ALGORITHMS FOR EXTRACTING SQUARE ROOTS AND CUBE ROOTS

by dong Peng

Department of Mathematics, Northwest University,
Xi'an, People's Republic of China.

Abstiract

This paper describes a kind of algo-
rithms for fast extracting square rocts and
cube roots, their mathematical procfs, their
revised algorithm formulae, and-hardware
implementation of the square root aigorithm.
These algorithms may be of no significance
Tor large scale computer with fast division.
But I am sure that it is effective and eco-
nomical to apply these alzorithms to the
circuit designs of some mini- and miecro-
computers with general multiplication and
division, such as nonrestoring division.

I. Introduction

Common used square root algorithms are
based on the identity

nZ=1+3+5+. . .+(2n-1)
or on the recurrence formula
= 4 _A_
I “HIpr4).
Common used cube root algorithms are based
on the recurrence formula

yn+1=?f(2yn+—L2) .
In

These recurrence methods are fast for
large scale computer with fast multiplica-
tien and division. But they are slow for
common mini- and micro-computers with gener-
al multiplication and division, such as non-
restoring division, because computation of
a square root by recurrence always spends
several times of division time, and computa-
tion of a cube root by recurrence always
spends several times of multiplication and
division time. This paper describes a kind
of algorithms for extracting square roots
and cube roots, These algorithms are fast,
economical and easily implemented for gener-
al mini- and micro-computers. The square
root algorithm itself is very much like
nonrestoring division algorithm. Its hard-
ware implementation can be done by adding a
little circuit to the nonrestoring division
circuits. This is why we consider it econo-
mical and easily implemented. The time spent
in extracting n-bit square root of a 2n-bit
binary positive integer is n fixed-point

. 121
CH1630-3/81/0000/0121$00.75 © 1981 IEEE

addition periods. The time is the same as
that spent in a nonrestoring division, in
which dividend is 2n-bit and divisor is
n-bit.This is why the algorithm is said to
be fast. The cube root algorithm is much
like the square root:algorithm. The time
spent in extracting n-bit cube root of s
Sn-bit binary positive integer is 4n fixed-
point addition periods. If we use above-
mentioned time, both square roots and-cube
roots are accurate te within one unit in

the last place. If we spend more additional
fixed-peint periods by one (or four) and

the result is rounded, then the square roots
(or respectively cube roots) may be accurate
to within one half unit in the last place.
So it seems to me that when some mini- or
micro-computer with general nonrestoring
division is going toc be designed, we should
at the same time add to them this kind of
square root circuit (also cube root circuit,
if necessary). Thus, without spending much
money we can cbtain a square root instruc-
tion, which is as fast as nonrestoring divi-
sion instruction (alsec a cube root instruc-
tion, if necessary).

II. Sguare root algorithm

Let us suppcse that we desire to extract
the square root of a 2n-bit binary positive
integer

At 81858384. .85, 385, 58510 1800
where a; denotes 1 or O in i-th bit posi-
tion. We divide it into n segments, each

contains two bits:

At 885,838,038y 9801 ov8oniyfgn:©

From A, we construct a sequence of posi-
tive integers
Al,A
where
A

gr oAl

i7 B185,858,, 005850 1854,
{i=1,2,...,n).
In other words, A; consists of left-most i

segments of A. Obviously, Ap=A.
Our basic idea is as follows. First, we
try to find the square root of A1+ Then we

try to find several common rules such that
whenever the square root Ri of some Aq

(i=1,2,...,n-1) has been found, we can use

Ry to find the square root Rj4+; of next num-
ber A;,q- Thus, beginning with Ay and recur-
ring, we can obtain the square root of Ap,

i.e., the square root of A.

Ay is & 2-bit binary integer, which has
only the possible values G,1,2,3. Therefore
Ry must be O or 1. And Ry =0 if and only if
A1=O. Otherwise, Rl=l. Thus we obtain

RULE 1. If Ay-120, then Ry=1;

if A1-1<O, then R1=O“

This RULE 1 is easily implemented by
logic circuits in one fixed-point addition
period.

Now suppose that we have found the
square root Ry of Az, i.e.,

A{=R{+Cy (i=1,2,...,n-1), (1)
where C; is the remainder in the extraction.

Then we must have
0<C;<2Rj.
Now we consider Aj,7. Obviously,
Aj41=4A1 1541, (3)
where J;,7 denotes the number constructed
from the two binary bits of (i+l)-th segment
Ji+1: a21+182i+2.

(2)

Obviously
<J41<3 (4)
Substitu%ing (1) into (3), we obtain
=AR2 §
Aj=AREH(AC, K4). (5)
Adding 4 times of (2) to (4), we obtain
054Ci+Ji+I58Ri+3.
Thus 5 2 o
4R1$Ai+f54Ri+(8Ri+3)<4Ri+8Ri+4’
i.e.,
2 +2)2
(2Ri) sAi+1<(2R:,L 2)¢
Therefore Ry, must be 2Ry or 2Ry+1, so that
we obtain
RULE 2, If the square root of A; is Ry,
then the square root Ri+1 of Ai+1 may be

obtained by left-shifting R; one bit and

then adding 1 or O to its last bit.
Should we add 1 or .add 07 Rewriting (5)
into >
As4q=(2R3+1)“+((4C4HT 4,7)-(4R3+1)),
we see that

then Ai+fa(2Ri+1)2, hence Rj,;=2R;+1,
(There may be a remainder);

if (4C5+J44q)-(4R;+1)<0,

then 4;,,<(2R4+1)2, hence Ry, =2R;+0,
(There may be a remainder).

Thus we obtain
RULE :i; Compute Di+l=(4ci+Ji+l)-(4Ri+l),

If D;,20, then Ry y=2R;+1;

122

if D1+I<O’ then Ri+1=2Ri+O.

This RULE 3 is easily implemented by
logic circuits too. Cyis the remainder in
extracting the square root of Ag. 4Ci+Ji+1

can be obtained by left-shifting C; two bits
and then adding i-th segment Ji+1 to its
last two bit position. 4Ri+1 can be obtained

by left-shifting R; two bits and adding 1

to its last bit pesition. Subtraction can
be performed by adder. The left-shift over-
ation and add 1 operation can simultaneously
be performed in process of transfering data
to the adder. Finally, 2Ry+1 or 2ZR;+0 can

be implemented by left-shifting R; one bit

and adding 1 or O to its last bit. We sheould
add 1 or add O according to the sign of the
output of the adder. All these operations
can be completed in one fixed-point addition
period. Thus we can find the sguare root
Ri+1 of Ay4q by using the square root Ri of

Aj
addition period.

However, a problem has yet to be solved.
We use the aign of the difference Dj;q to

decide whether 1 or O should be added to
2Ry. If Dy4320, we have a root 2R;+1; in

this case, Dj,q is the remainder C;,, in

and the remainder Cj in one fixed-point

extraction of Aj,y. If Dy,y<0, we have a
reot ZR;+0; in this case we can see from

(5) that the remainder Cj,y is 4Cy+J34q
instead of Dj4+3. To obtain a true-remainder,
we must add 4R;+1 to Dj4q. That is, when
Dj4+1<0 and the square root of A;,y 1s 2R4+0,

we must first restore the remainder, and
then we can decide how to obtein the square
root in next step according to the same
RULE 3. But restoring remainder has to spend
one fixed-point addition peried, this is not
a good approach. We therefore consider
whether we can use the difference Di+1 (in-

stead of the remainder Cj,q) a2nd Ry 4

obtain the square root in next step. For
this purpose, we note Fig.l, In Fig.l we
substitute the expression of Cy into that

of Di41» and note that R;=2Ry_qy, we have
Dy41=4(D3+(4R; _1+1))+J 5,7 -(4R4+1)
.=(4Di+Ji+1)+(4Ri+3).

That is, if the last bit of Ry is O, then
the judge condition for finding Rj,; can be
obtained hy left-shifting Dy (which is a
negative number and is not the remainder Ci)
two bits and adding i-th segmentJj4y in its

last two bit position, and finally adding
(4R4+3) to it instead of subtracting (4R4+1)

Number to be extracted Ay Aq Ayyy
Judge condition D1=(4Cy 3 +J4)-(4Ry_1+1)<0 D3473(4C4+T347)-(4Ry+1)
Root Rj.3 | Rgy=2R4_1+0(which we suppose)
Remainder Cy_1 | C43Dy+(4R;y_;+1)
Fig.l

from it. Thus we obtain
RULE 4. Suppose that the last bit of the
root Ry is O.
Compute D;,q=(4D I ,1)+(4R;+8),
If Di+l>o, then RiL+1=2Ri+1',
if Di+I<o’ then Ri+1=2Ri+O'
When the last bit of the root Ry is 1,
is C; and we still use the RULE 3.

The RULE 4 is also easily implemented by
logic circuits in one fixed-point addition
period. This is similar to that of RULE 3.

Combining the RULEs 1,2,3,4 together,
we obtain the desired square roct algorithm.
Now we revise it as follows.

In order to extract the square root of
& 2Zn-bit binary integer A, we must set up
three registers:

Dy

D register, used for storing Dyj
A register, used for storing number A
to be extracted;
R register, used for storing square
root Ri.
These registers are not necessary to be new,
some of them may be those used by multipli-

cation and division.(See IV below).

The whole process is divided into n
cycles, each of which spends a fixed-point
addition time. The logic functions per-
formed in various cycle are shown in Fig.z2.
Obviously, the whole process spends n fixed
-point addition periods, and the root ob-
tained is accurate to within one unit in
the last place.

I1I. Cube root algorithm

Let us suppose that we desire to extract

the cube root of a 3n-bit binary positive
integer

At 818383843586 - -93n_383n_183n>

where 23 denotes 1 or O in i-th bit position,
We divide it intoc n segments, each contains

three bits:
A 818233’343586’""aBn—ZaSn—laSn'
From A, we con-struct a sequence of
positive integers
AI’AZ‘AB"“'An'
where

Aj: 8y8p83,848585, 41835 oAg5 1935,

(i=1,2,...,n).
In other words, Ay consists of left-most i
segments of A. Obviously, An=A.

it

Our basic idea is as follows, First, we
try to find the cube root Ry of Ay. Then we

try to find several common rules such that
whenever the cube root Ry of some A; (i=1,
¢y+++yn-1)has found, we can use R; to find

the cube root Rj,; of next number Ay,q.
Thus, beginning with Ay and recurring, we
can obtain the cube rcot of A,, i.e., the

cube root of A.

Ay is a 3-bit binary integer, which has
oniy the possible values 0,1,...,7. There-
fore Ry must be O or 1. And Ry=0 if and

only if Ay=0. Otherwise Ry=1.Thus we obtain

-

Function

-

i

Extract the first
bit of square root

lcyete | T T oseration T
Compute D1=A1—1:"‘W—_‘ﬁ-_m._m__—_‘_‘———_~__'——_m~__m—-—A”
1 ;I Df;O, left-chift root one bit and add 1 to its last bit;
if D9<0, left-shift root one bit and add O to its last bit.
1. When the last bit of root R;_; is 1 (1-2,8,...,n),
compute Di=(4Di—1ﬁIi)—(4Hi~1+1)'
2 If DfZO, left-shift root one bit and add 1 to its last bit;
if D;<0, left-shift root one bit and a2dd 0 to its last bit.
2. When the last bit of root Ry, is 0 (i=2,3,...,n),
n ; compute Dy=(4Dy_;+J,)+(4R; _1+3).
If D20, left-shift root cne bit and add 1 to its last bit;
L | if Dy<0, left-shift root one bit and add O to its last bit.

Extract i-th bit of
square root
(i=2,3,.,..,n)

Fig. 2

123

RULE 1. If Ay-120, then Ry=l;
if A1-1<0, then R1=O.

The RULE 1 is easily implemented by
logic circuits in one fixed-point addition

period.
Now suppose that we have found the cube

root Ry of Az, i.e.,

Ai=R§ +C4 (171,2,...,n-1) (1)
where Gy is the remainder in the extraction.
Then we must have

6<C3<3RE +3Ry. (2)
Now we consider Aj+31. Obviously,
Ai+1=8AiﬁJi+1, (3)
where Jj47 denotes the number constructed

from the three binary bits of (i+1)-th seg-

ment:
Ji+1:
Obviously,
0gd 37
Substitutings(l) into (3), we
Ag 1 8RY+(BCH,).
Adding 8 times of (%) to (4),
OCBC;+J 4 ,1<24RF+24R +7.
Thus 3 a 5
8Rj<A 4+3<8RY+ 2AR{+24R4+7

3,0ame
< 8Ri+ é4Ri+ 24Ri+8

833+1%31+2933+3"
(4)

cbtain

(8)

we obtain

i.e., 3 3

Therefore Rj,y must be 2Ry or <Rjy+l. So that

we obitain

RULE 2. If the cube root of A; is Ry,
then the cube root Rjy,y of Aj,j may be
obtained by left-shifting Rj one bit and

then adding 1 or O to its last bit.
Should we add 1 or add Q7 Rewriting (5)
inio

=(2R,+1) +((au)-(12R2+6Ri+1)),

1+1 i+l i
we see that
if (8C4+y,)-(12RE+6R,+1 20,
then A, =(2R; +1)°3 hence Rj4172R4+1,

(There may be a remalnder)
if (SCi+J1+1) (12Ri+6Ri+1)<O,

then Ai+1<(2Ri+1) s hence Rj,1=2R;+0,

(There may be a remainder).

we can obtain a judge rule: We subtract
P, :12R$+6R; +1 (6)
8C;+J14+1, and then we use the sign of

Di+1=(8ci+Ji+1)_Pi (7)
to determine whether we should add 1 or 0O
to the last bit of Ry,;. P; is called a

determinant.

The problem seems to be solved as in
extraction of a square root. But in practice
this way is not feasible, because when we

Thus

from

124

find the value of Pj, we must compute R?.
Square cperation generally takes a long
time and we will lose "high-speed” meaning.
Therefore the key of the problem is how to
find rapidly the value of Py without any

square operation. For this purpose, we add
a special register P to store the value of
P; and P{. P{ will be introduced in the

following.
There is yet a problem as in the case
of extraction of a square root. If D;, =0,

then Rj41=2R;+1; in this case, Dj43 is the
remainder C;,y in extraction of Ay,y. If
Di+1<0, then Ri+1=2Ri+O; in this case, Dj4

is not the remainder in extraction of A4,y.
The true remainder should be €3477Dj41+P;,

That is, we must restore the remainder,this
requires one more fixed-point addition peri-
od. As in the case of extraction of square
roots, we expect to obtain a judge condition
for finding the root Rj,s from the differ-

ence Dj4+3 Instead of the remainder Cj4y. We

will combine the two foregoing problems and
solve them as follows.
(I) When the last bit of Ry is 1, how do

we find the judge condition for finding the
last bit of root Ry417 We note Fig.3.In Fig.
3 we substitute the expression of Ri into

that of Pi and note the expression of Pj-j1,
we have
Pi-4(1aR§ 1+6R;_1+1)+18(2Ry_1+1)-3
1+18R
and the judge conéitlon for finding the
bit of Ry4q is

Di+1=(8Ci+Ji+1)'Pi:(8D1+4ri+l)‘Pi° (9)

From this we see that the determinant Py may
be obtained by simple addition and subtrac-
tion from P;_.j of the last cycle and Ry of

(8)
last

this cycle instead of being obtained by
square operaticn from Ry. This saves greatly

calculating time.

The formulae (8) and (2) can easily be
implemented by logical circuits in four
steps.In step 1, we find 4P;_y+16Ry. In step

2, we add 2Rj to (4P§_7+16R;) to obtain
(4P;_3*18Ry). In step 3, we subtract 3 from
(4P;_1*18R;) to obtaim P;. Finally, in step
4, we find Dj,y and obtain the cube root
R{4+] according to the sign of the adder out-

put. Each foregoing step takes one fixed-
point addition period. Therefore we use
altogether four fixed-poimt addition periods
to obtain Ry,4;.

(II) When the last bit of Ry is O, how

do we find the judge condition for finding
the last bit of root Ri+1? We note Fig.4.

Number to be extracted Aj g Aj Aj4q
Judge condition D3=(8C5_1+J3)~P5_1=0 Di41=(8C3+J5,7)-P;
Root Rjy Ry=2Ry_1+1
Remainder Cé_l‘ Ci=Dy .)
Determinant Pi_l=12R._1+6R._1+1 Pi:12R1+°Ri+l] B
Fiz.3
Numbe? to be extracted Agy 1 Ay B Ajq |
Judge condition Di=(§gi_1+Ji)—Pi_I<O D3413(8C44d4)Py
Root Ri—l) Ri=2Ri_l+O
Remainder Ci—l Ci=Di+Pi_1
. -1 oRd - 2
Determln%gt Pi_l—iaRi_1+6Ri_1+l Py =12R{+SR;+1
Fig.4
In Fig.4, substituting the expression of Ry If D;;120, then Ri;7172R4+1;
into that of P; and note the expression of if D.. .<0. then R =2R.+0
Pj_1, we have i+ B S S Sl

P{=4P;_;-6R;~3. (10)

And substituting (10) and the expression of
C; into that of Di+1’ we have

Di+1: (8D1+Ji+l)+(4Pi—1+6Ri+3) .
Let

P}=4P, _ (11)

then
Di+1:(8Di+Ji+1)+Pi' (12)
Thus we see that Dj4+j can be directly
obtained from the difference Dj instead of
the remainder Ci. This saves the time for

1 76R+3,

restoring remainder. However, instead of
subtracting P from (8Di+Ji+15, we add ane-

ther formula P} to (8D3+J3,q).

Only three fivxed-point addition periods
are enough to find P{. In step 1 we compute

4P;_1*4R;. In step 2 we add 2R; to (4P; 1+
4R;j) to obtain (4P; 1+6R;). In step 3 we add
3 to (4P; 1+6R;) to obtain Pi. P; is still

stored in the register P. In step 4 we find
Dj+y and Ry, ;. Thus we also use only four

fixed-point addition periods to obtain Ri+1-
The relation between P; and P{ can be

obtained from (10) and (11):
P;=P{-12R;-6. (13)

Combining the foregoing (I) and (II),
we have

RULE 8. (1) When the last bit of the
root Ry is 1,compute
Di+1=(8Di+Ji+l)-,(:4Pi_]_+18Ri—(3).
If D3, £0, then Ry, =2R +1;
if Di+l<o’ then Eli+1=:E:Ri+O.

(2) Wnen the last bit of the

Ry is O, compute
Djyp=(8Dy+d.)+ (4P;_,+6R,+3).

root

125

But a protlem has yet to be solved. We
must use P;.q to find Dj4+1s whether in case

of (1) or in case of (2). Sometimes there
is nmot , however, a ready-made P;.1+ For
example, when we found Di in the last cycle,
if the last bit of R; 1 is O, then

Dy=(8D; 3%J3)+P{ 1 (according to (12)).
At that time the content of the register P
is Pi—l instead of P; 1+ In this case, we

must find a formula for deriving Dy from
Pj_3- From (13), we obtain
Pi_l=PJ!-_1—12Ri_1-'6. (13) '

Substituting (13)' into (8) and noticing
that R3=2Rj_1+1, we have

P§=4P{_7-6R4-3. (14)

Substituting (183)' into (11) 2nd noticing
that Rj=2Rj_31, we have

P{=4P;_;-16R;-21.

Thus we obtain
RULE 4. (1) When the last bit of Riy

is O and the last bit. of Ry is 1, compute
= .
Di“‘l—(8D1+Ji+1)-(4pi—1_6Ri-3)'
If Di+120, then Ri+1:2Ri+1;
if Di+1<o, then Ri+1=2Ri+O.
(2) When the last bit of Ry.3
and the last bit of Ry is O, compute
L]
Di+1=(BDi+Ji+1)+(4Pi_1-18Ri—21).
If Di+1>o, then Ri+1:2Ri+l;
if D{41<0, then Rjy41=2R3+0.

Combining the RULEs 1,2,3,4 together,
we obtain the desired cube root algorithm,
Now we revise it as follows.

To extract the cube root of a 3n-bit
binary integer A, we must set up four
registers:

(15)

is O

D register, used for Cycle! Step| Operation |Functio
storing Dy; 1 Empty
) 2| Empty —
A T§31§ter%hgsgﬁm§g§ 3 |Set tnat (P)=1, i.s8., let P,=1. —
storing e =i — —
A to be extracted; 1 |Compute Dy =Ay Pot) %;pdtthe
R register, used for 4 If Dy=0, left-shift root one bit and set r,=1: b%{Sof
itO{lgg %EStCEE: if D3<Q, left-shift root one bit and set r,=0. ggg%
oot Ry;(Le
%asirt§° bits be 1 | (1) When rp=1, compute P§:4Po+16R1.
iy % en r,=0 te P1=4Py+ 4Rq. F e
P register, used for \ (2) Wnen rp=0, compute 1.0 1 i;?iatg}
storing Py or PJ. L2 Compute P{ =P{+ZR;. b or P!
Note that these (1) When r =1, compute Pi**:Pi*—B. 31 1
registers are not Z 3 (2) When r.=0, compute P***=p**:3 !
necessary to be new, | o nTY 1 1
some of them may be ; (1) Wnen rn=1, compute Dy=(8Dy+J5)-Pq. Find the
those used by multipli- ! 2) When r.=0, compute Do=(8D-+Jo)+P seccnd
cation, division and 4 (2) n P 2 172’1 nit of

extraction of square .
roots. |
Whole process is !

If Do20, left-shift root one bit and set rp=1; cube

if Dy<O, left-shift root one bit and set rp=0. FOOt

divided into n cycles,
each cycle is subdivi-
ded inte 4 steps. Each
step takes a fixed-

point addition period.

performed in various
steps are shown in

I
The logical functions 3 ——
|
|
|

Fig.5. Obviocusly, the
whole process takes

4n fixed-point addi-
tion periods, and the
cube root obtained is

(1) When r,_jry=11, compute P{=4P;_1+16R;. E
1 | (2) When r,_jr,=10, compute P{=4P; 1+ 4Rj. Lind the
| (3) Wnen r;_yr,=01, compute P{=4P;_;-4R; . balues
| (4) When r,_jr,=00, compute Pj=1P;_y-15R;. !Of Po
| (1) when rn-1=1, computa P{*=P}+2R;. or P{
2 1 (2) vnen rp-1=C, compute Pi*=Pj-cRjy. (i=2,?i)
| (1) When r.=1, compute P}**=pi*-3. veoft

3 | (2) When ry_jr,=10, compute P}**=P}”+3.
' (3) When I‘n—lrn=00, compute P;**‘-'P;*—‘Zl.

accurate to within one n
unit in the last

' (1) When r,=1, compute Dj,=(8D3+J447)-Py- ting)the
= ; ~ —(a) ' +1)-th
. | (2) Wnen r; =0, compute Dj,;=(8D;+J4,q)+P] it of

' If D340, left-shift root one bit and set rn=Y cube
if D{+1<0, left-shift root one bit and set r,=Q root
- Ny -

place.
IIE!FIIII
A=-0
cycle O M1
cycle 1—16]

Adder(s):15)=—A(0:15),Q(0:1)
Kdder(s1:15)=M(s1:15) (The

content of A is negative)
AdderCsl:lS)-—M(slzls)} (The
Adder(Carry}e—1

content of A is positive)
A(sl:15)=-Adder(sl:15)
Q(0:15)=-Q(2:15),Q' (0:1)
Q'(0:13)=Q'(2:15)
M(s1:12)=-M(32:13)
M{(13:15)=—101 (The output of]

the adder is positive)

M(13:15)=-011 (The output of]
the adder is negative)

| M(0:15)=M(s1:13) |

Fig.?

Fig.5 B

Additional bits
Accumulator Number to be extracted Sguare root

' 1]
lezk A 15/ b 2 15“4 3 15 leZk M1J131415
16 2] 18,]
. { 4 | 7
l [Parallel adder Carry
s1s20 15
18
INPUT BUS 16 -
QUTPUT BUS 167,
£
Fig.6

IV. Hardware implementation of the square root algorithm

In 1977, a "Fast Processing Unit" was designed and
manufactured at the Department of Mathematics, Northwest
Univercity, People's Republic of China. It is used as a
special peripheral equipment of the (Chinese) DJ3-130
ainicomputer., Its square root circuit is designed accord-
ing to the principle of this paper. Fig.6 and Fig.7 are
its square root block diagram and flowchart, respectively,
Note that Fig.6 is simultaneously used for multiplica-
tion, division and square roct.(with suitablie change).

126

