Thesis,
Department of Computer Science, The Pennsyl-
vania State University, University Park, PA,
Aug. 1980.

Robertson, J. E., "A New Class of Digital
Division Methods," IRW Transactions on
Electronic Computers, Vol. EC-7, pp. 218-222,
Sept. 1958.

Specker, W. H., "A Class of Algorithms for
l"
s

In X, Exp X, Sin X, Cos X, Tan © X, Cot™
IEEE Transactions on Electronic Computers,
Vel. EC-14, No. 1, pp. 85-86, Feb. 1965.

Trivedi, K. S. and M. D. Ercegovac, "On-Line
Algorithms for Division and Multiplication,"”
Proceedings of the Third IEEE Symposium on

Computer Arithmetic, Dallas, TX, Nov. 1975.

Trivedi, K. S. and M. D. Ercegovac, "On-Line
Algorithms for Division and Multiplication,"
IEEE Transactions on Computers, Vol. C-26,

No. 7, pp. 681-687, July 1977.

Trivedi, K. S. and J. G. Rusnak, "Higher
Radix On-Line Division," Proceedings of the
Fourth Symposium on Computer Arithmetic,
Santa Monica, CA, Oct. 1978.

Volder, J. E., "The CORDIC Trigonometric
Computing Technique,'" IRE Transactions on
Electronic Computers, Vol. EC-8, No. 5,

pp. 330-334, Sept. 1959.

