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A design tool for the decomposition of binary dig-
ital structures for addition and subtraction has
been developed. A simplified theory reduces a
complex structure to a collection of basic struc-
tures of one type, namely, a full adder. The sim-
plified theory is applicable to the design.of par-
allel counters and array multipliers. A general
theory is used for decomposition to three -types

of basic structures, whose complexity is usually
on the order of a half-adder. The general theory
is applicable to redundant array multipliers and
signed-digit adders.

l;vlntroductigg
The purpose of this paper is to describe a

theory of decomposition of complex structures for
addition and subtraction. Some aspects of a sim
plified version of the theory are known, and will
be used as an introduction. The necessary theo~
retical background will then be developed, and
the general theory will be described. Applica-
tions of the theory to parallel counters, array
multipliers, and signed-digit adders are given.

2, Design of a Parallel Counter with 7 Inputs

Consider first the design of a parallel coun-
ter whose inputs consist of seven binary digits
of equal weight and whese outputs are three
weighted binary digits, with weights 4, 2, and 1.
The purpose of the parallel counter is to repre-
sent the number of input "ones'" as a conventional
binary number. The basic building block for a
parallel counter is a binary full adder, which
transforms three bits of equal weight into two
bits, one of weight 2 and one of weight 1. The
design of a 7 bit parallel counter is shown in
Figure 1. 1In the figure
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the binary digit set {0,1} is represented by the
notation aO ;5 a binary full adder is represented

by the expression 2a0+ao + aO+aO+aO ; and the 7-

bit parallel counter in three levels, performs
the operation

4a0+230+a0-+ ao+ao+ao+a0+ao+ao+ao

The input level of the structure consists of two
binary full adders and performs the operation
0, 0
(2a7+a")+(22%a%) +a% « (a%a%%a0)+(204204a0) 0.

The intermediate level (one full adder) then per-
forms

2aO+2aO+(ZaO+aO) + Zao+2ao+(ao+ao+ao)
The output level (one full adder) then performs
(4a0+230)+a0 - (Zao+2a0+2ao)+aO

These algebraic manipulations may be summarized
by the information loss chart of Table 1.

A4 2 1
7 7
5 2 3
4 3 1
3 1 1 1

Table 1. Information Loss Chart For 7-Bit
Parallel Counter

In Table 1, the left column (headed 1) indicates
the information content, or total number of bits,
for the corresponding row. The remaining columns
indicate the number of bits of each weight (indi-
cated by the heading) between successive levels

of the structure. The change in the value of )
between successive rows indicates the number of
full adders used at the corresponding level of the
design of Figure 1. The total cost (in binary

full adders) is A, -x = 7-3, or 4 full adders,
in  out

and can be predicted from the original design spe-
cification. The information loss chart represents
an abbreviated connectivity diagram, equivalent to
the design of Figure 1.

3. Digit Sets

The function of a structure is to transform one
or more input digit sets into one or more output




digit sets in accordance with the rules of arith-
metic. The properties of digit sets are as fol-
lows:
3.1 A (&+1)- valued digit set is a sequence of
§+1 consecutive integers -w, ~wtl..., -w+d.
A digit set is normalized if w = 0. It is
convenient, and sometimes mandatory, to em—
ploy normalized digit sets in the initial
phases of design.

A digit set is symmetric¢ if § is even and

w = g: It follows that for any element x

of a symmetric digit set, -x is also an ele-
ment of the digit set. This property is par-
ticularly useful for subtraction.

The diminished cardinality ¢ of a digit set
is one less than the number of values.

The diminished cardinality is also the lar-
gest value in a normalized digit set.

A digit set is redundant if §>r-1, where r
is the radix.

A composite digit set is a combination of
two or more appropriately weighted digit
sets. For example, an adder output o0 is
usually represented by a carry c and a sum
s, with ¢ = re+s. If the diminished cardi-
nalities of the digit sets of o, ¢ and s are

§ , § and §_  respectively, then § = rd +6 .
g’ ¢ s o ¢ s

If all possible values of o are to be conse-
cutive integers, (and hence conform to the
definition of a digit set) it is necessary
that ds > r-1.

The range of the diminished cardinality of

a digit set is 1 < § < 2(r-1). The lower
limit is essential; the upper limit is ar-
bitrary, but sufficiently large for most
practical purposes. -

The magnitude of the smallest integer of a
digit set is the offset w of the digit set.

A normalized digit set is converted to a
generalized digit set by subtracting the off-
set w from each value of the normalized dig-
it set.

Zero is always an element of a
This implies that the smallest
isfies 0 <w<§.

The negative of a digit set is found by re-
placing each element of the digit set by its
negative. As noted in 3.3, a symmetric dig-
it set is its own negative. More generally
if »' is the offset of rhe negative of a
digit set, then wtw' = §, where w and § are
the offset and diminished cardinality of the
original digit set.

Digit sets will be denored by letters of the
alphabet; the letter a for a digit set of
diminished cardinality 1, b if § = 2, 1 if

§ =9, etc. The offset is designated by a

digit set.
value -w sat-

superscript, thus al is the digit set (0,1},

al is the digit set {1,0}, bl is the digit
set {T,0,1} and iVY is the digit set {0,1,2,
3,4,5,6,7,8,9}.

4. Elementary Structures

The simplest of structures preserve certain

36

essential relationships between input digit sets
and output digit sets, in accordance with the ba-
sic rules of arithmetic. First, the weighted sum
of the diminished cardinalities of the output dig-
it sets is always equal to the sum of the dimin-
ished cardinalities of the input digit sets. For

a binary full adder, 2a0+ao =

dO+a0+aO, where each
digit set ao has a diminished cardinality of 1,
the equation is 2+1 = 1+1+l. This property that
a structure preserves diminished cardinality fol-
lows directly from the basic properties of ad-
dition and subtraction, and is easily proved in
general. It is therefore possible, since the di-
minished cardinalities of a structure are the
same at the input and at the output, to charac-
terize a structure by its diminished cardinality.

Similarly, a basic structure preserves offset.
If z = x+y represents a structure for which z,x,
and y are each elements of normalized digit sets,
then, (z~%) = (x~f)+(y-n) also represents a struc-
ture, where [ = f+n = w, the offset. Thus, offset
is also preserved, and it is proper to character-
ize a structure by its offset.

At this point, the elements of a classification
scheme for structures become apparent; namely,

1) the
2) the

radix r,
diminished cardinality g, and

3) the offset w.
Under the classification r.S8.w, the simplest of
structures may now be listed, using the notation
of 3.11, beginning with structures with offset 0.
0 aO+aO

aO+aO <« bO

2a0+aO < b'+a
b0+a0 « 2a

2a0+a0 + a0+a

aO+a0+aO « 2a

2.2.0 b Generalized half adder

Converter

o

2.3.0 Carry generator

+a  Inverse carry generator

+a  Full adder

o O O
o o © O

+a  Inverse full adder

Use of non-zero values of offset (i.e., digit sets
which are not normalized) is indicated by use of

a non-zero superscript, and introduces structures
for subtraction. Examples are

0,1

2.2.1 b« a%a

2a1+a0 « a1+al+a

Generalized half
subtracter

2.3.2 Full subtracter

An important result, due to Nguyen [12.11], 1is
that the three structures, with their variants,

b + ata Generalized half adder
ata « b Converter
2at+a « b+a Carry generator

are sufficient for the realization of more com-
plex structures for addition and subtraction.

0 0, 0,0

For example, the full adder 22%a" « a%al+a

. . . 0,0
is ~ combination of the carry generator 2a +a +

b0+;0 and the generalized half adder bO <« a0+ao.
An important observation is that since the el-
ementary structures preserve diminished cardi-
nality, then more complex structures to be de-
composed must also preserve diminished cardinality.




Three cases may occur.

1) 6 < 8§, The structure is not realizable
out in

since not all input values can be repre-
sented by the output

2) § = 6, The structure is realizable and
out in
decomposable.

3) 6 > 8, The structure is realizable, but
out in

not decomposable. The structure may be made
decomposable by the addition of mythical in-

puts, such that 6out = din+6myth' The myth-

ical inputs may later be used to simplify
the design.

5. Design of a Parallel Counter with 5 Inputs
. . 0,,.0, 0
For this design, the output is 4a +2a +a s

with 5out = 7, as in section 2, but the input is

)
a0+a0+ao+a0+ac, with Gin = 5. It is therefore

necessary to add an input 2aO with Gmyth = 2.

The information loss chart becomes

A4 2 1
Input 5 5

Mythical Input 1 1
Decomposable Input 6 1 5
5 2 3
4 3 1
301 1 1

Table 2. Information Loss Chart For 5 Bit
Parallel Counter

For this design, three adders are necessary, ex-
cept that the adder used to reduce A from 4 to 3
has one input which is mythical, and hence always
0. Therefore, this adder may be replaced by a
half adder, and the total cost is 2 full adders
and one half adder.

6. Logical Design and Formats for Three-Valued
Digit Sets

For purposes of logical design, it is nec-
essary that the three valued digit set b*in all
its variants b0 = {0,1,2}, bl = {1,0,1}, and
b2 = {Z,1,0}, be represented by two binary digits.
For each variant, there are 72 ways this can be
done, which can be reduced to 9 groups of eight,
called formats, under permutation and negation of
the two binary digits. For brevity, only two
formats will be considered here, as indicated in
Tables 3a, 3b, 4a, and 4b.

bo ao ao bl al 30
0 0 o0 0 0 o0
1 0 1 1 0 1
1 1 0 1 1 0
2 1 1 0 1 1

Table 3. Format 1

*Absence of a superscript indicates the class of
structures including all variants due to changes
in offset values.
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b a a b a a
0 0 0 0 0 o0
1 0 1 1 0 1
2 1 0 DC 1 0
DC 1 1 1 1 1

Table 4. Format 2

2 1
The third variant, b° « al+a , 1s simply the nep-

0, 0
ative of bO < a +a , in each case.

For format 1, the relations bO « ao+ao and

bl hs al+a0 hold, and therefore the converter

and generalized half adder require no hardware
whatsoever. The carry generator 2a+a ~ b+a be-
comes a full adder 2a+a < a+a+a, and, in all its
variants, is the only elementary structure nec-
essary for decomposition. Format 1 is thus the
basis for the examples of parallel counters given
in sections 2 and 5.

For format 2, the generalized half-adder
b « ata becomes a half adder, and the carry gen-—
erator 2a+a = b+a is a half adder with the extra
OR gate needed to complete a full adder. The
converter ata «+ b is a single OR gate. The re-
maining formats, 3 through 9, are either too com-
plicated to merit consideration, or tend to de-
crease the cost of the generalized half adder by
one or two gates at the expense of a corresponding
increase in the cost of the carry generator. Thus
Formats 1 and 2 represent 2 extremes; for format
1, all the hardware is in the carry generator,
for format 2, the costs of the generalized half-
adder and carry generator are roughly equal.

7. The General Theory for all Formats
The information loss chart of section 2 involves
little more than simple bookkeeping. All digit
sets are type a, with diminished cardinality
$ = 1. The weighted sum of the a's is the dimin-
ished cardinality of the structure, and remains
invariant. The unweighted sum of the a's is the
information content. Since the only structure
used is the full adder 2a+a « a+ata, which trans-
forms three type a digit sets of weight 2% into

. k+1
two type a digit sets, one of weight 2 and one

of weight 2k, the use of a full adder results in
the loss of one bit of information, and the total
information loss of the structure is the number
of adders used.

The generalized theory for formats 2 through 9
also involves simple bookkeeping, but is more
complex because type b digit sets, as well as
type a, must be included, and because three types
of structures are used in the decomposition pro-
cess. The type b digit set is arbitrarily as-
sumed to require two bits of information, consis-
tent with conventional binary logical design re-
quirements, and conveniently equal to its dimin-
ished cardinality. For the information loss chart,
it is necessary to 1ist the number of both type
b and type a digit sets of each weight, and to
count the number of a's, designated by a and to
count the number of b's, designated by 8. These
measures are redundant, since A = 2f+a. The in-
formation loss charts for the three elementary




structures are given in Table 5.

2k+l 2k 2k+l Zk 2k+l 21k
b a b a b a b a b a b a
input 0 0 1 1 0 0 0 2 0 0 1 0
output ¢ 1 0 1 0 0 1 0 0 0 0 2
a) carry b) generalized c) converter
generator half-adder
Table 5. Information Loss Chart for the Three

Structural Types

The specifications of a complex structure in-
dicate the information content, the number of
type b digit sets, and the number of type a digit
sets at the input and at the output. These are

i i A . o, and
designated respectively as in’ Bln’ in

B , and a From these parameters, the
o

out’ "out ut’
number of elementary structures necessary may be
partially determined. Consider Table 6, in which

oA = Ain_xout’ b8 = 6in—gout’ and A3 = “in" %ut”
No. A, X a, o 5. B AA Ao AB

in out in out 1in out
atacb X 2 2 0 2 1 0 0 -2 1
b ata y 2 2 2 0 0 1 0 2 -1
2atacb+a z 3 2 1 2 1 0 1 -1 1

Table 6. Analysis of the Fundamental Structural
Types

If a complex structure requires x converters,
y generalized half adders, and z carry generators,
then for the complex structure AX = z,AR = z-(y-x)

and Ac = 2{y-x)-z. Since AX, AR, and Aa are
known, the equations may be solved to the follow-
ing extent: 2 = AX

y-x = AA-AB

y=-x = 1/2(Ax+bm)

Thus, only the difference y-x can be determined,
which is not surprising, since the converter and
generalized half adder perform inverse operations.

Limited design experience indicates that the
relative numbers of the elementary structures
needed are roughly as follows:

1) Conversion from redundant to conventional
form with all outputs type a and all inputs
type b with one type a mythical input: x=y=0,
all structures are carry generators.

2) All outputs type a, all iaputs type a: x=0
y=z

3) All outputs type b, all inputs type b:

(y-x) = 1/2z. Usually, one or two converters
are necessary to make possible the use of
carry generators. Each converter must be
compensated for by a generalized half adder,
and there appears to be a limited tradeoff
between increasing the ‘hardware requirements
and decreasing the speed of operation.

8. Design of a Radix 4 Signed Dipgit Adder

The structure of one digital position of
a radix 4 signed digit adder is shown in Figure
2. The design objective
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g4=4a1+230+a0

<————Imyth=a1

K
4c2=8al+4a0 t --c2=2al+aO
\
l N 1,10

c =2a +a
“‘Imyth=al

,1\
g4=4al+2a0+ao T
g4=4al+230+ao

Fig. 2. Radix 4 Signed Digit Adder

is to reduce two input digit sets of type

3 - {3,2,1,0,1,2,3} to a single output digit set

3 1

of the same type. Since f~ = 2b +bl requires 4

bits for storage, the digit set gA = 4al+2a0+a0,

which requires 3 bits, is used instead. The sum

0,1

input cl = 2a +a~ = {I}O,I,Z} and transfer input

‘ ——
c2 = Zal+a.3 = {2,1,0,1} to the upper level insure

that the value -4 cannot occur at the output. A
mythical input al is necessary for the output
level in order that it will be decomposable.

4c2+cl < g4+g4+al, where al is a

For the input level, which may
0, 1

The

input level is
mythical input.

0

also be expressed as 8a1+430+23}+a = 4al+4al+2a

+22%4+2%4a%4a1 M=Ay -A_  =7-4=3, 48=0, and ha=3,

out
so z=3 carry generators, y-x=3. With x=0, 3 gen-
eralized half adders are required. The mythical
input a- reduces the complexity of one of the
carry generators to a single OR gate for format
2.

The output level performs the transformation

g4 <« cl+c2+al, or 4al+ZaO+aO <+ 2al+2ao+a1+ao+al,
with a~ a mythical input. For this level

AX = 5-3 = 2, AR=0, and Aa=2. Since x=0, 2 carry
generators and two generalized half adders are
needed, with simplifications possible because of
the mythical input a~. The design for both levels
is summarized by Table 7.

8 4 2 1
LEVEL Mo b a b a b a b a Step
N
INPUT  Input 707 22 20 3t N3
beata 731 S U LS L]
2a%+atp0%+at 622 2 1910 1t
2 0 1
2a%4+a% %0 513 1219 19 1t s
2at+a% b2 404 I LR 1i 4
OUTPUT 1Input 404 21 2l
Myth Input 301 1
Decomp Input 505 2t 32
bl-<—a0+a1 521 11 l1 11 5
2at+albltal  4qn it S L
2a1+a0<— b 1+'a1 303 ll 10 10 7
Table 7. Modified signed digit adder for radix 4




Cost factors: x = 0 y = z = 5 Mythical inputs

9. Comparison with Logical Design

For the logical design of the output level of
the signed digit adder of section 8, let cl =240+4

by w and x, let c2 = 231+a0 be re-

and z, let the mythical input al be

= 4al+2ao+ao be repres-
From table 7, the structure

is two full subtracters in cascade, since bl<<-a0+al

and 231+a0 +

0 .
Zal+a <« a0+al+al in both digital positions of

weights 1 and 2, as shown in Figure 3.

il

be represented
presented by y

output g4
and u.

m, and let the
ented by s, t,

bl+-al can be combined to form
y

SUBTRACTER

]
Jj‘"***r

{
LiUBTRACTER

T

t u

Fig. 3. Structure of Upper Level of Table 7.

From the known design expressions for a subtracter,
the logical equations are

4 = Xzv m(xvz) = xz
u=x@z@®m=x@z
s = wy v r{wvy)
t=w@y®r

The simplifications of the expressions for r and
u are due to the fact that the mythical input m
is always zero.

The conventional logical design is summarized
in Figure 4, and leads to the equations:

S =Wy vV xyz viwz N

t=xw®y) vw®Dy Dz

u=x®z

which are equivalent after substitution to elim-
inate r. Note that the procedures of table 7

are not only much simpler than the logical design,
but that they also indicate the internal structure
for the design.
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2121 21
WXy 2z cl+c2 tu y

/\\
0000 0 000 011
0001 1 001 1001 < ®
0010 2 110 {1001})« Rz
0011 1 111 0110
0100 1 111 ~
0101 0 000 2
0110 3 101 ‘U’T)T‘f‘
0111 2 110 lOlOOxt=x(w@y)
1000 2 010 010 1! e
1001 3 011 w{_llooi vl @y @ 2)
1010 0 000 “ry
1011 1 001 A
1100 1 001 001 1] L
1101 2 010 101 l|>x S = Wyvxyz
1110 1 111 /o 00 1 vewz
1111 0o o000 Nigooao

>’

Fig. 4. Logical Design of the Output Level of
Table 7

10. Example of a Signed Digit Adder for Radix
16, 6d=20.

A useful digit set for redundant radix 16 arith-
metic is the digit set with éd = 20 and wy = 1/2
dj = 10. As in the previous example, it is de-
{
sirable to minimize the storage requirfments ffr 1
the digit set. The digit set wll « 8b +4a%425 +a~,
with the capability of & = 23, is employed,  and
the design is such that the values 11, 11, and 12
of the sum cannot occur. The signed digit adder
has two levels. For the input level

16 b1+r9 <« wll+wll+d3, where d3 is a mythical
input.

For the output level

w'Ll « r9+bl+cl, where cl is a mythical input.

For the detailed design:

Operands and sum wll

Transfer bl + ao+a1

< 8bl+4aO+Zal+al

Common digit r9 “ 8a0+/4a1+2b2+bl
Mythical input d3 < Zal+bl
), 1

(
Mythical input cl + 2a +a
The design is presented in the information loss
chart of table 8.




16 8 4 2 1
o bababababaStep

X8
No
Input 10 2 6 22 90 % 2
Myth.Input 31 1 0 llli 2
Decomp. Input13 3 7 22 2V 33112 o
2at+a’bleal1o 2 8 22 20 4h ol g,
pleat+al 12 36 22 201232 5l gy
p%a%a0 12 4 4 22 19 1222 1 4.
2attateb?ealil 3 s 22 1011 22 o1 gy
Input 1 1.0 1143 22 191 2l
Level o 1 2 1 1
2a +a«b +a 10 3 4 210 1+ 22 3a
i
vlealtal 1042 2200 14?2 b oy
22%at 420 9 33 10111k 1?2
2at4alpleal 824 21 10 1% b s
Input 8 2 4 19 14?2 1121
Myth.Input 2 0 2 - 218 5
Decomp. Input 10 2 6 10 1717171 3l 5
2atacbta 8 0 & 19 22 21 3l ¢
OUDNE beara 8 32 1912 1t %1
2a%ateb%4at 7 2 3 1912 110 1t o
2a%atb 4% 6 1 4 191210 1t 1t g
2at+2%b%4a% 5 0 5 G L C T
pratea® 5 13 %t

Cost Factors a)_Input Level: x=0 y=4 2z2=5

Myth Input = 2a1+b b) Output Level: x=0 y=4 z=5
Myth Input = 2a“+a
Table 8. Information Loss Chart for Radix 16

Signed-Digit Adder with 6d=20

The purpose of the example of Table 8 is to in-
dicate the relative ease with which a complex
structure may be decomposed. The total cost of
the two levels of the structure is 10 carry gen-
erators and 8 generalized half adders, without tak-
ing into account the simplifications possible due
to mythical inputs. The conventional logical de-
sign of the structure would have 10 binary inputs
and 8 outputs for the input level, and 8 binary
inputs and 5 outputs for the output level, and
would give no indication of the internal connec-
tivity.

11. Conclusions

This paper summarizes the theoretical background
for a procedure for the decomposition of complex
structures for binary addition and subtraction into
a limited number of variants of elementary struc-
tures. The theory is presented here in terms of
its simplest form, and relies on the use of two
valued type a digit sets and three valued type b
digit sets for binary arithmetic. An unexpected
result, useful for higher radix structures (with
r=2k, and k an integer), is that there exists a
uaique representation for digit sets of higher
diminished cardinality, as a weighted combination
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of type a and type b digit sets. For a given di-
minished cardinality &, the representation is
easily found by a procedure similar to decimal to
binary conversion, except that remainders of 1 or
2 are found at each step. For example, if §=49,
the representation is found by the procedure of
Table 9.

2 )49
2)24 1
2511 2
2)5 1
2)2 1
0 2

Table 9. Representation of digit set with §=49

The pattern of remainders indicates the use of a's
and b's; least significant weight first, so the
representation for §=49 is 16b+8a+tba+2bta. Des-
ignations and the corresponding unique represen-
tation for 6<32 are given in Appendix T.

Only structures of diminished cardinality 2
and 3 are considered as elementary structures here.
The theory can accommodate other elementary struc-
tures, such as, for example, 2a+b¢b+b, with &§=4.
For brevity, little attention has been given to
the use of offset. A topic for future investi-
gation is the development, if possible, of pro-
cedures of introducing offset in a manner that
will reduce the number of variants necessary.

For brevity, detailed logical designs are not
included here, but are found in Reference 12.10
in the bibliography. A companion paper (Reference
12.11) extends the theory to odd radices and binary
multiples of odd radices, with emphasis on radix
10.
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Designation § representation bits
a 1l a 1
b 2 b 2
c 3 2a+a 2
d 4 2atb 3
e 5 2b+a 3
f 6 2b+b 4
g 7 batlata 3
h 8 4at2atb 4
i 9 4at2b+a 4
i 10  4a+2b+b 5
k 11  4b+2a+a 4
1 12 4b+2a+bd 5
m 13 4b+2b+a 5
n 14 4b+2b+h 6
o 15 8at4atlata 4
P 16 8a+b4a+la+tb 5
q 17 8a+4a+2b+a 5
r 18 8a+4a+2b+b 6
s 19 8a+4b+2ata 5
t 20  Ba+4b+2atb 6
u 21 8a+4b+2b+a 6
v 22  8a+4b+2b+b 7
w 23 8bt4atlata 5
x 24  8b+4at+lath 6
y 25 8b+4atlb+a 6
z 26 8b+4a+lbtb 7
A 27 8b+4b+Zata 6
B 28 8b+4b+Zatb 7
C 29 8b+4b+2b+a 7
D 30 8b+4b+2b+b 8
E 31 l6a+8at4at+2a+ta 5

Appendix I. Binary representation of Digit
Sets of Higher Cardinality.
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