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Abstract

We present a case study of the application of
recently evolved structured VLSI design methodolo.-
gies to the design and implementation of a simple
VLSI quasi-serial inner product machine.

1. Introduction

The recent introduction of structured VLSI
design methodologies, such as the Mead and Conway
discipline [1], has made VLSI implementation
available to a much larger group of digital
designers. In particular, the effective decou-
pling of architecture and fabrication inherent in
these disciplines makes feasible the low-volume
production of special-purpose chips for applica-
tion in research and university environments. The
advantages to the arithmetic designer of being
able to design, build, and benchmark a large,
novel or application-directed design are signifi-
cant.

As an example of the design process involved,
this paper presents a case study of the implemen-
tation of a simple VLSI inner product machine.
The inner product chip was designed by the authors
as part of a course project for a VLSI design
class, first offered in the fall of 1980 at the
University of Michigan. We will discuss the
design process starting with an initial set of
specifications, and then describe the top-down
descent through three design nierarchies: arith-
metic design, register-transfer design, and VLSI
mask design.

2. Specifications

The original choice to implement the inner
product function arose both from its utility as a
fundamental buiding block, anc from experience in
using it in some high-speed lriage reconstruction
applications [21,{3]. After +this initial selec-
tion, the two constraints mcast influencing the
specification process were (1) the fact that this
was our first fabrication run, and (2) the res-
tricted time frame (about 6 weeks) 1in which to
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complete the design. Accordingly, we adopted a
conservative approach to the entire project. The
following sections describe some of the relevant
constraints considered in arriving at the set of
specifications shown in Table 1.

Table |, Chip Specifications H
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Inputs: Ai' Bi’ 8-bit 2's compl. integers

Output: P, 16-bit 2's complement integer

Structure: 2's complement quasi-serial
multiply/add

Timing: Externally supplied counter

2.1. Basic Operation

Given two vectors ﬁ:(A|'A°“"'AN) and
B=(B,B,,...,B), we wish 5 compufe their inner
product™P, where

N

Pz SAB. .
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The inner product chip has two irputs, A and B,

and one output P. The chip iz initialized by set-

ting P=0. When two inputs A and B are presented
at the A and B inputs, the chip performs the com-
putation P <~ P + A B . P is always available as
an output after this operation, i.e., P is a par-

tial inner product.

2.2. Operand Length

Maximal operand length was an initial qcal;
unfortunately, simplicity required the assignment

of a unique bonding pad to each operand Uit ‘o
avoid any time multiplexing ¢f the pins on the in-
tegrated circuit péckage. Because of the practi-

cal limitation of having at most a 40 pin package,
we chose to use 8 bit integer operands. This com-
mitted at least (8+8+2x8)=32 pins of the chip to
operand I/0 and left a few for control signals.,




2.3. Operanq Sign

We resolved at an early stage to use two's
complement operands—-if at all possible. The
relevant problem here was to find an arithmetic
structure with low encugh circuit complexity to be
implementable in our time frame.

2.4. Arithmetic Structure

We considered a broad spectrum of available,
realizable structures, ranging from fast, paral-
lel, combinational-array multiplier/adders to the
more mundane shift/add approaches, However, be-
Cause our primary goal was to obtain a rapidly im-
plementable design, and not necessarily to meet
any arbitrary speed criteria, we immediately ruled
out the more hardware intensive parallel struc-
tures. Of the remaining sequential approaches, it
was essential to choose a structure that handled
signed operands without Several special cases or
end effects; i.e., we needed 3 datapath that was
easy to contrel. We chose a structure based on a
two's complement quasi-serial multiplier [4]
which, because of its uniform handling of signed
operands, and its decision-free control-path, fit
well with our requirements and our time frame.

2.5. System Controller

From the previous requirement for a simply
controlled datapath, we posed the following que s~
tion: do we really need a controller on the chip?
The Mead and Conway methodology advocated the use
of PLA-based finite state machines as system con-
trollers. Although this approach was attractive
because it was conceptually straightforward and
cleanly implemented, we chose not to put a con-
troller on the chip; control timing will be sup-
plied externally by the user. We did this for the
follewing two reasons:

(1) The quasi-serial structure requires only a
counter for its control, thus it is not in-
convenient for the user to supply the timing

signals.
(2) Counters tend to require notoriously large
PLA's. Hence, rather than spend time on some

clever alternate structure (e.g., an FIR
filter implemented with shift register feed-
back [5]), and becaise of some serious con-
cern about the silicon area available to this
project, we decided to omit it entirely,

The only disadvantage of this decision was
that the inclusion of overflow bits in the result,
i.e., the extension of the length of the sum P
beyond the 16 Ltits of each product A_B., required
the user to supply some awkward timing signals.
Because these extra bits were not essential to a
prototype chip such as ours, they were omitted.

3. Arithmetic Design Level

For the first level of the design hierarchy,
we Will consider the algerithmic basis of the ar-
ithmetic chosen to implement our previously speci-
fied inner product function. The central algo-
rithm of this section, <quasi-serial multiplica-
mion wee First developed by Swartzlander [6] for
‘rg.-agnivude operands, and was later extended to
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the two's complement case by McDonald and Guha
[4]. High-speed, parallel inner product implemen-
tations based on the use of N sign-magnitude
quasi-serial multipliers for N-element operand
vectors have been previously considered {71. our
low-speed design uses only a single two's comple-
ment quasi-serial multiplier and processes the N
pairs of input elements in two operand vectors in
N sequential multiply/add steps. We first briefly
review the development of the two's complement
quasi-serial multiplication algorithm presented in
[4], and then show that the extension to an inner
product algorithm is trivial,

Consider two n-bit two's complement numbers A
and B where

A=oa 2™h sy Sl
n-1 . i
i=0
n-1 n-2
B = -b 27 4 s ot
n-| o 1
i=0

Let P be the 2n-bit product AB. By simple sign ex-
tension, increase the length of A to k bits, where
kK > 2n; call this longer version &', If we let
P' = A'B, then obviously P' = p; i.e., the 1lower
2n bits of the two's complement representation of
P! are identically the bits of P. After multiply-
ing the expressions for A' and B and rearranging
we find that

n-2 Kl si k-2 n-2 iad
Plz-a 202" 5 5 ajb 2™ ()
“liso i=0 j=0 T J
k-2
n-| K~1 i
-2 (—ak_lbn_lz + igoaibn_lz ).

Recognizing that we are really interested in P
means that we can omjt Fny terms in P! involving
powers of 2 beyond 2°7°7, Thus, because k > 2n,
the first term of (1) can be omitted entirely, and
the double sum can be simplified to

2 2

2 (2)
j=0 1i=0

If we now complement the parenthesized part of the
last term in (1), we may replace the subtraction
of that term with the addition of

k-2

k-1 + 3ab_ 2t 4D

120 i n-|

N1, - .
20 e b 2

which, after the omission of unwanted higher order
terms, simplifies to

L n-1{4i
.2 aibn--l2
iz0

Ne |

+ 2 (3)

Thus, the 2n-bit product P can be computed from
(2) and (3) as

n-2 2n-i-j i n
b3 3 aibjzJ+ + 3ab 2
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Figure |. Bit mMatrixz fov

This implies that, for exazmple in the desired
case n=8, the rows of the bit matrix in Figure |
sum to P. Note, however, that this simple example
shows that we may rewrite (4) to index down the
columns of the associated matrix:

2n-1 n-| 5
P=14+ 3 b3 (ai”.*b.)z (5}
i=0 j=0 J
where
a.b i £ n-l|
i
a;* =¢
a.b i = n=l
i
a n < i
n-1 -
a, =< a, in A 0<i<n
i i
0 i <o,
This new column-sequential formulation is the

basis of quasi-serial multiplication. If we let s,
be the sum of the ith column associated with (4),
then we have

n-1
S, = F a, .%h,
i 320 i-j
and (5) simplifies finally to
2n-1 i
P=1t| 4+ 3 s8.2. (6)

i=0 .

If the product P is represented as

2n-2
22n—| + 3 p.21,

iz0 *
then algorithm MPY computes P <- AB from (6).
Note that the variable "carries" accounts for the
fact that column-sum s, may exceed one bit and
carry over into higher ‘order columns. It is ini-
tialized to | to account for the (1 + ...) in (6).

= -p2n—\
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MPY: DO
carries <- !
DO FOR 1 = 0 TC 2n--1
compute s,
p. <~ (s, + carries) mod 2
carries - (sj + carries - pi)/2
END
END

The extension of MPY to an inner product al-
gorithm 1is immediate. If we wish to compute
P <~ P + AB we simply include the bit Py of P in
the addition step for column-sum s,; i.e., P is
included as another row in the matrix of Figure 1.
Algorithm IP shows this minor extension.

IP: DO
carries <~ |
DO FOR i = 0 TO 2n-1|
cgmpute S,
p, <- (s, + carries + p,) mod ?
carries+ - (Si + carries + p. - pI)/Z
Pi <- Pi
END
END

Substitution of n=8 into algorithm IP formal-
ly defines the arithmetic used in our inner pro-
duct realization.

4. Register-Transfer Design

Our goal at this level of the design hierar-
chy was to translate algorithm IP, derived previ-
ously, into a set of registers, logic elements,
and timing signals. As shown in [4], the quasi-
serial formulation of (6) has a simple realization
with shift registers, gates, and adders; a block
diagram is shown in Figure 2. The key point is the
arrangement of shift registers and gates at the
far left of Fig. 2. After A and B are loaded into
the appropriate registers with the orientations
shown, each right shift of the A register produces
at the outputs of the NAND/AND gates the consti-
tuent bits of one column of the matrix of Fig. 1
in particular, the sum of these gate outputs after
the ith shift is precisely Sy

However, the right side of Fig.

previously described

2 differs
slightly from designs in
which sy is computed with a parallel counter (8],
and the add/shift inner 1loop of algorithm MPY is
implemented with an auxiliary register and fast
adder. Our design uses a single, minimum-size
adder tree to produce both one bit of P, the inner
product being updated, and carries into the higher
order columns of the bit matrix associated with
the multiplication. (Actually, we have deviated
slightly from algorithm IP in that carries are
separated into two components: carries resulting
from s,, and a single carry from adding the newly
formed” product bit to the corresponding bit in the
inner product P).

The main result of this phase of the design
was an APL based register-transfer simulation of
the structure in Fig. 2 which, assuming idealized
timing, verified the functional correctness of the




implementation.

Unfortunately, real timing is not so ideal-

ized. The Mead and Conway methodology recommends
the use of a two-phase, non-overlapping c¢locking
scheme. This approach eliminates many potential

pitfalls, but must still be handled cautiously.
One general caution arises because, unlike the in-
nocuous black-box registers of Figure 2, real re-
gisters can be complex entities composed of
several subunits. Further, a design decision was
made to minimize the number of different "com-
ponent" types by using just a single shift-
register type to realize all required registers.
These constraints forced us to evaluate in detail
the design of any propcsed clocking scheme. We at—
tempted to answer the following two questiors:

(1) Was the restriction to one register type
feasible? Would it be easier just to design
several different registers?

(2) What were the timing/synchronization problems
introduced by the use of shift registers in
the feedback paths to the adder in the imple-

mentation of Figure 27

Our solution to these problems was to write
an APL based timing simulator in which each regis-
ter was represented as a composite of logic-gates
and ideal-switches (e.g., 1inverters and pass
transistors); the combinational logic of the adder
tree was simulated at a high level to avoid
unwanted detail, The results of this exercise
showed that (1) no single register type would suf-
fice, but two similar register types would work
adequately, and (2) successful two-phase timing
could be designed to accommodate the restricted
register types and still avoid any synchronization
problems. Thus, at least for idealized two--phase
timing, we validated our register-transfer design.

5. VLSI Mask Design

Armed with the results of the register-
transfer simulators, we were now ready to confront
the final task of the project: the creation of a
program in CalTech Intermediate Form (CIF) [1] to
describe the masks necessary to fabricate the fi-
nal VLSI chip. Much to the credit of the Mead and
Conway approact, the transition from dealing with
register-transfer building-blocks to transistors
was quite painless; we simply learned a small set
of design rules and some general structures for a
transistor, a gate, a register, etc. With a little
practice (and owing much to the pattern recogni-
tion capabilities of humans) design at the VLSI
mask level became more and more manageable.

Writing the CIF program was approached in a
top~-down form like any other programming project.
Roughly speaking, we divided the problem into
several subproblems, wrote a subroutine to handle
each, and then wrote a ma.n program to connect the
partial results together. Because CIF deals with

geometric primitives 1like boxes and polygons,
these "subroutines" turn out to be the mask
descriptions of the register transfer building

blocks, e.g., registers and adders. In CIF, these
are called symbols or cells; they can be defined
once and then copied to all the physical locations
on the chip at which they may be required. The
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"main" program locates all symbols and provides
code for how to connect them together.

Much to our delight, our conservative design
required only nine symbols (excluding 1/0 pads
supplied in a symbol library [9]). oOf these, only
three were designed from scratch; the remaining
six were all registers isomorphic to one of the
two types verified by the timing simulator of sec—
tion 4. Of all symbols, the largest and most com-
plex was the carry-save adder. It used an I§
transistor implementation of the logic equations

C = AB + (A + B)C,
o i

S = CO(A + B + Ci) + ABCi.

Measured in the normalized CIF
adder was 90A x 255\ which is large in comparison
to the rest of the chip; this was the result of
very conservative electrical design for 1large
drive capability, Actually, the value A= Up
chosen for all projects in the fabrication run was
itself conservative. Our minimum feature size
will be 8p as compared with the more typical 3-4p
for NMOS in commerc:ial implementations.

With all cells designed, the final step in
the design process was to complete a hand-layout
for the entire chip, and then complete the CIF
code to realize that layout. By layout we mean de-
ciding exactly where all symbols are located and
how they are connected. This required primarily
patience, a modicum of cleverness for cell place-~
ment and routing, and an extravagant amount of
graph paper. Coding in CIF proved straightforward
although arduous. The reason is that CIF is a low
level mask specification: it deals extensively
with absolute coordinates on the chip, and with
simple geometric constructs. Writing CIF is rem-
iniscent of Wwriting machine language; unfortunate-
ly, it is analagously tedius to read, write and
debug. Lacking interactive design aids, (e.g.,
graphics) our approach was to translate the entire
layout into CIF, and then debug with the aid of
checkplots generated from the CIF. After about
six passes through the debug/plot cycle, we con-
verged to a final design. The final chip measured
110CX x 1280A which translates to 4.4mm x 5, i2mm.
The layout is shown, along with a general floor-
plan, in Figure 3, Table 2 sums up some of the
pertinent statistics relating to this phase of
this design.

units of A, the

We should mention in closing that the use of
design-rule check and static-check software [10]
and an MOS logic simulator [11] developed at MIT
proved useful in diagnosing possibly harmful
design-rule violations and connectivity problems
in the individual cells and in the entire design.

6. Conclusions
=2+ xoficlusions

We have presented a case study of the imple-
mentation of a simple VLSI inner product machine,
The basic goals for the project were

cn

to implement a function of moderate complexi-
ty;

(2) to complete the design rapidly;




(3)

We hope that we have
structured methodology such as
Conway, one can quickly and
nontrivial systems.

to produce a simple VLSI implementation.

demonstrated that, with a
that of Mead and
effectively design

] Table 2. Vital Statistics H
1 1
| Process: NMOS, A = 4p i
i i
| Size: 1100 x 1280 = L.4mm x 5. 2mm |
i 1
| Pinout: 38 pads -- AO-A7, BO-B7 inputs; |
i PO-P |15 outputs; '
H MCLR, LD control; i
1 é1, #2 timing; i
! VDD, GND power. ;
i i
| Cells: 40 registers i
i 38 pads i
i 9 gates i
] 8 adders 1
i 2 misc. i
1 1
1 ]
{ Active 503 transistors, i
| Devices: 403 circuit nodes i
1 ]
] i
{ Design i
! Time: 5-6 man-weeks |

The potential impact of such a methodology on
the implementation of computer arithmetic is sig-
nificant. Consider, for instanze, the ability to
design a large arithmetic structure with VLSI com-
ponents that fit naturally and precisely into the
designer's hierarchical view of the system. VLSI
may unburden designers from the constraints and
compromises that often arise from the unavailabil-
ity of highly specialized off-the-shelf com-
ponents, We feel that the application of VLSI
technology to arithmetic problems per se merits
further study. Indeed, shortly after we completed
the mask designs for this project, Mead reported
on similar bit-serial approaches to inner products
for VLSI [12].

At the time of this writing, our design 1is
being delivered to Gereral Motors Research Labora-
tories for fabrication using an electron-beam mask
generator. We are confident that we can correct
any errors found in the prototynes to be returned
to us later this year. We believe that larger
operands, perhaps l16-bits, could also be accommo-
dated using a quasi-serial structure, an appropri-
ately scaled-down A, and some pin multiplexing.

We would like to thank Professor R. J. Lomax
for his tireless efforts in support of this pro-

Ject. We greatly appreciate the cooperation and
generosity of General Motors Research Labora-
tories, and in particular we wish to thank E. F.

Weller Jr., and J. W. Hile for their support.
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Figure 3. (a) VLSI Mask from CIF Specification, (b) General Chip Floor-plan
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