COMPATIBLE HARDWARE FOR DIVISION AND SQUARE ROOT !

George S. Taylor

Computer Science Division
University of California
Berkeley, California 84720

ABSTRACT

Hardware for radix four division and radix two
square foot is shared in a processor designed to imple-
ment the proposed IEEE floating-point standard. The
division hardware looks ahead to find the next quotient
digit in parallel with the next pertiai remainder. An 8-bit
ALU estimates the next remainder's leading bits. The
quotient digit look-up table is addressed with a trunca-
tion of the estimate rather than a truncation of the full
partial remainder. The estimation ALU and the look-up
table are asymmetric for positive and negative
remainders. This asymmetry reduces the width of the
ALU and the number of minterms in ‘the logic equations
for the look-up table. The square root algorithm obtains
the correctly rounded result in about two division times
using small extensions to the division hardware.

Introduction

An IEEE Computer Society working group has
recommended a standard for binary floating-point arith-
metic based on the proposal by Kahan, Coonen and Stone
[1][2]). To investigate the feasibility of the KCS architec-
ture, we are building a substitute. floating-point accelera-
tor for the DEC VAX 11/780 minicomputer [3]. The pro-
posed standard requires that an implementation provide
correctly rounded quotients and square roots. We found
that radix four division hardware provides high speed at
reasonable cost and, as a by-product, accommodates
square root with minor extensions. This paper describes
the algorithms and hardware for both operations.

Antecedents

We use nonrestoring division with redundant quo-
tient digits and an irredundant partial remainder. Selec-
tion of another digit is overlapped with calculation of a
partial remainder using the current digit. The theory
and general implementation of higher radix nonrestoring
division are explained by Atkins [4][5][6], based on the
work of Robertson [7]. The Illiac Il was an early machine
which selected quotient digits using truncations of the
divisor and partial remainder [8]. Tan reports [8] that
certain IBM processors use a short precision ALU to esti-
mate the next remainder. Quotient selection which is
overlapped with the full width remainder iteration in this
way is classified as QS2 by Kalaycioglu {10]. Baron's
study [11] of several division schemes includes a radix
four method similar to ours, but she recommends more
redundancy in the quotient digit representation than we
found to be optimal.

! This work was supported by the U. S. Department of Energy
under comtract DE-AT03-78SF00034, project eagreement DE-AS03-
78ER10358, and by the National Science Foundation under grant
MCS78-07291. The author was wupported by an NSF Graduate Fellow-
ship.

CH1630-3/81/0000/0127$00.75 © 1981 |EEE

127

Design Overview

Our division and square root board contains 150 ICs.
Division is limited to a single board because of con-
straints on the size of the entire accelerator and the
difficulty of passing wide operands between boards. 85
ICs on the addition/subtraction board also support the
division operation. All parts are Schottky TTL except
three programmable array logic (PAL?) packages which
implement the quotient digit look-up table.

The accelerator supports three floating-point for-
mats: single, double and (double) extended, with
significand widths of 24, 53 and 64 bits, respectively. We
use the term significand rather than fraction as a rem-
inder that the significant digit fleld of normalized
numbers in all formats has one bit to the left of the
binary point. Single and double precision significands
are left justified with zero fill before reaching the division
board, so its data paths are designed for 84-bit operands.
The operands are positive numbers because KCS uses
sign-magnitude representation.

Internal data paths and functional units are slightly
wider than the operands. Quotients in all formats are
developed with three more bits than the operands have
in order to allow unbiased rounding with an error <}
ULP (unit in the last place), as KCS requires. The three
bits are called Guard, Round and Sticky. The Guard bit
is used if the quotient is normalized by one bit before
rounding, the maximum normalization that KCS permits.
The Sticky bit is equal to zero only if the result is exact,
i.e:, all subsequent bits in an infinite precision result
would be zero. Square roots have two more bits, Round
and Sticky, than the operand because there is no need
for normalization. The results are rounded after they
leave the division board.

Register to register operation times are given in
Table 1. Our division iteration produces twice as many
bits per cycle, but has the same cycle time as the origi-
nal VAX accelerator. The inner loop accounts for about

'two-thirds of the time in each instruction.

Table 1. -- Accelerator Instruction Times (wsec)
Instruction Berkeley VAX
Divide -- single 2.8 4.2
Divide -- double 4.8 8.8
Divide -- extended 5.8 -
Square root -- single 4.2 -
Square root -- double 7.8 —
Square root -- extended 9.2 —-

* PAL is & trademark of Monolithic Memories.

The VAX 11/780 microinstruction cycle time is 200 Radix Four
ns, with minor cycles at 50 ns intervals, For this reason, ¥We had more board space available than the sim-
our inner loop times had to be 50, 100 or 200 ns. The plest radix two restoring ;ii,vision scheme requires. The
87-bit ALU in the main partial remainder data path takes original VAX accelerator produced one quotient bit per
84 ns because we use small 745381 parts. This lead us to 100 ns by this method. We wished to make division faster
demgn‘ simple data. paths in order to achieve a 10_0 ns in order to keep it in balance with addition and multipli-
step time. T.hf' ficroprogrammer can request _e1t.h.er cation. Radix two with a redundant partial remainder
one or two division or sguare root steps per microin- and carry save addition could run at less than 100 ns per
struction cycle. cycle, but the hardware cost would be substantial and

The hardware necessary for division alone is shown square root could not be accommodated easily. Radix
in Figure 1, while that for square root alone is shown in four at 100 ns per cycle provides equal or better perfor-
Figure 2. Shared functional units and data paths are mance at lower cost. Higher radix methods were unat-
readily identified. Some smail data paths which ease the tractive because they required divisor multiples which
tasks of loading the operands and generating the Sticky could not be generated merely by shifting. Radix four
bit are not included. can be implemented with a two-input ALU and and a

two-input muitiplexer in front of the divisor register,
Division instead of functional units with three or more inputs as
The division procedure was chosen through a series the higher radix methods would require.
of decisions: ¥Ye use a nonrestoring method rather than a restor-
{1) the radix — four ing one so that the remainder iteration requires only a
() divisor multiples -- one and two, but not three single data path and no backtracking. Backtracking
(3) parallelism -- overlapped quotient and remainder would waste the gain made through lookahead quotient
{(4) width of remainder estimate -- eight bits digit selection. The cost is that negative gquotient digits
{5} estimation ALU operation -- asymmetric must be combined in an ALU with the ones previously
The choices made imply that the quotient selection logic accumujated. Due to the low degree of redundancy in
must observe seven remainder bits and four divisor bits our guotient digit representation, this ALU must be the
{one known implicitly). Table 2 is a P/D plot of the logie, full width of the quotient rather than the width of one
where g, (to be defined later) plays the role of the par- quotient digit. Since the ALU on the accelerator’s addi-
tial remainder. The choices are explained next. tion board can be shared for this purpose, the division

board contains only one full precision ALU.

o ESTIMATED NEXT REMANDER T (4o’ complement)
=3 °‘.°.‘.0_‘.9‘0.—.9't°.f.°.“;°.‘.9~.°.“.°.“.
3 SS::SS;;ES::SS;;SS::SSSS
Y oo I __"_ZC C OO VO —— — —
N | —_— - — - —_ T - 00 OO OO SO OO
o=
l,000 'l’l’lA'.l‘l@Gl 1lal]2]2
1,00 221206 1lelol i1 claial2
1,010 2 2aiiolelela i1 2121213
DIVISOR —* 2l 2[s A1 b elel 1]t]1]2]aTaT2
g 1100 2212 1aleleloleliliclalalal
1,101 '2'.‘1‘2’2"2'1'1’102’5@0111222.‘2‘.’2
(rosi*‘fve) [, 110 22ralal2fe [l 1lalelelololili 1|2 2] 22 2
R Aaaarariaraiislelelol i 111212121212
Girz
A “(2- 42+ 41)
g = (2-92)
C j_-‘-:;l
D ‘(l—jZ)
E 52
TABLE 2 — P/D FLOT FOR QUOTIENT SELECTION LOGIC

128

SHLVd Vivd 1008 34vNOS-2 34N9I4 SH1Vd V1va NOISIAIG- 1 3¥N9I4

- sne viva . ﬂ sne viva -
vo ¥ ANDILS ono 29 AAILS
, vok W3y s }
100¥ J¥VNOS 69
1INS3¥ LOOM 3¥VNOS muqm N
2 d4a
1 ua 99 wwv
Ss ¥ 93N _i S0d
h“ 1X o1} lexlix jou3z
VvV V VVVV - , p
XNW XNW 72 1430
. == y
|
/
§9, RN I — 91901 0Nd &
_ L 2
£9 2V ok
A 1 ox ! S9 Fox a3uim
| pltip : -
ANVY¥3d0 HO0S e HY 7 i) 4 QY32 2 HY
| 7
avol ! S9yd
“1 .F._m_mm“ ! |
OKUN m H _ _ \\Q \\0
2 ¥ o Y K¢ ﬂ.u_ I |
L ANOILS |
\ 8 v [!
8-y 1/'\ o — —] . L.
Nnava , 8—-v
1107 g+v
y
Y

A square root algorithm shifts its remainder by
twice the number of result bits found per iteration. A
division algorithm, by contrast, shifts its remainder by
the same number of bits as are generated during the
cycle. Division and square root hardware can be merged
if twice as many bits are produced per division step as
per square root step. Thus radix four division hardware
has the advantage of convenient reuse for square root.

Redundancy and Simple Divisor Multiples

A redundant quotient, digit representation permits
lookahead logic to select the next digit before the full
precision next remainder is determined. For maximum
redundancy in radix four, quotient digits could be
selected from a set containing up to seven values: {-3, -2,
-1, 0, 1, 2, 3}. Because the multiple of three times the
divisor would be costly to generate, quotient digits are
selected instead from the set {-2, -1, 0, 1, 2{. The cost is
more complicated quotient selection hardware, but pro-
grammable logic limits the increase to a few ICs.

Parallelism

In the algorithm's inner loop, a quotient digit is
selected and that multiple of the divisor is subtracted
from the shifted previous remainder. Using notation
suggested by Atkins and Kalaycioglu [12],

-:—p“,, =p - gqud fori=0,..m-1 (1a)

where

p, = partial remainder after ithiteration
P = dividend

radix = 4

r
g¢ = ith quotient digit
d

m is the number of radix r digits in @,,, the last quotient
before rounding. @, has the form g¢,.qy- - ' gm, with
the binary point between ¢, and gz :

divisor

In a logical sense, the quotient is accumulated dur-
ing the iteration by resolving the negative quotient
digits. Using @ for the partial quotient after the ith
iteration,

"1',"Q|+1 =@ + g (1b)

where @; = 0. An equivalent procedure saves hardware
in our design. The positive and negative g;'s are held in
separate shift registers. At the end of the iteration, the
negative register is subtracted from the positive one.

It is not possible first to select 94+, 8nd then carry
out equation (1a) in 100 ns. If q,,, were known immedi-
ately, the worst case delay to form the next full-width
remainder would be:

Read g,,, from flip-flop QFF 9 ns

Select gy,,d through MUX 1B ns
Add or subtract in DALU 64 ns
Setup time for py,, in RR 5 ns
Total

98 ns

%

In order to know gy, at the beginning of a cycle, it is cal-
culated in parallel during the previous one. The GALU in
Figure 1 uses truncations of p; and gi¢+1 to guess quickly
the leading bits of p;,;. Then the guotient digit logic
equations are evaluated using the guess. For later refer-
ence, define p; and g¢+1@ as the truncated inputs to

GALU, and -’lj-g‘ﬂ as its output. The quotient selection

table is addressed with the leading bits of g,,, and d,
which we denote by g;,, and d. pg,,, is not a truncation
of p(+y1. since it may differ by one unit in its last place
from the corresponding bits of p,,,.

The worst case delay around the selection loop is:

Read gy,, from flip-flop QFF 9 ns
Select g;,,d through MUX 18 ns
Add or subtract in GALU 35 ns
Prediction logic 30 ns

Setup time for g;,, flip-flop QFF 3 ns

Total 95 ns

The Algorithm

Before examining the guess ALU in more detail, we
need to explain the division algorithm. The significands
of the initial division operands lie in the range

' 0 < dividend py < 2 (2)
1< divisor d <2 (3)

because the divisor must be normalized. The partial
remainders p; are two's complement, while the divisor d
is always positive.

After step i,

2 1 2
- 3%S SPas od (4)

Consequently, at the beginning of the next step, after
T Pin has been shitted left to multiply by r,

8
- Basp= Ba ®

Pi+1 can be driven back into the interval of equation (4)
by the appropriate subtraction or addition of zero, d or
2d. The process is illustrated in Figure 3.

Piu /D

2 77

P+

/ e ‘ P%
.Z- ‘

.;: .. >

<—--$=0~> <

"——;:"1 -——»l

g 1>

FIGURE 3 — DIVISION ALGORITHM

The setup step for the algorithm selects g, which is
used in the first iteration to move the dividend from the
range of equation (2) into the range of equation (4).
Since the dividend is strictly less than 2d, ultimately 7,
contributes one bit to quotient @n rather than two. If
g; = 2, then p, will be negative and the adjustment to @,
during the second iteration of equation (1b) will be sub-
traction. Consequently, @m has an odd number of
significant bits.

8-bit Next Remainder Prediction ALU

The guess ALU's width is chosen to satisfy the
conflicting demands of high speed and simple quotient
selection logic. Meeting an 8-bit boundary is desirable
for design with 4-bit ALU slices. To determine the
minimum reasonable width, we contruct a table for the
quotient selection logic. Inspection shows that five
remainder bits and three divisor bits (plus the first bit
which is always one) are enough to determine gy4+2 €XCEpPL
in a few cases. Table 3 shows our quotient selection logic
organized by these eight bits. In the exceptional cases,
either one or two more bits of g, ; must be observed.

The fifth and sixth columns of Table 3 contain the
Pivy
d

bounds on which can be set by observing the bits of

gi+; and d shown in columns two and four. J¢+2 CBN be
selected only if the miné.mum and the maximum ratios in

>
a given row are within - units of the same integer. The

bounds depend on the r:alation:ship between g,,, and p,,,.
The GALU's inputs are truncations of the main ALU's
inputs.

lgend]| = {gesd chopped] = [gead] + (-1,0] (6)
P¢ = p, chopped = P+ (-1,0] (7

where the intervals are in units of the least significant
bit of GALU. Depending on the sign of Qi+1, the GALU per-
forms

g —_—
o= Aot el ®)
Case +:
git1 _ Pin _
;= o+ (-2.0] (9a)
Case —:
el = Pl , (1,1)if GALU performs A-B, but (9b)
Fivy _ Pisa .
5= 5t (-2,0) if GALU performs A-B-1. (9c)

Since a particular g;,, may result from either addi-
tion or subtraction,

Piv1 = gooy + [0,2) ULPs of gy, (10)
for the asymmetric GALU which performs A+B or A-B-1.
The quotient selection logic addressed by gi+; and d cen

bound %—by:

131

for gy, =0,
Fi+1 Pi+1
< <
d + 1ULPofd - ¢ d
Giry + 1ULPofg_“_1_+ 1 ULP of gy4; — 2¢ (11a)
d
for g;4y <0,
giv1 + 1ULPoOf gy, + 1ULPof g, — 2¢
d + 1ULPofd ~ ¢
< Pri < 9;1 (11b)

where £ = 1 ULP of py,, and d.

The bounds can be evaluated once the widths of Fie1
and d are chosen. In our design, g,,, has eight bits and

d bhas four, so one ULP of g,,, =

1 E,oneULPong,—,=B—
end one ULP of d = 7 Figure 4 illustrates the calcula-

tion of gy4,-

_____ Pi
+ TTIIIIIT oo
——————— g

v |

T T T Giti

As an example, assume that g, =

binary 0001.1 and
d = binary 1.000.

L5 Py

13333 « — 15 P, L5 + 0.5 + 0.625 - 2¢
< 10+0.a8% <5 < T

10 < 2.0825

Asymmetric GALU

The advantage of equation (10) over its counterpart
for a symmetric GALU is that g¢+1 wiggles in only one

direction. |gy,,| is never larger than |p,,,|. Meny g—g—l—

and = gin —
d + 1ULP ofd

predicted minimum magnitude for

ratios are multiples of -:13— If a

Pi+y
4 d
+ 25 or a predicted maximum magnitude equals + zor

equals #+ L or

+ 3 then more than five bits of g1+ must be observed.
To avoid looking at more bits when the maximurn ratio is
for example, the predicted minimum ratio would have

3

to be 2> ;— But Table 3 shows that the difference

between the predicted bounds is never as smell as L

unit. Since gy,, is uncertain in only one direction rather
than two, there is sufficient information without observ-
ing another bit in approximately half of the boundary
cases.

Our quotient selection logic implements Table 3
using 39 minterms. An earlier design based on a 9-bit
symmetric GALU would have required 568 minterms. An
B-bit symmetric ALU would have required even more
minterms and at least one more bit in g, or d.

Although asymmetry decreases the size of both the
ALU and the programmable logic, it might not simplify a
RAM implementation. The width of g;,, remains seven
bits rather than six because of one bad case: see
(94+1. @) = (1110.0zz, 1.000) in Table 3. A single level
RAM would require ten address bits. However, a two level
RAM implementation, such as the one suggested by Tan
[91 could trade one more bit of d for one less bit gia1-

Verification

The quotient selection table was tested by simula-
tion with all pairs of 12-bit dividends and divisors. No
error was found and no part of the unimplemented
region in Table 3 was accessed. Random modifications to
the table caused errors to be detected.

Division Step by Step
The division operation proceeds in four-steps. Refer
to Figure 1.

Step 1

Load the divisor into DR. Load the dividend into RR
through MUX and DALU. The MUYX shifts the dividend
right by four bits and there is 8 wired left shift by
two bits at RR. The net effect is to shift the dividend
right by two bits. The dividend is loaded by a roun-
dabout path in order to save the space and delay
which a multiplexer in front of RR would cost.

Step 2
Put g, into QFF by adding zero to RR in the ALUs
and reloading RR. This leaves the dividend in RR
with its binary point in the same relative position as
the divisor's binary point occupies in DR. GALU's

output g;o_ equals ‘P’% Consequently, the quotient

selection logic chooses g, by comparing the divi-
dend and divisor with their binary points correctly
aligned.

Step 3
Repeat equations (1ab) 34 times. The sign bit of QFF
controls the ALU operation. The other two bits con-
trol the MUX. At the end of each cycle, clock QFF
into the POS and NEG registers, p,,, into RR, and
Qi4+z into QFF.

Step 4 ‘
Subtract NEG from POS to form §,,. If p,, (in RR) is
negative, then subtract one more ULP from @n- The
Sticky bit is zero if p,, = 0 and one otherwise.

For the purpose of division, DR is a register of the
same length as the operands. RR is a register three bits
longer than the operands. DALU is one bit wider than the
operands. POS and NEG are shift registers four bits
longer than the operands.

132

Remainder

KCS defines a remainder operation whose result has
magnitude no greater than half the divisor's magnitude.
To produce this result, a fixup step is required after divi-
sion. It is convenie:.t to change RR from a register to a
shift register so that the last partial remainder can be
shifted back to the right by two bits in order to align it
with the divisor.

Square Root

The restoring square root algorithm produces one
result bit per step. The accumulated partial result after
any step is the truncation of the inflnitely precise
answer, so the bits may be collected in a shift register.

The algorithm consists of "completing the square.”
Two bits of the operand are brought into the calculation
during each cycle. Imagine that before each cycle the
remainder and partial result are aligned so that

(ar)® < operand = (ar + b2 + ¢ < (ar +r)? (12)

where
ar = the truncated result already found
r = radix = 2
a,b are integers

¢ is a real number < r

and we seek b in 0s b <7-1 to minimize ¢ = 0. The
current remainder = (ar + b)* + ¢ - (ar)?
= 2arb +b%+ c. b is either 0 or 1. To find the next
result bit, assume b = 1 and subtract 4a + 1 from the
current remainder. The next result bit is one if this
difference is = 0, and zero otherwise.

The position of the binary point within the operand
imposes only one restriction. Pairs of operand bits
brought into the calculation must lie on the same side of
the binary point. Thus if the exponent’s value is even
and the significand’s value is between 1 and 2, only one
bit will be used during the first iteration. The significand
is shifted left by one bit if the exponent is edd. This may
raise the significand’'s value in the first iteration to
between 2 and 4, so that two bits are used.

The hardware previously described for division and
remainder is extended in three ways for square root.
Shift register SQR holds the operand until it is intro-
duced into the computation, RR becomes a two bit at a
time left shift register. (The remainder fixup step
already requires it to be a two bit at a time right shift
register.) DR is changed from a register to a one bit at a
time left shift register in order to hold the developing
square root result.

As used in square root, RR and DALU are three bits
wider than the operand. DR is one bit wider than the
operand because the point at which result bits are
inserted into DR is two bits left of the least significant
end of RR and DALU. SQR is one bit narrower than the
operand because the first two bits of it load directly into
RR during the intitialization step.

A Note on Software Square Root

¥. Kahan has shown that software square root algo-
rithrs can find the correctly rounded result using inter-
mediate quantities no wider than the precision of the
operend [13]. The calculation is simpler if the machine
can chop quotients and round sums. Software methods
can be expected to take between six and fifteen divide
times, depending on the size of the processor. The

larger the processor, the greater the ratio. If hardware
square root takes between one and two divide times, it
will be about ten times faster than software. The choice
of implementation depends on the importance of the
Square root operation and its incremental cost in the
total hardware design.

Square Root Step by Step

The square root operation proceeds in five steps.
Refer to Figure 2.

Step 1
Load the operand into DR. The operand should be
normalized in order to avoid wasted cycles at the
beginning of the iteration.

Step 2
Set QFF to one if the operand's unbiased exponent is
even. Set QFF to two if the exponent is odd. In the
latter case, the operand will be shifted left by one
bit during the next step.

Step 3

Move the operand from DR through the MUX into RR
and the square ront register SQR. 85 bits (not
including the sign which is known to be positive)
come out of the MUX. The two high order bits, which
are conceptually to the left of the binary point, go
into the least significant bits of RR. Clear the
remaining bits of RR. The 83 bits which
are conceptually to the right of the binary point go
into SQR. Clear DR to prepare for shifting in the
result bits.

Step 4

Repeat 85 times: Subtract DR plus one from RR. If
the difference is non-negative, then shift it left by
two bits and store it in RR. Shift DR left by one bit
and carry in a logic one.? If the difference is nega-
tive, then shift the old contents of RR left by two
bits and shift DR left by one bit with a carry-in of
zero. In either case, shift SQR left by two bits and
fill in the rightmost two bits of RR with the bits
shifted out of SQR.

Step 5

Move the B85-bit result from SQR to the normaliza-
tion and rounding logic by clearing RR and adding in
the DALU. The Sticky bit is the 86th bit of the
result. It is formed by the logical OR of the DALU
carry-out and the bits of RR during the last iteration
of Step 4.* The sticky bit is latched at the end of
Step 4 so that information is not lost when RR is
cleared.

Conclusions

Radix four division offers us the most cost-effective
improvement (in the same technology) to radix two res-
toring division. Radix four uses the same hardware
structure in the partial remainder loop except for a mul-
tiplexer to produce a second multiple of the divisor.
Since the ALU delay dominates the loop, radix four has
the same step time as radix two. Quotient digit selection
is the limiting task, so we reduce the width of the guess
ALU to eight bits in order to speed that path. Our
tradeofls benefit a programmable logic implementation
of the look-up table. Different choices could be better

3 The carry-out from DALU is tied directly to DR’s left shift input.

 If the last iteration produces & one, then the square root has an
infinite number of nonzero bits.and the Sticky bit should be & one. The
ALU's carry-out is a one in this case. If the last iteration produces a
zero, then the Sticky bit is a one if the Previous remainder was nonzero,

133

for & RAM implementation, especially a two level one.
The cost of resolving the redundant quotient representa-
tion is low because registers and an ALU elsewhere in the
accelerator can be shared for this purpose. Hardware
square root is an inexpensive extension to our division
scheme. The extra hardware is a shift register to hold
the operand and a shift register to hold the result.

Acknowledgement

¥. Kahan has offered encouragement and valuable
suggestions throughout the course of this project.

References

[1] IEEE Computer Society Microprocessor Standards
Committee Task P754, "A Proposed Standard for
Binary Floating Point Arithmetic, Draft 8.0," Com-
puter 14, No. 3, March, 1981, pp 52-83.

J. Coonen, "An Implementation Guide to a Proposed
Standard for Floating Point Arithmetic," Computer
13, No. 1, January, 1980.

G. Taylor and D. Patterson, "VAX Hardware for the
Proposed IEEE Floating Point Standard,"” Fifth IEEE
Symposium on Computer Arithmetic, May, 1981.

D. Atkins, "The Theory and Implementation of SRT
Division," Report 230, Dept. of Computer Science,
University of Illinois, Urbana, June, 1987,

(=]

(3]

[4]

[5] D. Atkins, "Higher-Radix Division Using Estimates of
the Divisor and Partial Remainders," IEEE Transac-
tions on Computers 17, No. 10, October, 1968, pp.
925-934.

[6] D. Atkins, "A Study of Methods for Selection of Quo-
tient Digits during Digital Division,” Ph.D. disserta-
tion, Report 397, Dept. of Computer Science, Univer-
sity of lllinois, Urbana, June, 1970.

7] J. Robertson, "Methods of Selection of Quotient
Digits during Digital Division.," File 663, Dept. of
Computer Science, University of lllinois, Urbana,
June, 1965,

[8] D. Atkins, "Design of the Arithmetic Units of Illiac 1I:
Use of Redundancy and Higher Radix Methods,"
Report 333, Dept. of Computer Science, University
of lllinois, Urbana, May, 1969.

[8] K. Tan, "The Theory and Implementations of High-

Radix Division,” Fourth IEEE Symposium on Com-
puter Arithmetic, October, 1978, pp. 154-163.

[10] U. Kalaycioglu, "Analysis and Synthesis of General-
ized Radix Additive Normalization Division Tech-
niques,” Ph.D. dissertation, SEL Report 88, Dept. of
Electrical and Computer Engineering, University of
Michigan, Ann Arbor, May, 1975.

[11]J. Baron, "Implementation Study of Generalized
Radix, Non-Restoring Division Techniques," SEL
Report 102, Dept. of Electrical and Computer
Engineering, University of Michigan, Ann Arbor, Sep-
tember, 1977.

(12] D. Atkins and U. Kalaycioglu, "Concurrency in Gen-
eralized Radix Non-Restoring Division”, Twelfth Aller-
ton Conference on Circuit and Switching Theory,
University of llinois, Urbana, October, 1974, pp.
828-640.

[13] W. Kahan, "Software Square Root for the Proposed
IEEE Floating Point Standard,” Computer Science
Division, University of California, Berkeley, August,
1980, submitted to J/ELE Transactions on Hathemat-
ical Software.

Zin
first 5-7 bits of
estimated next
remainder (2's comp)

| decimal binary

~-3.5 1100.1
-3.0 1101.0
-2 1101.1
~2.000 1110.000
-1.878 1110.001
'-1.760 1110.010
-1.826 1110.011
~1.6 1110.1
-1.0 1111.0
-0.5 1111.1
0.0 0000.0
0.8 0000.1
1.0 0001.0
1.5 0001.1
2.0 0010.0
2.5 0010.1
~8.6 1100.1
-3.0 1101.0
-8 1101.1
~2.00 1110.00
-1 1110.01
-1.0 1110.1
-1.0 1111.0
-0.5 11111
0.c 0000.0
0.6 0000.1
1.0 0001.0
1.60 0001.10
1.78 0001.11
2L 0010.0
2.8 0010.1
8.¢ 0011.0
~4.0 1100.0
-3 1100.1
-3.0 1101.0
-2.5 1101.1
-2.0 1110.0
-15 1110.1
-1.00 1111.00
-0.76 o1
-0.5 1t
0.0 0000.0
0.5 0000.1
1.0 0001.0
1.5 0001.1
20 0010.0
25 0010.1
3.0 0011.0
3.5 0011.1
—4.6 1011.1
—4.0 1100.0
-3.5 1100.1
-3.0 1101.0
—2.50 1101.10
~2.25 1101.11
-2.0 1110.0
~1.8 1110.1
-1.00 1111.00
-0.75 1111.01
-0.5 11111
0.0 0000.0
(13} 0000.1
1.0 0001.0
18 0001.1
290 0010.0
L 2] 0010.1
80 0011.0
88 0011.1
~-4.0 1011.1
-4.0 1100.0
=35 1100.%
-3¢ 1101.0
-2.8 1101:1
-2 1110.0

d

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

125
125
125
125
125
126
125
125
125
125
125
125
125
126
126
125

. e e e e e e bt e e b ks b

1.850
1.260
1.260
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.250
1.850
1.250
1.250
1.260

1.375
1.375
1.375
1.976
1.375
1.376
1.375
1.976
1.376
1.376
1.376
1.376
1.976
1.376
1.976
1.876
1.376
1.8376
1.876

1.600
1.500
1.500
1.500
1.500
1.500

first 4 bits
of divisor
(positive)

decimal binary

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1,000
1.000

1.001
1.00t
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001

1.010
1.010
1.010
1.010
1.010
1.010
1.010
1.010
1.010
1.010
1.010
1.010
1.010
1.010
1.010
1.010
1.010

1.011
1.011
1.011
1.011
1.011
1.011
1.011
1.011
1.011
1.011
1.011
1011
1.011
1.011
1.011
1.011
1.011
1.011
o1

1.100
1.100
1.100
1.100
1.100
1.100

Table 3. -- Quotient Selection Logic:
Asymmetric 8-bit Next Remainder Prediction ALU
Q42 m d Uiz,
ratio of shifted next quotient first 5-7 bits of first 4 bits tatio of shifted next quotient
full remeinder Piut digit estimated next of divisor full remainder Piut digit
to full divisor 4 (sign mag) remainder (2's comp) (positive) to full divisor 4 (sign mag)
minimum _ maximum decimal binary decimal binary | minimum maximum
-15 1110.1 1.500 1.100 -0.5769 -1.0000 -1
-2.6111 —~8.5000 - -1.0 1111.0 1.500 1.100 ~-0.2882 -0.6667 -0
-2.1607 -3.0000 -2 -0.5 11 1.500 1.100 0.0417 -0.3333 -0
-1.7222 -2.5000 -2 0.0 0000.0 1.500 1,100 0.0000 0.3750 +0
-1.6111 -2.0000 -2 0.50 0000.10 1.500 1.100 0.8077 0.5417 +0
~1.5000 -1.8750 -2 075 0000.11 1.500 1.100 0.4615 0.7083 +1
—1.9880 -1.7500 -2 1.0 0001.0 1.500 1.100 0.6154 1.0417 +1
~1.2778 —1.8250 -1 1.6 0001.1 1.500 1.100 0.9231 1.9750 +1
~0.8343 ~1.5000 -1 2.00 0010.00 1.500 1.100 1.2308 1.5417 +1
—-0.3888 ~1.,0000 -1 .25 0010.01 1.500 1.100 1.3846 1.7083 +2
0.0625 ~0.5000 -0 26 0010.1 1.500 1.100 1.5385 2.0417 +2
0.0000 0.5625 +0 3.0 0011.0 1.500 1.100 1.8482 2.3750 +2
0.4444 1.0625 +1 85 0011.1 1.500 1.100 2.1538 2.7083 +2
0.8889 1.56825 +1 4.0 0100.0 1.500 1.100 2.4615 3.0417 +2
1.3303 2.0825 +2
1.7778 2.56825 +2 -5.0 1011.0 1.625 1.101 —2.5357 -3.0769 -2
2.2222 8.0825 +2 ~4.5 1011.1 1.826 1.101 —2.2500 -2.708092 -2
~4.0 1100.0 1.625 1.101 -1.0643 -2.4615 -2
~2.8500 -8.1111 -2 -85 1100.1 1.625 1.101 ~1.8786 -2.1538 -2
-1.8500 -2.5667 -2 -850 1101.0 1.825 1.101 —1.3629 —-1.8482 -2
~-1.5500 -R.2222 -2 —2.5 1101.1 1.625 1.101 -1.1071 -1.5385 -1
-1.8500 -1.7778 -2 -2.0 1110.0 1.825 1.101 -0.8214 -1.2308 -1
—1.1500 —1.55556 -1 =15 1110.1 1.825 1.101 ~0.65357 -0.9231 -1
—0.7500 —1.3333 -1 -1.0 1111.0 1.825 1.101 —0.2500 ~0.6154 -0
-0.8500 ~0.3880 -1 -0.5 1111.1 1.825 1101 0.0385 -0.3077 ~0
0.05586 ~0.4444 -0 0.0 0000.0 1.825 1.101 0.0000 0.3482 +0
0.0000 0.15000 +0 0.5 0000.1 1.825 1.101 0.2857 0.8538 +0
0.4000 0.0444 +1 1.0 0001.0 1.625 1.101 0.5714 0.9616 +1
0.8000 1.3889 +1 1.5 0001.1 1.825 1.10% 0.8571 1.2692 +1
1.2000 1.6111 +1 2.0 0010.0 1.825 1.101 1.1429 1.5769 +1
1.4000 1.8333 +2 2.5 0010.1 1.8285 1.101 1.4286 1.8840 +2
1.8000 2278 +2 3.0 0011.0 1.825 1.101 1.7143 2.1923 +2
2.0000 2.7222 +2 35 0011.1 1.825 1.101 2.0000 2.5000 +2
2.4000 d.1e07 +2 4.0 0100.0 1.825 1.101 2.2857 2.8077 +2
4.6 0100.1 1.825 1.101 2.5714 3.1154 +2
—2.5000 -3.2000 -2
—2.1964 —-2.8000 —2 -5.5 1010.1 1750 1110 | -2.6333 -3.1429 -2
—1.7727 —-2.4000 -2 -5.0 1011.0 1.750 1.110 —-2.3667 -2.8571 -2
~1.4081 —-2.0000 —2 ~4.5 1011.1 1750 1110 | -2.1000 -£.5714 -2
—1.0455 -1.8000 -1 -4.0 1100.0 1.750 1.110 —1.8333 ~2.2857 -2
—0.68818 -1,2000 -1 -3.5 1100.1 1.750 1.110 -1.5667 —_2.0000 -2
—0.5000 —0.8000 -1 -3.00 1101.00 1.750 1.110 —1.4333 -1.7143 -2
-0.8182 ~0.68000 -0 ~2.15 1101.01 1.750 1.110 -1.8000 ~1.6714 -1
0.0500 —0.4000 -0 -25 1101.1 1.750 1.110 —1.0333 -1.4286 -1
0.0000 0.4500 40 -2.0 1110.0 1.760 1.110 —0.7687 ~1.142¢ -1
0.5636 0.9500 +1 -1.6 1110.1 1.750 1.110 -0.5000 -0.8571 -1
0.7273 1.2500 +i -1.0 1111.0 1.750 1.110 -0.2333 —0.6714 -0
1.0909 1.6500 +1 -0.5 11111 1.760 1.110 0.0357 —0.2857 -0
1.4545 2.0500 +2 0.0 00c0.0 1.760 1.110 0.0000 0.5214 +0
1.8182 2.4500 +2 0.5 0000.1 1.760 1.110 0.2667 0.6071 +0
2.1818 2.8500 +2 1.0 0001.0 1.760 1.110 0.5333 0.892¢ +1
2.5455 3.2500 +2 1.6 0001.1 1.750 1.110 0.8000 1.1786 +1
20 0010.0 1.760 1.110 1.0667 1.4843 +1
-2.6250 -3.2727 -2 2.5 0010.1 1.950 1.110 1.3338 1.7500 +2
—2.2017 —2.6091 -2 .0 0011.0 1.750 1.110 1.6000 2.03957 +2
-1.9583 -2.5455 -2 3.5 0011.1 1.760 1.110 1.8667 2.9214 +2
-1.68250 -2.1818 -2 4.0 0100.0 1.750 1.110 2.1333 2.6071 +2
—1.4583 ~1.0182 -2 4.5 0100.3 1.760 1.110 2.4000 2.8920 +2
-1.2817 -1.6364 -1
~0.9583 —1.4545 -1 -6.5 1010.1 1.875 1111 -R.4088 -2.9933 -2
6250 —1.0808 -1 -5.0 1011.0 1.875 L1l11 | -2.2188 -2.0667 -2
04583 -0.1273 - -45 1011.1 1876 1111 | -1.9688 -2.4000 -2
~0.2617 —0.6466 -0 -4.0 1100.0 1.875 1.111 —1.7188 —2.1933 -2
0.0455 -~0.3638 -0 ~-35 1100.1 1.875 1111 ~1.4688 -1.8687 -2
0.000D 0.4091 +0 -3¢0 1101.0 1.876 1111 -1.2188 —1.6000 -1
0.3333 0.772% +1 -25 11011 1.875 1.111 -0.9688 -1,3333 -1
0.6667 1.1964 +1 -2.0 1110.0 -1.875 1.111 ~0.7188 -1.0667 -1
1.0000 1.9000 +1 -1.5 1110.1 1.875 111 ~0.4688 -0.8000 -1
1.8333 1.6636 +2 -1.0 1111.0 1.875 1.111 ~0.2168 -0.6333 -0
1.6667 2.2279 +2 -0.5 11111 1.875 1111 0.0933 -0.2667 -0
2.0000 2.6909 +2 0.0 0000.0 1.875 1111 0.0000 0.3000 +0
2.3533 2.9546 +2 0.5 0000.1 1.875 1.111 0.2500 0.5687 +0
1.0 0001.0 1.875 1111 0.5000 0.8833 +1
—2.42391 —8.0000 -2 1.5 0001.1 1.876 1111 0.7500 1.1000 +1
-2.116¢ —2.66607 -2 2.0 0010.0 1.878 1.111 1.0000 1.3667 +1
~1.8077 —2.9333 -2 25 0010.1 1.875 1.111 1.2500 1.8333 +1
-1.6000 -2.0000 -2 3.0 0011.0 1.876 1.111 1.6000 1.9000 +2
-1.1023 —1.8607 -1 a.s 0011.1 1.876 1111 1.7500 2.1667 +2
~0.8848 -1,9383 -1 4.0 0100.0 1.875 1.111 £.0000 2.4333 +2
4.5 £100.1 1.878 1111 2.2500 2.7000 +2
5.0 0101.0, 1.875 1111 2.5000 2.9667 +2

134

