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ABSTRACT: The arithmetic operations

in finite fields and their an mth degree extension of GF(2). The

implementation are important +to the m

construction of error detecting and arithmetic of GF(2) is well known to

correcting codes. The addition,

multiplication and division in the coding theorists and logic designers

tield GF(2™ ) are implemented as

polynomial operations using binary but there are many interesting problems

logic of flip-flops and EXOR's. For

fields of non-binary characteristic, to be solved in the decoding of

modular arithmetic (with modulus p, a

prime) becomes important. This paper (multiple error  correcting) cyclic

focuses on problems relating to the

aritnmetic of GF(p), and some recent codes [3].

results and new ideas on this topic are

presented here. The arithmetic of GF(p), a prime
I. INTRODUCTION AND BACKGROUND field, is important in the

implementation of Reed-Solomon codes.

Finite fields are often called If the arithmetic of GF(p) can be
Galois Fields . GF(g) denotes the handled efficiently, then it is
Galois field of g elements and g must conceivable to obtain very efficient
pe of the form p™ for some prime p. single and multiple error-correcting
Galois field arithmetic is employed Reed-Solomon codes. We assume from the
extensively in the logic of error reader some background of finite field
detection and correction (cyclic) codes structure and Reed-Solomon codes [1,4].
[1,2]). The binary cyclic codes are We present arguments for the need for
defined in the algebra of polynomials the development of suitable arithmetic
over the field of two elements, namely, logic in the prime fields, such as,
GF(2). The encoding and decoding logic GF(11) and GF(17). While the interest
of binary c¢yclic codes involves the is in the arithmetic of GF(p), we focus
addition, multiplication and division special interest on primes of the form
operations in the algebra of 2™ + 1 . The motivation for that case
polynomials and operations of GF(2™), is that each group or byte of m bits

*This research was supported by the Office ¢f Naval can be treated as an element of GF(p)
Research, under Grant No. NOOO1l4-77-0L55. ) m )
if 2 + 1 is a prime. For BCD numbers,
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the pase b=1¢ (and the radix r=2) but
each group of 4 bits representing a BCD
digit can also be treated as an element
of GF(1l). By wusing that approach we
can construct Reed-S50lomon codes
somewnat efficiently. Similiarly
hexadecimal numbers can be treated as
elements of GF(17) and the error

correcting codes can be designed over

such a field.
II. REED-SOLOMON CODES

We consider here Reed-~Solomon codes
generated by a polynomial of the form

)

x=1)(x-a )... (x—ad'z

where a 1is an element of. GF(p) and a
has order n . That 1is, a" = 1 for
smallest positive integer n . The
polynomial g(x) generates a code of
length. n symbols (over GF(p) ) out of
which n-d+1 are informaticn symbols and
d-1 are parity checks. The code has a
minimum distance of d and is therefore

capable of detecting (d-1) errors or

correcting [ (d-1)/2 ] errors. as

examples consider the Reed-solomon

codes listed in Table I below.

TABLE I
Code g(x) P n k 4
Cl Xx-1 11 19 9 2

C2 (x-1)(x-2) 11 18 & 3
3 ) 1106 s

I=zo0
C4 (x-1)(x-3) 17 16 14 3
C5 %T (x—f ) 17 16 12 5

izo0

g(x) represents the generator
polynomial and the number of check
symbols n-k equals the degree of g(x).
n is the code length and k is the
nuﬁber of information symbols. Each
code symbol is an element of GF(p). The
Reed-Solomon cyélic codes over GF(p)
will have a maximum code length of
n=p-1 if (x—é) is a factor of‘g(x) and
a is primitive in GF(p). The codes Cc2
and C3 have (x-2) as a factor and 2 is
primitive in GF(11). For codes C4 and
C5, (x-3) is a factor of g(x) and 3 is
primitive in GF(17). The minimum
distance, d

min ©f the codes is related




to the number of factors in g{x). If
a-2

g{x)= T\ (x—ak) , then &,,, 24d

ES)
wWith-only d-1 parity sympols, the codes
have a minimum distance of 4 and, in
that sense, tne Reed-Solomon codes are
maximum distance separable and the

information rates of these codes are

very good.

Another important consideration in
choosing GF{p), instead of GF(2™), is
the decodinyg logic. The roots of
polynomials over GF(p) can be obtained
through explicit formulas rather than
by a search or iteration. Finding the
roots of polynomials over binary based
fields (i.e. GF(2M)) through explicit
formulas is not known presently and a
preliminary effort in this direction is

appearing [3].

n
IIT. ARITHHETIC MODULO 2 + 1.

. n
Not all integers of tne form 2 +1

are primes. tHowever Fermat primes [51]

are of the form

m
2
Fo= 2 41 for n=(3,1,2,3, and

4.

Although Fermat conjectured that ¥ for
all n are primes it was shown for n=5,
H
the fermat numper 2% +1 is found to bpe
composite. Our interest nere will be
restricted to Fermat primes, namely, 3,
5, 17, 257 . There hnhas oveen soine
interest in the modulo 2n +1 arithmetic
logic [5-7]. A novel foruwat to
represent GF(Zn +1) is derived in (6]

as follows.

n
For simplicity we let p = 2 +1

and use GF{(p) instead of GF(2n +1). The
elements of GF(p) cannot be represented
as n-tuples. Therefore each X € GF(p) is
represented by a binary (n+l)-tuple of
the form
X = {Xnd RS SRS S |

where x. nas the usual weight of 2L and
I, has a weight of 1, the same as Xg »

Here I, is called the zero indicator




and equals zero iff X =0

Hence
n-t L .
x=1,(% x2+1).
x ( =0
Setting
n-\ H
x = 7 %2 ,
{=0
We get

X =1, (x+1) ,
Using this representation it was snown
{6] that addition and complementation
operations can be obtained with only a
winor modification to 1's complement
logic . It is also easy to implement
scaling operations i.e wmultiplication
or division by 2 . However, further
work 1is reguired to find efficient
algorithms to multiply or divide
numbers modulo p. That should lead to
fast encoding and decoding logic for
efficient multiple error correcting

rReed - Solomon codes.
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