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ABSTRACT

In a finite-segment p-adic number system one
of the difficult problems is concerned with convert-
ing Hensel codes back into rational numbers. An
algorithm for this conversion is proposed which is
based on a sophisticated table look-up procedure.

1. Introduction

The use of finite-segment p-adic arithmetic as
a practical method for performing error-free compu-
tation on a digital computer was first proposed by
Krishnamurthy, Rao, and Subramanian [15], [16] and
by Alparslan [1]. Since that time other researchers
have become interested in the subject. See, for
example, Beiser [3], Farinmade [5], Gregory [6],
[7], Hehner and Horspool [9], [10], and Lewis [17].

Krishnamurthy et al. use the term Hensel code*
to describe the first r digits of the infinite
p-adic expansion of a rational number & =a/b.

They demonstrate that arithmetic operations on
rational numbers can be replaced by corresponding
arithmetic operations on their Hensel codes under
certain conditions. One of the difficulties,
however {once a computation has been completed), is
in finding a simple method for determining the
rational equivalent of the Hensel code which repre-
sents the solution. It is this difficulty which we
address in this paper. The notation used is similar
to that in Gregory (61, [7].

2. Finite-segment p-adic numbers

Modern introductions to Hensel's field of
p-adic numbers Qp (of which the rational numbers Q

form a subfield) are contained in Bachman [2],
Borevich and Shafarevich [4], Koblitz [127, and
Mahler {18]. It is not necessary, however, to have
a complete understanding of the theoretical aspects
of p-adic numbers in order to work with finite-
segment p-adic numbers {i.e., Hense! codes) because
there is a simple algorithm for computing Hensel
codes which does not require that the infinite
p-adic expansions be known. In other words, it is
possible to introduce Hensel codes without ever
mentioning p-adic numbers. However, we do not
choose to do this and a brief review of the

*Named for K. Hensel who first proposed the system
of p-adic numbers during the first decade of the
twentieth century.
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connection between Hensel codes and p-adic numbers
follows.

Let p be a prime and suppose we are given the
rational number @ with its unique, periodic, p-adic
expansion

ntl n+2

(2.1) «= anpn ta e ta b + ...

_ .ng. 2
=p ey teptcp +.l),

where 0 Ja5 <P, for j =n,n+1,..., and a, # 0.
Notice that
(2.2) c, = a i=0,1,2,

and n may -be positive, negative, or zero.

Because of the one-to-one correspondence
between (2.1) and the abbreviated representation

ntl "n+2 " (p)s

where only the coefficients of the powers of p are
exhibited, we can use the power series expansion
and the abbreviated representation interchangeably.
In fact, we shall refer to both (2.1) and (2.3) as
the p-adic expansion for «.

(2.3) a=a a a

The abbreviated notation is analogous to the
representation of the decimal expansion of «. In
fact, we complete the analogy by introducing a
p-adic point as a device for displaying the sign of
n. Thus, we write

(2.4) 40,121 3313535 .. forn < 0
o= P PLPCET forn =10
.0...0 3. for n > 0.

Since any rational number e« = a/b has a unique
representation

(2.5) a/b = (c/d)p",

with (c, d) = (¢, p} = (d, p) = 1, it follows, from
(2.1), that the p-adic expansion for c/d is

(2.6) CyC,... (p).

c/d = -€0€1%5

Hensel codes

If we wish to work with r p-adic digits, the




fixed-point Hensel code consists of the leftmost r
digits in (2.4}, including the leading zeros when

n > 0, with the p-adic point in its proper place.
However, we shall work primarily with normalized
floating-point Hensel codes, in which case the
p-adic point will always be as in (2.6), and the
Hensel code will be written as an ordered pair con-
sisting of a mantissa My and an exponent ey -

2.7 Example Ffrom [7, p.111], we see that the p-adic
expansion for o= 2/3, with p = §, is

2/3 = .4131313... (5).

It is easily verified (using radix-5 arithmetic
from left to right) that 3(.41313...) = .2000...
and this js the p-adic representation of 2. Similar-
ly, the expansions for 2/15 and 10/3 are

2/15 = 4,131313... (5)
and
10/3 = .04131313... (5)
respectively. Hence, if r = 4, we have the fixed-
point Hensel codes
H{5,4,2/3) = .4131
H(5,4,2/15) = 4.131
H(5,4,10/3) = .0413,
and the normalized floating-point Hensel codes
H(5,4,2/3) = (.4131,0)
H(5,4,2/15) = (.4131,-1)
H({5,4,10/3) = (.4131,1).

Notice that H(5,4,10/3) contains one more "signifi-
cant digit" than H(5,4,10/3), and we can avoid many
difficulties if we use normalized floating-point
Hensel codes rather than fixed-point Hensel codes.
See [6, pp. 292-2961.

It is shown in [15] that negative rational
numbers have a valid radix compliment representa-
tion. Thus, from Example 2.7, we can write

ﬂ(5,4,-2/3) = (.1313,0)
(2.8) ﬁ(5,4,-2/15) = (.1313,-1)
H(5,4,-10/3) = (.1313,1).

If r is even, positive and negative integers have

easily recognizable Hensel codes in the sense that
the last r/2 digits are zero if the integer is
positive, and p-1 if the integer is negative.

for example.

Thus,

H(5,4,13)
H(5,4,-13)

(.3200,0)

(2.9) (.2244,0)

3. Residue equivalent of the Hensel code

We now describe an algorithm for mapping a
rational number a onto its Hensel code H(p,r,o)
which does not involve finding the (infinite) p-adic
expansion and truncating it to r digits. It is
based on the following result. See [7, p. 122].

3.1 Theorem Let a = a/b, where a/b = (c/d)p", with
(c, @) = (c, p) = (d, p) = 1. Let the Hensel code

for ¢c/d be
/ H(p,rie/d) = .cpeq...c g
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Then ¢r.1'+%1% is the radix-p representation for
the integer ]cd'll -
P

In other words,
lcd'll Pttt
p
3.2 Example Llet o =2/3, p =5, and r = 4,
p’ = 625 and

Then

1
12:37 605

[2-417] 05

= 209.
Since 209ten = 1314five’ we reverse the order of
the digits and obtain
H(5,4,2/3) = .4131

and this agrees with the result in Example 2.7.

If = -2/3 we have
|-2/3|625 = ](-2)-417!625
= 416.

Since 416 we reverse the order of

ten ~ 3131ffve’
the digits and obtain
H(5,4,-2/3) = .1313

which agrees with (2.8).

3.3 Remark Notice that when a = (c/d)p", as in
Theorem 3.1, with ﬁ(p,r;x) = (mu,e J, we have

my= H{p,r,c/d)

= .CyCq.-1Cpy

and

e _=n.
o

Rational numbers with the same Hensel code.

It is easy to show that a/b and ka/kb (where
k#0 is any integer) have the same Hensel code. We
also have the following result. See (7, p. 132].

3.4 Theorem Let o= a/b and 8 = g/h with (b, p) =
(h, pJ) = I. Then H(p,r,a) = H(p,r,B) if and only

if ah = bg (mod p").

Since we are interested primarily in normalized
floating-point Hensel codes the following corollary
(which follows directly from the theorem) is of
interest.

3.5 Corollary Let &= (c/d)p° and 8 = (e/f)pt as in
(2.5Y. Then the mantissas of their normalized
floating-point Hensel codes are equal (i.e. m_=m,)

r. o B
if and only if c¢f = de (mod p ).

To obtain a better understanding of what we
are doing when we construct a normalized




floating-point Hensel code, consider the rational
number o= (c/d)pn as in (2.5). When we form the
integer lc'd'll , We are using the mapping

p
|1 r Q-1 r to map the rational number c/d
p p
onto the integer |c-d™'| , in the set
(3.6) I, ={0,1,...,p"-1}.
p

Following this step {assuming that the integers in
(3.6) are represented in decimal notation) we
change the representation of the integer ]c-d'll r
P
from radix-10 to radix-p and, from Theorem 3.1,
the radix-p digits are equal to the first r coef-
ficients in the p-adic expansion (2.1) but with the
order reversed.

The order of the digits in a Hensel code is
not critical, however. For example, Knuth [11,
p. 179] places the p-adic point on the right, rather
than the left, so that (2.6) could be written

(3.7) c/d = -4+ CpC1Cq. (p),
and we could choose to write
(3.8) H(p,r,c/d) = €p-1- 1%

However, we shall go along with the current liter-
ature and write the digits in reverse order.

Uniqueness

Theorem 3.4 and Corollary 3.5 clearly imply
that we have infinitely many rational numbers
mapped onto each Hensel code. Hence, unless we can
establish a one-to-one mapping, there is no hope of
mapping a Hensel code onto a unique rational equiv-
alent. (This is the difficulty mentioned in the
introduction which is addressed in this paper.)

We can establish a one-to-one mapping if we
restrict the set of rational numbers to a finite
subset of Q, called the order-N Farey fractions,

(3.9) Fy = {e=a/b: Os|a|sN and 0<bgN},
where N is a positive integer (defined, in our case,
in Theorem 3.11}. Let us define the set H r to be

the set of Hensel codes ﬁ(p,r,a) for the o#ﬁer-N
Farey fractions, that is,

(3.10) .= {H{p,r,a): ae FN}.

H
2%
Then the following theorem is fundamental.

3.11 Theorem Let p be a prime and let r be a
positive integer. Define N to be the largest
positive integer which satisfies the inequality

N < t(p"-1)/21"%,
Then the mapping f : FN + ﬁgr if ons-to-one and
onto and thus has an inverse f = : Hpr + Fy-
Proof See Rao [19]. '
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Under the restriction of Theorem 3.11 to
rational numbers which are order-N Farey fractions,
we now examine the problem of finding the rational
equivalent of a normalized floating-point Hensel
code.

3.12 Remark From this point on the term "Hensel
code" will always refer to a normalized floating-
point Hensel code unless otherwise specified.

4. A simple table look-up procedure

Several methods for mapping Hensel codes onto
their rational equivalents have been pronosed in
the literature; for example, the successive addi-
tion method, the multiplication method and the
common denominator method {157, (19]. In this
section we propose a method which makes use of a
simple table look-up procedure. (A more sophisti-
cated table Took-up procedure is developed in sub-
sequent sections.)

Assume that ae FN, where

(4.1) a=a/b

= (c/d)p",
with (c,d) = (c,p) = {d,p) = 1, and that

(4.2) H(p,r,a) = (m_.e,)

is known. Recall that ea = n and

(4.3) m, = H(p,r,c/d).

Thus, obtaining a/b, given m, and ey is simply a
matter of obtaining ¢ and d.

To obtain c and d, given m,» we examine a

table of fixed-point Hensel codes constructed as

follows. Let
(4.4) D= {il,iz,...,ik}

be a set of integers satisfying the conditions

(4.5) l<i; iy <igi <N
and
(46) (IJ’p) =1, j=1,2,. k.

The k x k array M contains elements Mst’ where

(4.7) Moy = H(p,r‘,is/it).

Given ﬁ(p,r,a) = (ma,ea), where o satisfies (4.1),
we find ¢ and d by comparing m successively with
the elements of the array M in the order

Mll’MIZ’MZI’M13’M22’M31""’Mkk until we find a

match. When a match is found, 15 and it are ¢ and
d.

It is easy to compute the size of the table M.

-The number of integers in the interval [1,N],

which are not multiples of p, is




(4.8) k=N - N/p]

and M contains k2 elements.

Because of the size of this table {the number

of elements is of order NZ) and the fact that the
elements in the table are not ordered (making a
sequential search necessary), this table look-up
procedure is very inefficient and not recommended
in practice. Consequently, in subsequent sections
we develop a more sophisticated table look-up pro-
cedure.

5. The weight of «

In Theorem 3.11 we introduced the one-to-one

and onto mapping f : FN > ﬁp " where, for a ¢ F

N’

(5.1) fla) = H(p,r.a).
We now introduce the mapping g : ﬁp r-+I e where,
R : p
for H(p,r,a) = (.cocl...cr_l,em),
r-1
(5.;) CotCyp+. ..+ 4P n<o
g(H(p,r,a)) = .
n r-
'p (c0+clp+...+cr"1p ) o n> 0,

with e =n.
o

The composition of these two mappings, w = gf,
is the mapping w : FN -1 P where, for « ¢ FN’
p

9(f(a))
glH{p,r,a)).

1

{5.3) w(a)

Thus, we can map the order-N Farey fractions onto
integers in the set I > where it is easy to prove

that w has the following properties.

5.4 Theorem Let o, 8 ¢ Fy- Ifatge FN and
ol € FN’ then
(i) w(a+B) = ]w(u) + w(B)] r
P
(1) wlas) = |w(a) w(s)] .
p

and

(i11) w(-a) = p" - w(a).

5.5 Definition The integer w(a) is called the
weight of «o.

From Theorem 3.1, if c/d ¢ FN with
(c,p) = (d,p) = 1, then
- -1
(5.6) wlc/d) = Jed7t]| .

Also, from (5.2) and (5.3), it is clear that
(5.7) w(c/d) = w(c/b)

for any denominator of the form b = d-pn, with

0 <b <N.

We introduce the set

(5.8) Fy = {a/b e Fy (a,b) = 1 and (b,p) = 1}

which has the property that, if «,8 ¢ FN and o # 8,
then w(a) # w(B).

The relation between w(a), for a ¢ FN’ and its
residue representation is shown in the following

5.9 Theorem If a = a/b = (c/d)p" ¢ Fy» then
-1
la-b r n>0
Y
w(a) =
'a-d'l' r n < 0.
p
Proof
(i) Let n=0. In this casea=cand b = d.
Thus,
wia) = w(c/d)
_ -1
= lc-d ' r
_ -1
= 'a-b Ipr .
(i1) Let n > 0. In this case a = c-p" and
b =d. Thus,
_tn r-1
wla) = Ip (cgteqpr.. .4 P )'p’
N r-1
P e e
Py
P
Pl
Pir
- Rl
= ,a b [pr
(iii) Let n < 0. In this case a = ¢ and
b=dp™". Thus,
w(a/b) = w(asd)
-1
= |a-d - |
P
Observe that the mapping w : FN > 1 r is

one-to-one but it is not onto. However, if we

denote the set of images of EN by
-~

(5.10) T, -

P
is both one-to-one and onto. (See

{wla) : o ¢ FN }

FN > Ipr
Appendices A and B.)

then w :

Maximal sets of Farey fractions

We now show that EN has some interesting
properties and, because of the bijection just stated,
~

these properties apply to I r 28 well.
p




5.11 Theorem If « = a/b e FN, then at least one of
the rational numbers « + 1 or « - 1 is also in FN.
Proof

(a/b) £ 1= (a xb)/b
and

lal,Ibl < N imply
; min (a+b, a-b)} < N.

Ifte i r then at least one of the

5.12 Corollary

p R
integerst + 1 or t - 1 is also in I r

p ~
Consequently, although the set of integers I v is
p
not a set of consecutive integers (i.e., it has some

gaps in it) the integers in I r apoear in groups

of at Teast two consecutive integers (and not as
singles). He now examine how large these groups
can be.

5.13 Definition Let a/b e FN Then the maximal set
of order-N Farey fractions generated by a/b is the .
set

a-b a at+b

a-k.b - a+k b }
F = 2 3 e vy ) s__""’____l___
a,b S;‘75—— D b b b

where k1 and k2 are the Targest integers satisfying

(i) a+ kb <N
and
(1)

The fraction a/b is called a generator for F

la - kobl < N.

a,b’
However, there are other generaters and it is easy
to prove the following

5.14 Theorem Any element of F b can be used as a

generator for F .
a,b

Hence, the followina is needed.

5.15 Definition If a + jb is the least positive
numerator among the elements of Fa b then (a+jb)/b
is called the prime generator for Fa,b'

Using this definition we have the obvious

5.16 Corollary Fa+jb,b = Fa,b'

Incidentally, we can have other maximal sets with
the same denominator b. For example, the set with
prime generator x/b would be written F b’ Unless
otherwise stated, x/y is assumed to be the prime

generator for Fx,y

5.17 Example Let p = 5and r =4, Then N = 17 and
for e = 1/3 we have
Foo.(17 18 185 élﬂ.j’_l'llil_ﬁ}
1,3 3°7 33T RT3 303

We now show that FNis a disjoint union of these

maximal sets. Let D be the set of integers in (4.4)
satisfying (4.5) and (4.6). For each ij e D define

the set of integers

I A J

(5.18) Cj = {kl,cz,...,qn},
where

j b ol
(5.19) l<cyp=c,c< <Gy iy
and
(5.20) (cg,ii) -1, s =1,2,...,m
Clearly, m = ¢(i), where ¢(j) is Fuler's function

representing the number of integers less than j
which are relativelv prime to j.

5.21 Theorem The set FN can be exoressed as

~ ko oo(3) .
Fy = F
=1 m=1 Y
where x = 6 and y = '1, and where
1’V1 R
for all xl/y1 # x2/v2-
Proof
If a/b ¢ FN’ then b = ii for some j. Obviously,
integers g and s exist for which a = bq + 5. Clearly

s <b < Nand (s,b) = 1 because if v divides s and
b, then v divides a which implies v divides both a
Thus, s = c% for some n
b On the other hand, if

then clear]v a/b e F

and b (a contradiction)

which implies a/b ¢ F

a/b e F z.b N

shown that maximal sets are disjoint.
FoofYF 20
X9 XY,

Choose a/b in the intersection and generate the

From (5.14) we deduce that both

Fa,b = F

It remains to be

Suppose

maximal set F .
a,b

*1Y1
and - N
F = F R
a,b Xos¥y
and these imoly that

xl,yl = Xz,.yz

Then

(a contradiction).

5.22 Corollary Let 2 <b < N and (b,n) = 1.

in F
z,b N

Maximal sets of inteaers

the number sets F is exactly o(b).

Let Fa,b

and let Ga,b be the set

be a maximal set of Farey fractions

(5.23) G = {t—kz, PR A0 T A £ O A

a,h




