A SIMULATOR FOR ON-LINE ARITHMETIC*

C. S. Raghavendra and M. D. Ercegovac

UCLA Computer Science Department
University of California, Los Angeles

ABSTRACT -- On-line arithmetic is a special class of serial arith-
metic where algorithms produce results with the most significant di-
git first during the serial input of the operands. Speedup of compu-
tations can be achieved by overlapping or pipelining successive
operations with small delays. This paper describes the design and
implementation of a simulator for on-line arithmetic algorithms.
The simulator was designied primarily to serve as

1) an experimental tool for synthesis of on-line algo-

rithms;

2) a performance evaluation tool of on-line arithmetic;

3) an on-line calculator in solving some problems in-

volving linear and non-linear recurrences.
The simulator evaluates arithmetic expressions given in a highly
functional form. Presently, the set of operations supported include
addition, subtraction, multiplication, division, and square root.
Several examples are presented in this paper to illustrate the usage
of the simulator. The simulator package is implemented in 'C’
language on a VAX 11/780 system.

1. INTRODUCTION

There are several approaches for increasing the speed of
computations. Speed improvements can be obtained by performing
computations concurrently or by pipelining computations. On-line
arithmetic is a ‘special class of arithmetic where operations can be
overlapped at the digit level to obtain a speed up in the range of 2-
16 [ERCES80a] with respect to conventional arithmetic. The algo-
rithmns in this class operate systematically in a digit serial manner,
beginning with the most significant digit in all operations. In this
paper, we describe a simulator for operations and expression
evaluation using on-line arithmetic.

On-line algorithms have the special property that, in order
o compute the j-th digit of the resuit it is sufficient to have the
operands up to (j+3) left most digits [ERCE77, ERCES0b,
TRIV77]. The index difference between the resuit and the input
operands, 8, called the on-line delay, is a small integer, typically 1
to 4. These algorithms can be used to speed up computations as
they accept operands and compute results in digit serial fashion. In
particular, they are suitable for variable precision arithmetic
[AVIZ62]).

The simulator uses floating point on-line algorithms
[WATAB80]. The algorithms for addition, subtraction, multiplica-
* This research is supported in part by the ONR contract NO0OO14-
79-C-0866
(Research in Distributed Processing)

CH1630-3/81/0000/0092$00.75 © 1981 IEEE

92

tion, and square root with 8 = 1 have been described in the litera-
ture [ERCE78, WATAS80]. The on-line division algorithm requires

=2 to 4 depending on the radix and magnitude of divisor
[GORJ80]. The use of redundant number representations of
operands is necessary in on-line arithmetic.

The on-line algorithms simulator was designed and imple-

mented with the following objectives:

1) To use the simulator as an experimental tool in syn-

thesis and analysis of on-line arithmetic algorithms;

2) To time it in performance evaluation;

3) To use it as an on-line calculator in solving some

special problems involving linear and non-linear re-

currences.
The design is modular and the simulator can be conveniently used
in an interactive manner. The input expression specification is in a
highly functional, prefix form.

Certain design features of the simulator package and the al-
gorithms are presented in the next section. Later, several examples
are presented to illustrate the use and operation of the simulator.
Finally, methods are discussed to solve recurrence relations using
the simulator.

2. DESIGN OF SIMULATOR

The simulator is designed to be highly modular and con-
venient for interactive usage. The package consists of a main con-
trol program and a set of routines for on-line algorithms. The on-
line algorithms are written as procedures and they are made as in-
dependent as possible from the main program. The program ac-
cepts an-expression in a functional form with standard symbols or
mnemonics for the arithmetic operators. The user can globally
specify radix, redundancy ratio, and the precision of the operands,
and format of output results. The simulator evaluates a given ex-
pression by executing arithmetic operations in parallel using on-line
algorithms. For error computations, the given expression is also
evaluated using conventional arithmetic. The output represents in-
termediate results of each arithmetic operation, the time of compu-
tation (number of steps), and the errors in comparison with con-
ventional arithmetic results. Several options are provided to the
user for formatting the output results as illustrated later in the ex-
amples.

The on-line algorithms perform floating point computa-
tions. Signed-digit number representation system [AVIZ61] is used
for fractional parts and the conventional number system for ex-

ponents. Since generally the exponents have fewer digits than
Mmantissa, we assume thal complete exponents of operands are
available by the time first digit of result is computed. The ex-
ponent of the resull is computed when the first non-zero digit of
mantissa is oblained. Leading zeros, if any, produced in the calcu-
lation of the result are suppressed. The floating-point on-line algo-
rithms used in the simulator guarantee that the magnitude of a
non-zero mantissa is always greater than =2 {WATAS0].

A functional block diagram of the simulator is shown in
Figure 1. The input part prompts user 1o enter the global parame-
ters of the system, namely. radix r of the number system tor
operands and results, redundancy factor p which should be between
r/2 for minimal redundancy and r-1 for maximal redundancy, preci-
sion m of operands and results, and the print format for oulput
results. The default option is a decimal maximally redundant
signed-digit system with 16 digits of precision. The user can also
specify a filename when invoking the simulator, in which case the
results witl be routed to the indicaled file.

Next the user will be prompted {0 enter an arithmetic ex-
pression. The expression should be in prefix form with symbols +,
- " and / or with mnemonics add. sub, mul, div, and sqrt for the
arithmetic operators. The expression can be entered in multiple
lines and will ook like a LISP statement. Presently all operands in
the expression are single letter variables. but this limitation can be
easily removed. The expression is parsed with some amount of
syntax checking and an execution tree, a binary tree. is constructed.
The nodes of this tree correspond 1o on-line arithmetic operators
and operands, and the branches indicate duata dependencies. A
linked list of operand variables is also constructed which is used for
requesting values of operands. The user will be prompted 1o enter
the mantissa part first and then the exponent part of each of the
operand variables. The number of mantissa digits entered for an
operand will be the precision of that operand. If operands are of
different length, the default rule is 1o use the smallest length.

The "productive" phase of the simulator is the computation
of result digits using on-line algorithms. The execution tree built
for the expression

mul{add(a,b),add(c.d))

is shown in Figure 2. A centralized contro} mechanism is used in
the computations of results where a global clock is maintained and
we assume that all the on-iine algorithms require unit time to com-
pute one result digit. ‘In each clock time all the nodes are exam-
med, and if the operand digits of o node are available the result di-
git will be computed and forwarded 10 destination node. The tree is
traversed from left to right and from botiom leve! io root in each
clock step. thus simulating concurrent execution. The expression
cvaluation is complete when all the stgnificant digits of the root
node are computed. The exponent of the result is calculated when
the first non-zero result digtt 15 obtained. An alternate approach
could be to use asynchronous contro) mechanism where the arith-
metic unily exchange tokens when resolt digits are computed.

The cxecution part of the simulator is interfaced to a set of
on-line arithmetic procedures. These procedures are reentrant and
the design is such that it is relatively easy 10 add modules specify-
ing new on-line algorithms. The interface between the execution
part of the simulator and the algorithm procedures is a set of
parameters which are used and modified by the algorithms., This
way the control structure of the simulator is hidden and modifying
an algorithm or implementing a new algorithm is easy. More de-
lails of interface and some procedures are presented in Appendix
A. The algorithm for addition, multiplication, division, and

square-root, currently included in the simulator, are presented in
Figures 3, 4. 5, and 6, respectively. In the algorithms presented, il
and Ex, i2 and Ey, i3 and Ez are index and exponent of operand 1,
operand 2, and result, respectively.

In the evaluation of expression, computations are per-
formed as long as significant operand digits are available. The on-
line delay used for addition, multiplication, and square-root is 1.
For division the delay varies from 2 to 4 depending on the magni-
tude of the divisor. The numerator is right shifted by two positions
internally 1o make sure that magnitude of divisor is greater than
magnitude of dividend. The selection rule used for addition and
multiplication is a simple rounding procedure. The selection rules
for division and square-root are slightly complicated in that they in-
volve several comparisons [TRIV77, TRIV 78, OKLO78, GORJ80].

Finally, the results are printed according 10 the user
specified format. The results include the total time of computation,
the delays encountered by the arithmetic units, result digits and er-
rors in comparison with conventional arithmetic results.

The on-line algorithms simulator is written in 'C’ language
and runs on a VAX 11/780 system. The size of the program is
about 600 lines of *C’ code. Typical execution time is about 0.1 sec
for simple arithmetic expressions with 10 nodes are less, including
the output of results to a file.

3. EXPERIMENTAL RESULTS

In this section we iltustrate typical input and output phases
ol the simulator. The user will be queried to specify values of radix
r. redundancy factor p, precision m of of operands, and print op-
tion. Then the user will be asked to enter an arithmetic expression.
The expression can be entered in as many lines as desired, with two
suceessive carriage returns indicating end of expression. An exam-
ple of input expression is,

mul(div(a,b),add(c.d))
This can also be entered as,
*(/(a,b), +(c,d))

The simulator has three main outpul options. In the first
option, the printing of resuit digits follow the corresponding timing
diagram as shown in Figure 7. The node labels and exponents are
printed as two columns. This option can be used when there is a
small number of nodes in the computation tree. If the number of
nodes in tree is large, as in solving a recurrence relation, second
output option can be used. Here, the delay is displayed in another
column and the result digits are not indented. This wpe of output
format is shown in Figures 10 and 11. The third outpul opLon is
simuiar 1o first option where the labels are printed horizontally and
resuit digits vertically.

More detailed resulis can also be produced. As shown in
Figure 8, the intermediate results at cach step, inctuding the errors
incurred, are displayed. The intermediate results are very useful in
the algorithm development phase.

4. RECURRENCE RELATIONS

An on-line arithmetic approach is particularly attractive in

solving linear and non-linear recurrence relations. Consider, for ex-
ample a recurrence relation for square-root of Y > 0,
1 Y
Xp11 = 5 x, + —1]
n+l 2 n X,
X quadratically converges to square-root of Y. Such recurrence rela-

tions can be solved using the simulator and the corresponding
speedup observed. Since the on-line algorithms produce results in

digit serial manner, additional parallelism can be obtained by over-
lapping computations of different iterations. While solving the
above example, we may be computing digits of x;, X4, Xe4a, €LC.
simultaneously. Such observations might be useful in deciding
about the design tradeoffs.

In general, it is very difficult to specify recurrence relations
as an expression in functional form. Therefore some additional
programming is required to build the computation tree. The struc-
ture is built by unfolding the recurrence relation to the required
number of levels and then closing on itself to form a loop. Using
this structure, the simulator performs specified number of iterations
by computing digits of as many iterations in parallel as possible.
The computation structure used for calculation of cube-root using
Newton-Raphson’s technique is shown in Figure 9. It was observed
that the use of on-line arithmetic does not alter the convergence
properties of recurrence relations.

In particular, we experimented with the following classes of
problems using the simulator:
1) Square-root, cube-root,..., nineth-root calculation us-
ing recurrence relations of Newton-Raphson’s technique.
2) Elliptic integral evaluation.
3) Quadratic convergence division of IBM 360/91.
4) Logarithm evaluation.
5) Finding root of a polynomial equation.
ex:x?—3x +1=0
6) Fixed point problem: f(x) = 0.
7) Boundary value problems.

The execution traces of some root computations are shown in Fig-
ures 10 and 11.

5. CONCLUSIONS

We have described the design and implementation of a
highly functional on-line algorithms simulator. It consists of a con-
trol part and a library of on-line algorithm procedures. The simula-
tor can evaluate arithmetic expressions with a specified set of global
parameters including radix, redundancy ratio, and maximum preci-
sion of operands. The time of computation in terms of number of
steps and errors in comparison with conventional arithmetic are
produced along with the result digits.

The simulator is quite useful for solving recurrence rela-
tions, although this requires some additional programming. A use-
ful observation about speed improvement is obtained as digits of
different iterations are computed in an overlapped manner.

6. REFERENCES
[AVIZ61] A. Avizienis, "Signed Digit Number Representa-
tion for Fast Parallel Arithmetic', IRE Trans.
Electron. Computers, Vol. EC-10, 1961, pp 389-
400. .

[AVIZ62] A. Avizienis, "On a Flexible Implementation of

Digital Arithmetic", Proc. IFIP, 1962, pp 664-668.
[ERCE77] M. D. Ercegovac, "A General Hardware-Oriented
Method for Evaluation of Functions and Compu-
tations in a Digital Computer", IEEE Trans. on
Comput., Vol. C-26, No.7, July 1977, pp 667-680.
[ERCE78] M. D. Ercegovac, "An On-Line Square Rooting
Algorithm", Proc. Fourth Symposium on Comput-
er Arithmetic, October 1978, pp 183-189.
[ERCE80al M. D. Ercegovac, A. L. Grnarov, "On the Perfor-
mance of On-Line Arithmetic", Proc. IEEE Inter-
national Conference on Parallel Processing, Au-
gust 1980.
[ERCE80b] M. D. Ercegovac, "An Universal On-Line Algo-
rithm for Basic Arithmetic Operations", (in
preparation), 1980.
[GORJ80] A. Gorji-Sinaki, M. D. Ercegovac, "On-Line Divi-
sion Algorithms: A Systematic Derivation", (in
preparation), 1980.
[OKLO78] V. G. Oklobdzija, "An On-line Higher Radix
Square Rooting Algorithm”, MS Thesis, UCLA
Computer Science Department, 1978.
[TRIV77] K. S. Trivedi, M. D. Ercegovac, "On-Line Algo-
rithms for Division and Multiplication", IEEE
Trans. on Comput., Vol. C-26, No. 7, July 1977,
pp 681-687.
[TRIV78] K. S. Trivedi, J. G. Rusnak, "Higher Radix On-
Line Division", Proc. Fourth IEEE Symposium on
Computer Arithmetic, October 1978, pp 164-174.
[WATAS80] O. Watanuki, M. D. Ercegovac, "Floating Point
On-Line Algorithms", Submitted to the Fifth
Symposium on Computer Arithmetic.

APPENDIX A

The execution tree built by the control part of the simulator
consists of data structures in the high fevel language with the fol-
lowing fields:

opcode -- A small integer specifying the operation.
num -- A flag to indicate end of operation.
oprdl -- Pointer to first operand node.

oprd2 -- Pointer to second operand node.

nl .- Current digit index of first operand.
n2 - Current digit index of second operand.
n3 -- Current digit index of result.

res - Digit vector of result.

expo -- Exponent value of result.

wj -- Variable for intermediate result.

w -- Array for intermediate result.

del -- On-line delay §.

The interface between control part and the algorithm con-
sists of a set of parameters. An algorithm is invoked in the follow-
ing manner:

alg-name(ind, x,y,z,exp,pint,preal)
where

ind is an array of indices
ind[0} -- Index of result
ind[1] -- Index of operand 1
ind[2] -- Index of operand 2

X, ¥, z are digit vectors
x -- Digit vector of operand 1
y -- Digit vector of operand 2
z -- Digit vector of result

exp is an array of exponents
expl0] -- exponent of result
expll] -- exponent of operand 1
expl2] -- exponent of operand 2

pint is an array of integer parameters
pint[0] -- &, same as zlind[0])
pint{1] -- delay &

preal is an array of real parameters
preal{0] -- w,
preal[j] -- wﬁ]

The arithmetic procedures can use all the above parameters to pro-
duce result digit. It can modify indices of operands, result ex-
ponent, w;, and delay 8. However, it should not change result in-
dex as this requires normalization and will be done in the control
part of the simutator. The *C’ language procedures for add and div
are presented in Figures 12 and 13 respectively.

INPUT
PARAMETERS

v

PARSE
EXPRESSION

¥

CONSTRUCT
EXECUTION TREE

¥

PARAMETERS —]

EXPRESSION —i»]

REQUEST ALGORITHMS
—
OPERANDS OPERAND VALUES
‘ _w| ADD
/ .
COMPUTE .
RESULTS .
\ .
RESULTS SQRT
TIME PRINT
ERRORS

Figure 1. Functional block diagram of the Simulator.

Figure 2. Execution tree of an expression.

Addition/Subtraction
Initialization: i1 =0 2=0 3=0 wy=0
id = Ex - Ey sign = 1 for add
= -1 for subtraction

Ez = max(Ex,Ey)

Recursion: forj = 1,2.3..... m do

begin
ifid>0 il =il+1;id=id-1
fid<02=R22+1;id=id-1
ifid=0il=il+1;i2=i2+1

wi = (w1 - z3) + r73%(x;; + sign*y,y)
&, = signl]| Iw, [+0.5 |

norm(d;)
end

Norm: if i3 = 0 then

begin
if d; # 0 then
begin
i3 =1
Zi3 = dj
Ez = Ez - (max(il, i2)-5-1)
end
end
else begin
3=i3+1
z3 = d;

end

Figure 3. Addition/Subtraction Algorithm.

Multiplication
Initialization: il =0 2 =0 3 =20
Recursion: for j = 1,2,3..., m do

begin
il=il+1;i2=i2+1

i1 Recursion: for j=12,..m do
K = Lo

2 begin
- L=il+1
. d; = seiect(R,., B)
Y, = tlyl" Q;=Q 1 +airt>
Lind R/ = I’Rj_) + _‘(‘/lr—z had 2Qj-ld/‘ - de’—k—p
wy = tlwj_y - z) + 20 Y + k) norm(d;)
/
end
4, = signln]| Iw,|+0.5 | "
norm(d;) Selection: R = lr3Rl/r3

end

- B
Figure 4. Muitiplication algorithm. SR, B)={0 if B <R < B,
R

—k if é—(k—]) < < é_k
Division ke{p,..,-1,0,1,. p)
Initialization: i1 =3 2 =13 i3 =0 Be=a,7_, +l,s(Dk,—/—1)J,_.;_ 2
L] .
Py = gn,r i By =4, f’;—l " lrs(Dkr—j—l)]r—z e
5) 2k — 1
Dy = Ed,r—' A= r
i=1
00 =0 D=k2—-k+1/2 for j <SS
k 0 otherwise
Recursion: for j = 1,2,3,...., m do
begin Y ~
iL=il + 1 i EZ:'
i2=i2+1
9; = select(rP;_, D;) Figure 6. Square-root algorithm [OKLO78].

Dy = Djoi + djpr™™?

T
|

=P+ myr - Qo ydart - D,
M- mr Qradar 745 mul(add(a,b),add(c,d))

Q/ = ijl + qu_j
Total Time of Execution = 20

norm(d;)
end .
label expo mantissa
Selection: ¢, =i if d 1 2483267319436794
N TN, A —s5+1 ¢ 1 39204184683925¢638
tPi_je Li=K)Dj + k(1+k) =8+, (i+k)D;y —~ k(1+K)r add) 1 4404326201223.1362
iel- 1.0.1) b 2 492852051846385°6
Pseeees Wlope a 3 2904284194684635
add 3 340-314-425-4531021
mul 4 22254213101 23123

Figure 5. Division algorithm [GORJ80].

Figure 7. Expression evaluation.

Square-root

Initialization: il =0 i3 =0 Q=0 mul(add(a,b),add(c,d))
mantissaofa =2904284194684635

- 2 = 2
Ro= xy p = mod{Ex,2) exponent of a = 3

Ex
2

mantissa of b =4928520518463856
exponent of b = 2

Ez =

96

mantissaof c =3920418468392568
exponent of ¢ = 1

mantissaof d =2483267319436794
exponent of d = 1

Total Time of Execution == 20

operand 1 = 3.920418468392568¢ +00
operand 2 = 2.483267319436794¢ +00

conventional result = 6.403685787829362¢ +00

exponent of on-line result = 2

dj

1
-4
4
0
4
-3
-2
6

-2
-1
-2
-2
3
-1
3
6

ij

5.000000000000000e-01
-3.760000000000000¢ +00
4.000000000000000e +00
2.99999999999998%¢-01
3.599999999999989¢ + 00
-3.3000000000001 10e +00
-1.500000000001101e +00
5.699999999988988¢ +00
-2.300000000110123e +00
-1.300000001101235¢ +00
-2.300000011012345¢ +00
-1.800000110123454e +00
2.799998898765464¢ +00
-8.000110123453568e-01
3.499889876546432¢ +00
6.198898765464318e +00

error

-3.596314212170636¢ +00
4.036857878293642e-01
3.685787829364129¢-03

3.685787829364129¢-03

-3.142121706358747¢-04
-1.421217063590774¢-05
5.787829364112262¢-06
-2.121706358382269¢-07
-1.217063572145349¢-08
-2.170635782228203¢-09
-1.706357277697634e-10
2.936428877831077¢-11
-6.356026815979021e-13
3.643751966819764¢-13
6.45039577307215%- 14
4.440892098500626e-15

Figure 8. Intermediate results of add(c,d).

- — —]

Figure 9. Computation structure for cube-root calculation.

97

1

Example

1:

Calculation of cube root using on-line arithmetic.

mantissa of y =436272800000000
exponent of y = 3

Total Time of Execution = 234

iter delay

COOUARNN B LN —
P e = NN DD N RO RO W

expo

Figure 10.

Example 2:

mantissa

'
—

—— D

—_) e WO L e
NN IO B W NN R
'

RO R0 ON W B W o

.
P I R R U R VP N
K
)

\l\l\l\)\)\lw’—"—‘Nw-&Oﬂ’—'h‘
= - - NS - = =)
:
B N R N R Y N N JU I DA N
L= = - N N O NI U SO
MMNMWWW-&-&WWMO\MW
.

Calculation of Cube-root.

= NN = B O NN R W

(VS L UL FU N N

[aniiantll SR iR MR VSR NCRENS I SO S 5eY

.

(R RV &)

—_ e DL N 00— s W

(S Sy Y

NN W oo ON N e
Ao O

—— bk AN W

Calculation of seventh root using on-line arithmetic.

mantissaof y =1467282590000000
exponent of y = 3

Total Time of Execution = 354

iter

MO OO0 S O B W RO —

delay

O S S S S

188
204
221
239
256
274
290
306
322
339

st el b e e et

expo

—
N—=NRNNNNWWE R AN ™= —m N

mantissa

' [(=)
NWB RO E =L ow o AW D00~

— o e 00
\
L . I R T

o o =) ~1 D~ 00
00— 3 &\~
NN 00 N O g]) D B

AR, NI IS N SC R o R
BN O O NN

N LN O~ OO —

RN N N SR VY
\

O NN = N0 WD T

9SSRl o woa v
)
B oo —
e O D00 LN oo W 0o
\

(9%
OO =N mbhOon AWHARO™ W0

~ B W p 0o DD N —
LN oo N w) h D e OO~ e

Figure 11. Calculation of seventh root.

W B — P www s

B N = N

'
—

A IS e IR Y e I - I =

O\ 00 00 g 00 = Lo a0
B ot P oo Wa L

= N WO O S0

'
—

SO0 R I W O oo

wn ~3 ~}
NADSHR—=NNOULWN k=0 = W

_——]

AU L= O~ AL

— s o —
PLUOO—=OOVONL VRN

B — 00 00 00 00 00 Fu OO D L, B — O W

/* On-line Addition Algorithm

add_on_line(ind,x,y,z,exp,pint,preal)

int ind[),x[1,y{],z{},exp{],pint[];
double prealll;

{inti,j, k, dj;
double wj;

iflexp{1] > expl2])
{ind[1] = ind[1] + 1;
if(ind[1] == 1)

expl0] = expll];

/ if (fabs((rk +1.0)/ (rj (2.0*tk - 1.0))) > = r*1)
{ expl0] = expll] - expl2] + 2;
pint[1] = 4;
preall0] = powr(r,-4)*x[1];
preai{l] = preal[0];
return(0);

}

else if (fabs((rk+1.0)/ (rj* (2.0%rk - 1.0))) > =)
{ expl0] = expll] - expl2] + 2

pint[l] = 3;
preal[0] = powr(r,-3)*x{1];
return(0);

)if(exp[Z] + ind[1] > exp(l]) ind[2] = indl2] + 1;

else { ind[2] = ind[2] + 1;
if(ind2] == 1)
expl0] = expl2];
if(exp[l] + ind[2] > expl2]) ind[1]

| -
j = indl[ll;

k = ind[2],

dj = pint[0];

wj = preal[0];

wj =

r*(wj - dj) + 1.0/r*(x[] + ylkl);
preal[0] = wj;

return(addsel(wj));

addsel (w)

double w;

{int i

iftw < 0) {i= (w-05);

it(i > = -ir) returni);
else return(i+1);

]

else {i=(w+05);

if(i <= ir) return(i);
else return(i-1);

Figure 12. 'C’ function for add algorithm.

/* On_Line Division Algorithm
div_on_line(ind,x,y,z,exp,pint,preal)

int indl], x1, y[l, zll, expll, pintll;
double preall];

{inti, j, p, dis
double qj, rj, wj;

ind{1] = ind{1} + 1;
ind[2} = ind{2} + 1;
i = ind[l];

if < 3) return(0);

if)
{ ;

S
[
O. W

r

It

—~

i=1,i<j ++i)
1 = 1j + powr(r,-)*yli];

ind{1] + 1;

else { expl0) = expl1) - expl2] + 2;
pint{1] = 2;
preal{0} = 0

)

6= 0
forG = 1;i < j; ++1i)
tj = 1j + powr(r,-D)*ylil:

wj = preal{0];

P
divsel(wi,rj,pint{11);
+ powr(r,-)*y[jl;

&

=rj
q =0
p = j-ind[0] - pint{1] - 1;

for(i = 1; i <= indl0]; ++i)
a4 = qj + powr(r,-p-i)*zfil;

wj = r*wj + powr (r,-pint[11)* (x[j-2] - y(i1*qj) - rj*dj;

preal[0] = wj;

preaifj-pint[1]] = wj;
return(dj);

divsel(wj,xx,del)

int del;
double wj, xx;
*
/
{int i;
double yy;
i =

ir;
yy = rk*(1.0+rk)*powr(r,-del);

while(§ < == ir)

{if(r*wj > (fabs(xx)*(i-rk) + yy) && (r*wj < =

(fabs(xx)* (i +rk) - yy
{ if(xx >=0) return(i);
else return{-i);

}

else i =
)

return(0);

)

i+ 1

Figure 13. C’ function for div algorithm.

98

