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ABSTRACT

This paper presents two related algorithms

for implementing parallel n-bit binary addition
and evaluating n-th degree polynomials, respec-
tively. The approach taken makes use of an
iterative construction, the computation tree.
The algorithms are particularly effective for
moderate values of n and are in accord with well-
known asymptotic bounds. In the case of n-bit
addition, the implementations constitute look-
ahead tree circuits of r-input standard logic
elements. Extensions to modular tree struc-
tures for lookahead adders are also considered.
In the case of parallel polynomial evaluation,
the operations of ordinary addition and multi-
plication are assumed with the capability to
employ r arguments simultaneously.

1. INTRODUCTION

It is known that the carry propagation
time is a limiting factor on the speed with
which two binary numbers are added in parallel
[1]. Many techniques for reducing the carry
propagation time of n-bit binary adders are
described in the literature [2-4]. The most
widely used method employs the concept of look-
ahead carry {5]. This, in principle, can pro-
duce all n carries within two logic Tevels at
the expense of increased hardware complexity.
The Tatter may no longer be an issue because
of the rapid progress in integrated circuit
(IC) technology. However, existing fan-in
Timitations severely restrict two-level n-bit
lookanead adders to n< 8. Multilevel imple-
mentations have been considered in [6] on the
basis of a simple splitting of the Tookahead
adder into groups. A more sophisticated parti-
tioning was used in [7] to find an asymptotic
estimate on the addition time. However, the
latter is far from the best estimate for moderate
values of n. General bounds on the time required
to perform addition are given in [8] and [9]. A
method for implementing lookahead addition as a
first order linear recursion is developed in [10].

In this paper we first present a technique
for efficient implementation of n-bit carry look-
ahead addition as far as both time and complexi-
ty are concerned. The implementations are tree
circuits whicir may consist of 1) either standard
gates with limited fan-in and fan-out, or 2) carry
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Tookahead modules with 1imited number of terminals
{pins). Our method is based on a partition of

the lockahead adder with the aid of a computation
tree at level t+1, on the basis of the trees at
Tevel ¢ t, inductively. The proposed technique

is consistent with existing asymptotic bounds for
addition. However, our method is particular
effective when the number of bits is rather mod-
erate, which usually occurs in practice.

Since the carry lookahead formula resembles
a polynomial-like expression, it is not difficult
to show that the previous method, after some
modification and notation adjustments, applies to
the problem of parallel evaluation of polynomials.
The results obtained by this approach appear to
provide the greatest known degrees of polynomials
that can be evaiuated in given steps.

IT. FORMULATION OF THE METHOD

We first need to recall the essentijals of
:arry lookahead addition [5-6]. Let A = ay,.. .,
1 and B = b]""’bn be two n-bit binary numbers
with a],b] being their most significant bits,

espectively. The i-th carry-generate and carry-
yropagate functions are respectively defined by

9; = aibi and Py = a; ®© bj ;1 = 1,...,n

“hen, the i-th stage carry and sum bits may be
expressed by the following iterative relations
rsee Fig. 1)

“i 7 Snoisl T Proin1Cin

Sp-il = Proier @ S50 (h
where i=1,...,n and ¢y = 0. Consequently, the
n-th stage carry is given by (2)

n T 97 T P9y P93t -ty Py g9,
Tearly the n-bit addition time depends entirely

on the depth, i.e., the number of logic levels
required to implement the carry €, For small

r, e.g., n< 6, it is not difficult to achieve
constant addition time by implementing all carries
in 2-level Togic. However, this is not feasible
to do when n has rather moderate values, 2.g.,
rn > 8, due to fan-in limitations. For high speed

eddition we will consider parallel implementation




of the carries ¢; i=1,...,n by multilevel tree

circuits composed of stantard gates (ANL, OR, EX-
OR, etc.) with fan-in r, where r<n.

To formuTate our method we need the follow-
ing definitions and notation. Given two integers
q and m, m > g, the generating and propagating
functions, G(q,m) and P(q,m), respectively, are
defined as follows

Gla,m) = g + Pedq+1 - -Pn-19m

P(a.m) = popsy-- Py (3)

We define the size of G(gq,m) {or P(3,m)) to
be equal to m-q+1, 7.e., the number of integers
in the closed interval q < m. Generating (or
propagating) functions of equal size are equiva-
tent in the sense that they may be implemented
by tne same circuit by a trivial relabeling of
tne input terminals. It is clear from the pre-
ceding definitions that the addition carries are
related to the generating functions as follows

¢ = G(n-k+1,n) k=1,...,n (4)

therefore, the addition carry Cy is equivalent

to the l-oriented gensrating function G(1,k) with
c, = G(k,n) 5

Evidently it is sufficient to restrict our
attention to implementing l-oriented generating
functions. Straightforward multileve] inplemen-
tation of G(1,n) by r-input gates requires
Zrlogrﬁ1 logic levels [11]. Note [a]([a]) rep-

resents the greatest({smallest)integer <(z2) a,
respectively. The objective of our method is to
achieve considerable reduction in Togic depth by
appropriate restructuring of the lookahead formu-
Ta G(1,n). First we will establish decomposition
properties for generating functions, next.

Lemma 1: For any set of integers 51’52""Sm

m 2 2, with $1<5,< ...< s we have
G(s],sm) = G(s],sz) + P(s]952)6(1+52,s3) Foot
P(Sl’Sm—1)G(]+Sm—]’Sm) (6)

Proof: It can be easily proven by induction on m.
Let TaG(],k), kz1, denote the depth -equired

to implement G(1,n) with r-input gates by an
algoritim or scheme a. Then we have
Lemma 2: For m >0, TmG(l,m+1) < TuG(l,m)~~'

Proof: From Lemma 1, G(1,m+1) = G(1,m) +
POT,mG(m+1,m+1); it is sufficient to show that,
under scneme a, P(1,m)G(m+1,m1) = V requires no
more deptn than G(1,m) does. Clearly, V is a con-
junction with length, i.e., number of literals,
equal to m+l; V can thus be implemented in depth
ﬂogr(m+1f1 tevels of r-input gates. Since G(1,m)

contains 2m independent variables TGG(I,m) -

riogr(Zm)W(see [5]1). It can now be easily shown
by induction on m that fﬁogr(Zm)w > [ﬁogr(m+1f1
for m >0, which proves this Temma.

As a result of the previous lemma, the set
of generating functions may be partitioned in
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equivalence classes FO,F],...,Ft,... such that

Ft contains all generating functions realizable in

depth t by r-input gates under scheme q. With the
exception ofF], the equivalence classes defined

above are non—empty;F] is empty since every gen-

erating function with size >1 requires at least
two Togic levels under any realization scheme.

The class Ft is characterized by the maxi-
mum size Nt among all sizes of the generating
functions which are in Ft. It is convenient to
Tabel N, maximal size for level t, or simply -
maximal. A function with size Nt’ for example,
G(],Nt) or G(1+Nt,2Nt), is called prime for level

t, or simply t-prime. Our proposed method 1is
inductive in that it produces the (t+1)-prime
function G(],Nt) on the basis of the already known

implementations of the lower level k-primes,

K< t. Furthermore, using only the primes for

Tevel lower than t, non-prime generating functions
can also be produced during the implementation of
G(],Nt). The details of this process are described
next.

III. CONSTRUCTION PROCESS

We first note that it is not difficult to
find the 1-oriented 2-prime and 3-prime functions
for a given fan-in r. For example, for r=2 they
are G6(1,2) and €(1,3), respectively; for r=3,
G(1,3) and G(1,5). To compute G(],Nt+]) we will

attempt to restructure the basic formula (6) in
order to satisfy the following conditions: 1) the
righthand side of (6) should contain only prime
functions; 2) the only t-prime to be used is
G(],Nt), labeled head prime; 3) the rest of the

primes are each ANDed with an appropriate propa-
gating function such that the size of the propa-
gating functions associated with a J-prime, j<t,

should be < rd.

As a result of the preceding conditions the
Towest level prime function that can be used for
constructing G(]’Nt+]) is equivalent to G(1,Nd)

where d = [1ong£} . This statement can be shown
using formula (6), as follows: G(T,Nt+]) =
G(1,Nt) + P(1,Nt)G(1+Nt,Nt+Nd) + ... Clearly,

G(1+Nt,Nt+Nd) is equivalent to G(l,Nd) and, hence,

d-prime. According to the third condition above,
P(l,Nt) should have size Ny < rd, and thus

d = f]ongg} - The following example illustrates
the above points. Given t=3 and N2=3 for r=3, we
have G(],N4) = G(1,5) + P(1,5)6(6,8) +

P(1,8)G(9,11), and therefore, N, = 11.
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Let hd+k denote the maximum number of

(d+k)-primes in a restructured formula for
G(],Nt+]), where 0< k ¢ t-d-1, and hd_]=0.

The following two lemmas are consequences of
tne preceding definitions and conditions.
Lemma 3: The (t+1)-maximal size is given by

N = Nt +hN,+...+h N + h

N4 N

drk T T M

(7)
Proof: We will prove this lemma by inductively
constructing G(]’Nt+])

Using the latter and the previous three conditions
we can compose G(],Nt+]) of the head prime G(I,Nt)

and the following OR series of terms:
S{d) + S(d+1) + ... + S{d+k) + ... + S(t-1).
In the above serjes, S{d+k) consists of hd+k

d+k

(d+k)-primes, each ANDed by an appropriate propa-
gating function, 0< k¢ t-d-1. We will form the

terms of the above series inductively on k. For
k=0 we have S(d) = P(],Nt)G(1+Nt,Nt+Nd) +
P(1,Nt+Nd)G(1+Nt+Nd;Nt+2Nt) + ...t P(],.Nt +
(hd-1)Nd)G(1+Nt+(hd-1)Nd;Nt+thd)

We may define for convenience the following
recursive function

Mark = Mosio1 * NarNaek, with Mg = N (8)

Using the above function we can easily see that
S{d) spans between the integers Nt and Nt +

hd ' Md' Using a similar composition we can

easily verify that S(d+1) spans between the
integers Md and Md+1' The composition of the

general term S(d+k) is as follows

Nk
S(d+k) = }: P(1iMyypoqt(a-TING JG(THM ot
q=1
(q—])Nd"'k;Md*Pk*].Fqu"'k) (83)
and tnerefore S(d+k) spans between Md+k~] and
Md+k' We can easily snow by induction that
S(t-1) spans between the integers Mt-2 and M

t-1°
In conclusion we have established that N =
Mt—1; this also established (7) after a recursive

summation of (8). (End of Proof).
The following lemma provides the numbers hd+k'

t+]

Lemma 4: To maximize Nt+1 it is required that
hd+k satisfies the relation

d+k
. B r -M
ek = . d+k-1 +1 (9)
d+k
Proof: To prove this lemma we will use the

maximum size propagating function contained
in term S(d+k), given in (8a) above. This
function is

P(1:M 1N

drk-1 (e DN

on the basis of formula (6).
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According to condition 3), mentioned previously,
the size of the latter function should satisfy
_od+k
Mr-1* (g N g 27
Solving the last inequality for hd+k we obtain its
maximum value given by (9).
(End of Proof).

Qur major concern in developing G(1,N_ ;) has
been to be able to place the restructured formula
on a computation tree described, with the aid of
Fig. 2, as follows: 1) The computation tree of
G(]’Nt+1) begins at level d+1 and ends at level

t+1. 2} The input nodes at each tree level all
correspond to prime functions. 3) The hd+k(d+k)-

prime functions, due to propagating "ANDings" are
to be placed at the input tree nodes in the d+k+1
level. 4) As shown in Fig. 2, the tree merges to
at most r-1 nodes at the t-th level, with the r-th
node being occupied by G(1,Nt). Thus, the number

of tree nodes at th% g+t level is at most
Ld+k = {r-1) rt-d-k; k=0,1,...,t-d
The following iterative rules are useful in
employing the tree computation process. 1) Tne
internal tree nodes at the d+k+1 Tevel, 0<¢ k
< t-1, are produced by r-ary merging the actual
tree nodes at d+k level. 2) The actual tree nodes
at d+k level are composed of both the internal and
the input tree nodes at d+k level.

(10)

If Hd+k denotes the number of actual tree
nodes at d+k level, then apparently we have
Hask = Ngai-r * 070Gy

where Hy y = hy_ ;=0

However, for efficient merging, Hd+k is restricted

to be a multiple of r; on the other hand we have
Hd+k‘; Ld+k’ where the latter is defined in (10).

This reasoning results into the lemma next.

Lemma 5: The number of actual nodes at the d+k+]
level of the computation tree for G(],Ht+])

satisfies the iterative relation
Hd+k+1 = min {Ld+k+] iV r L(]/r)hd+‘J +

(1/r)Hd+k} with Hy_; = 0 k=0,1,...,t-d-1 (1)

Proof: The proof of this Jemma follows inductively

on the basis of the restrictions on Hd+k'

Some maximal sizes for r=2 and r=3 are derived
by applying the previous rules and Lemma 5; they
are listed in Table I. The computation tree for
G(I,N7), with r=3, is shown in Fig. 3.

IV. DISCUSSION

We now consider the implementation of non-
prime generating functions. Let G(],nm) be a non-

prime function where Nt < n.< N
1

1 In other

t,+1°




words, n, can always be included in an interval
of two c&nsecutive Tevel maximals. To imple-
ment G(],nz) we nave G(],n]) = G(],Nt )+
P(],Nt )G(1+Nt ;n]), where G(1+Nt ;n]) is, in
general, a non-prime function and, at tie same
time, equivalent to G(1,n,) withn, = r. - N, .
2 2 . t
Similarly we nave, Nt < ny,< Nt2+] and G(],n2)=
G(],Nt ) + P(],Nt )h(1+Nt ;n2). Since n, < ny,
Nt2§=Ntl (because otherwise, Ntzi Nt1+1
wnich contradicts the preceding relations). If

we continue this process we will establish two
decreasing sequences, namely Ny >n, > ny >

>n]

and Ntl; Ntzi Nt3 2 ++. until some N, = Ntl .
It is not difficult to prove that the latter
will always occur at some step & of the above
process since the preceding sequences are both
convergent to integer 1, i.e., the trivial 0-
prime function G(1,1).

The starting step for producing the
computation tree of G(],Nt+]) is the head prime

function G(],Nt). However, we can use as head

some other z-prime with z<t, and then apply
the rest of the steps of the above construction
process in the same way. It can be proven that
the size of G(],Nt+]) will not be affected if

we use any head prime function G(],NZ), where
z< t.

The last remark is important because we
can apply our method to modular tree imple-
mentations of carry Jookahead addition {117.
Suppose each such module (so-called carry look-
ahead generator [12] has 2R input terminals,
namely (p],g]),(pz,gz),...,(pR,gR), and R out-

put terminals, namely the carriers c1,c2,...,cR
witn cg = G{1,R). Then to construct a modular

computation tree for G(1,n), n > > R, we first
construct the computation tree of G(1,n) uising
as head prime the function G(1,R). Since the
carry lookahead module provides G(1,R) and all
lTower Tevel carries, it follows that the compu-
tation tree of G(1,n) can be entirely composed
of G(1,R) carry lookahead modules. The tast
point requires additional effort in a continuing
research work-project. New results will be
reported in the near future.

We conclude this section by noting that the
results of this research have been substantially
better than the other results on multilevel carry
lookahead addition schemes referenced in the
literature (see [5], [6], and [73).

V. APPLICATION TO PARALLEL
POLYNOMIAL EVALUATION

It is not difficult to observe that the
carry lookanead formula (2) resembles strong
analogy to a polynomial-like expression. There-
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fore, the previously developed parallel look-
ahead addition method is also applicable to the
problem of parallel evaluation of polynomials.
This problem has been studied first by Estrin
[13] and Dorn [14] who generalized Horner's rule
for polynomial evaluation (for a description of
the latter see Knuth [15]). Later Muraoka [16],
using a tree folding approach, improved Estrin's
algorithm. Further improvements were obtained
by Maruyama [17], and by Munro and .Paterson [18].
Additional improvement is possible by employing
a modified version of our previously described
tree lookahead algorithm.

First note that there is a similarity in
format between a (m+1)-size generating function
G(1,m+1) given by (3), and an m-th degree or-

dinary polynomial

2
Qx) =-qp + qyx + Gx" *+ .. g X

m

More particularly, the following one-to-one corre-
spondence between Q(x) and G(1,m+1) may be
assigned: q, corresponds to Ipt] k=0,1,...,m;

the power xk corresponds to-the logic product
P1Poe - Pys i.e., the propagating function P(1,k);

the arithmetic addition and multiplication opera-
tors correspond to the logical OR and AND, re-
spectively; then, the polynomial Q(x) corresponds
to the generating function G(1,m*1). A t-maximal
will now be defined to be the maximum degree of a
polynomial that can be evaluated in t steps using
the arithmetic addition and multipiication opera-
tors. Allowing for the above notation adjustment
and correspondence, the previous lookahead binary
addition algorithm can now be employed for para-
11el evaluation of polynomials. Results of this
algorithm are given in Table II, last column.
These results appear to provide the greatest
known degrees of polynaomials that can be evalu--
ated in given steps.

An additional point to be noted is that the
existing polynomial evaluation algorithms assume
addition and multiplication processors {gperators)
with capabilities of handling two argquments
(operands) at a time. However, our atgorithm
allows simultaneous multi»argument,prgcegsing
capability for both arithmetic addition and
multiplication. :
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TABLE 1
size of t-maximals with fan-in r=2 and 3
Size Nt
level t r=2 r=3
2 2 3
3 3 5
4 5 1
5 8 21
6 21 51
7 37 105
8 63 231
9 105 537
10 184 1215




TABLE 11

Degrees of polynomials that can be evaluated in given steps

Degree
Step ._.Jﬁﬂﬁﬁlml[15] _jm]tifo1ding_[]7] Proposed_algorithm
] 0 0 0
2 1 ] 1
3 2 2 2
4 4 4 4
5 7 7 7
6 12 12 12
7 20 20 21
8 33 36 37
9 54 62 63
10 88 104 107
N 143 183 187
12 230 320 327
13 376 57¢ 577
14 609 99z 1,009
15 986 1,728 1,763
16 1,596 3,059 3,123
17 2,583 5,489 5,578
18 4,180 9,767 9,950
18 6,764 17,454 17,828
20 10,945 31,286 31,940
21 17,710 55,915 57,278
a, b1 a2 b2 i+ bn-i+1 a1 b1 a bn
/ y
< E— “ < ‘*{ c <
c c c C,_
S T T A A 7
51 52 Shei+l Sn-1 5.

Fig. 1 : A general n-bit adder
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The general computation tree of G(i,Nt+1)
Arrow at d+k level indicates a (d+k)-maximal which is

ANDed by an appropriate propagating function.
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Fig, 3: The computatior tree of G(‘L,N7) with head maximal G(l,‘.‘iﬁ).
G(l,N7) = G(I,Né) + P(l,Né)G(1+N6,N6+NA) + P(I'N5+N4>G(1+N6+NA’N6+2NA) +

+ POLN 42N, )G(IN +2N, N +3N,) + P(1,Ng+3N,) G (L+Ng+3N, N +Ng+3N,

N7 = Né + 3N, + N
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