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ABSTRACT

The proposed IEEE floating-point standard has been
implementec}'in a substitute floating-point accelerator
for the VAX"" 11/780. We explain how features of the
proposed standard influenced the design of the new pro-
cessor. By comparing it with the original VAX accelera-
tor, we illustrate the differences between hardware for
the proposed standard end hardware for a more tradi-
tional floating-point architecture.

INTRODUCTION

We have designed an MSI processor to implement
the proposed IEEE binary floating-point arithmetic stan-
dard [1]. The architecture specified by the standard is
called KCS, after its initial proponents W. Kahan, J.
Coonen and H. Stone. Several companies are implement-
ing the proposal in special purpose microprocessors
[2][3], but the implications of KCS for the high-speed
combineatorial processors in larger computers are not
well understood. This paper summarizes the cost of sup-
porting the major features of KCS in a substitute
ficating-point accelerator(FPA) for the VAX 11/780 mini-
computer. We believe that future implementations of
KCS will need to make similar modifications in the func-
tional units we discuss below. As a specific example of
the relation between a KCS machine and a more tradi-
tional floating-point processor, we compare the Berkeley
FFA to the DEC FPA. This comparison is interesting
because traditional floating-point designs have been
driven by considerations of implementation cost rather
than the cost of writing programs to use them.

KCS attempts to simplify the task of writing high
quality numerical software by increasing the demands
made on system designers. We asked the following ques-
tions:

. How does KCS alter the requirements of functional
units (e.g., rounder, shifter) usually found in
floating-point processors?

. What new functions must be performed?

. Can appropriate hardware and microcode perform
KCS operations withcut time penalty in the absence
of arithmetic exceptions?

. How much additional microcode is required?
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The new design evolved from the DEC FPA. We
accepted the constraints of & similar gquantity of
hardware and the same technology. The DEC FPA con-
sists of 700 Schottky ICs on five 15" x 12" boards con-
nected by & backplane with 180 signal lines. Our
system's functional units also are distributed across five
boards and interconnected by a single data bus. We
should mention, however, that our goal was to build a
tool for numerical software research rather than a plug
compatible replacement. The processor supports all
optional features of the proposed standard and allows us
to experiment with mixed precision operands in a single
instruction.

Although the debugging of our hardware prototype
is not finished, we can draw conclusions from the com-
pleted design. We found that for a given level of perfor-
mance, the hardware necessary to support KCS is
slightly more intricate and slightly larger than a tradi-
tional floating point architecture.

UNUSUAL FEATURES OF KCS

KCS differs from prior floating-point architectures

in several ways. Those which have the most impact on
our processor include:
1) Multiple exponent sizes — KCS recommends three
floating-point data types: single, double and (dou-
ble) extended (see Figure 1). The range as well as
the precision differs for each data type.

Elaborate erxception handling - KCS defines five
exceptions with corresponding flags and trap masks.
The user may supply a trap handler for each excep-
tion or take the default response at his option.

Siz mode bits —~ The user may control rounding, nor-
malization, and the 'mt.e{pretation of signed
infinities using six mode bits.

Denormalized numbers — Underflow occurs gradu-
ally in KCS rather than abruptly. The default
response to exponent underflow is to shift the frac-
tion right until the exponent increases to the
minimum value for that precision. Unless it is zero,
the result is called a Denormalized number.

2)

3)

4)

f Two bits select the rounding mode: toward zero, to nearest even, to~
ward plus infinity, and toward minus infinity, Two bits control whether
extended precision fractions are rounded at the width of single or dou-
ble precision rather their full width. The normalizing mode bit deter-
mines whether Denormalized operands are treated within arithmetic
routines as if they first had been normalized. The final mode bit selects
affine or projective closure lar comparisons in which one or both
operands are infinities.




5) Extended precision — KCS defines extended versions
of the basic precisions single and double. An
extended has a wider exponent and fraction than its
basic precision counterpart, but a much narrower
fraction than that of the next larger basic precision.
We follow the recommended practice of supporting
only the extended version of the widest basic preci-
sion.
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8) Sguare roof and remainder — KCS requires correctly " '

rounded square root and a remainder operation !
(defined as x rem Y = X- y*n where n = x/y rounded | s FRACTION Exp !DOUBLE

to nearest).

7} Infinity and Not-u-Number symbols - KCS has spe-
cial symbols for infinities and mathematically
undefined results (Not-a-Number or NaN).
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DESIGN OVERVIEW

A block diagram of the KCS FPA is shown in Figure 2.
We use fourteen parts unlike those in the VAX: four LSI
multipliers, nine programmable array logic (PAL) pack-
ages, and an LSI microcode sequencer. Table 1 com-
pares the distribution of ICs in the KCS FPA with that of
the DEC FPA. The six categories which differ are multi-
ply. divide/remainder, tquare root, exponent, round, and
pack/unpack. KCS is responsible for the increases in
only the last four categories. Multiply is smalier in the
Berkeley FPA due to the use of LSI mutipliers. We allo-
cated an entire board to experiment with higher perfor-
mance division. Square root merged inexpensively with
this division hardware. The KCS exponent processor
deals with 15-bit operands instead of 8-bit ones. KCS
rounding, unpacking, and packing operations are more
complicated than their DEC counterparts. The increase
in unpacking logic is exaggerated because data enters
the FPA through two ports. We duplicated the logic in
order to maintain a similar system interface.

Table 1.

IC Count by function for KCS and DEC FPAs

KCS DEC
Add,Subtract 145 150
Multiply 105 220
Divide, Remainder 135 45
Square Root 25 —
Exponent, Sign 75 50
Round 7 30
Normalize 45 35
Control 85 80
Data Interface 70 85
Pack, Unpack 110 25
Total 870 700

Table 2.
Speed of operations for KCS und DEC FPAs
DEC times in parentheses

SGL DBL EXT
ADD 1.0(0.8) 1.8(1.4) 2.2
MUL 1.4(1.2) 2.6(3.4) 3.0
DIV 2.6(4.2) 4.8(8.8) 5.8
SQR 4.0 7.4 9.0

Table 2 shows that the KCS FPA is comparable in
speed to the DEC FPA. We use more ICs, but support
three data types instead of two and achieve higher per-
formance in the wider precisions. Extended precision
results take 0.4 usec longer to return to the main CPU
than double precision ones because a 32-bit bus is used.

Single precision ADD would be the same speed if we
handied overflow checking cleanly. We would be able to
do so by changing the microcode in the central proces-
sor to which the FPA is attached.

As in the DEC FPA, our boards are connected by a
data bus which transfers two single, one double, or one
extended precision number at a time. The bus is 87 bits
wide:

64 for the operand fraction(s);

. 2 for the sign bit and overflow bit in fractions of
intermediate results;

3 for guard, round, and Sticky bits in fractions of
intermediate results;

16 for the operand exponent(s);
2 sign bits.

The original bus was 88 bits wide.

Exponent Board

The EXP board, shown in Figure 3, calculates the
sign and exponent of the result and contains the
microprogram control unit. Since KCS exponents are
biased by 2" - 1 rather than 2", they can be converted
more easily to two's complement - 1 than to two's com-
plement. Consequently thg exponent unit treats its data
as two's complement - 1.” This internal form simplifies
conversion from one floating point data type to another.

Although the extended precision exponent is 15 bits
wide, the exponent ALU must be 17. One extra bit is
required for pre-normalization of Denormalized extended
precision numbers and the second bit is required for
multiplication and division.

The exponent difference logic controls the ADD
board pre-alignment shifter in addition and subtraction.
Denormalization of a product or quotient and conversion
of a floating-point number to an integer, however,
require calculation of a shift distance, Thus the
exponent ALU can also control the shifter.

The microsequencer is built around an Am2910.
Unlike traditional floating-point. units such as the VAX,
the KCS one requires stored constants to perform

. e :

several operations.” Thus our 84-bit microinstruction
includes a 1B-bit constant field not found in the 48-bit
VAX FPA microinstruction. The 2910 includes a
microprogram counter which allows us to share the next
address field with the constant field. Data path control
accounts for 39 of 468 bits in the VAX FPA and 48 of 64 in
the KCS FPA.

*Atwo's complemert - 1 ALU performs A+B+1 and A-B-1 instead of A+B
d A-B,
18-bit constants are used in the exponent unit for conversion
between floating-point precisions, rounding a floating point number to &
integer value, and scaling after overflow or underfiow before going to v
trap hendler,




Add Board

Figure 4 is a block diagram of the ADD board. Its
primary difference from traditional units is that two l-69
guard bits and the so-called Sticky bit are formed in the
barrel shifter. More later about the use of these bits in A
the rounding logic. Only the Sticky bit adds significant
cost. The basic shifter consists of 48 ICs in three stages.
The guard bits require four additional ICs. The Sticky bit
logic uses 21, including two PALs. We were able to save EXPONENT
eight ICs by using bits from the intermediate stages of DIFFERENCE/ BARREL
the main barrel shifter.
Multiply Board
The multiply board is shown in Figure 5. KCS' only E_J
requirement for this board is a 17-bit OR gate to form MUX! MUX |
the Sticky bit, but we include a description for complete-
ness. We use four 18x16 multipliers organized as a two,
stage pipeline that processes 18 bits per 200 ns cycle.
The first stage of the pipeline performs a B4x16 multiply
yielding two B4-bit partial products. The second stage ¢
adds these products into the partial result accumulated . . QUOTIENT
in previous cyeles. The first stage is entirely within the l REG DEG é
L3I multipliers because they contain input and output 1 T ‘J
registers. Three cycles are required for a 84x32 multi- 4764 L6
plication in single precision floating-point or 32-bit
integer arithmetic. In double and extended floating-
point, a 64x84 multiply is completed in five cycles. - er DATA BUS
The interface to the VAX cache is on the bottom of

this board, so one of the duplicate sets of unpacking
logic is included.
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FIGURE 4 -ADD BOARD
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The multiplier configuration ir 84x18 instead of 32x32 because this re-
quires fewer carry save adders in the pipeline and eliminates conflicts
on shared input and output pins.
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Divide Board

The DIV board supports division, remainder, and
square root. Figure B8 shows the block diagram and data
paths. The division algorithm is radix four nonrestoring,
while the square root algorithm is radix two restoring.
The inner loop of both operations is clocked at 100 ns
intervals. Details of this board are given in a companion

paper [4].
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Normalization Board

The NRM board, shown in Figure 7, is used for nor-
malization and rounding. Its design is similar to the DEC
FPA counterpart, but the rounding, unpacking and pack-
ing logic is more complex. The rounding logic is pro-
grammed into two PALs, while the data
unpacking/packing logic requires 85 multiplexers and
gates.

The normalization shifter is wused for pre-
normalization of Denormalized operands as well as its
regular function of normalizing the result of an opera-
tion. Special control logic limits normalization after
multiplication and division to one bit.

The extended precision data type suggests the abil-
ity to read 80 bits in parallel from the register set. Thus
2% copies of the VAX register set (32 bits each) are held
on this board.
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IMPACT OF UNUSUAL FEATURES

This section describes the impact which the seven
KCS features mentioned above have on our design.

Multiple exponent sizes have the largest impact.
Much of the cost we pay in packing and unpacking logic
would be recessary in any system with multiple
exponent sizes. The cost is doubled in our case by the
FPA's two port interface. We also provide the hardware
to execute instructions with operands of different preci-
sions. The main support is left justifying the fractions of
all operands to give prcper alignment in the arithmetic
units.

The alternative is to adjust operand fractions to the
right. If fractions are right aligned as they enter the
arithmetic units, only those of the same precision will
have correctly aligned binary points. The right aligned
gystem has a drawback even if mixed precision operands
are not allowed: three sets of logic are required to find
the normalization distance after cancellation in subtrac-
tion. The normalization logic is already duplicated to
find either the first one or the first zero because the sign
of the intermediate fraction is unpredictable if the
exponents are equal. A total of six sets of norrnalization
logic would be required, two for each of the three preci-
sions. Nevertheless, right alignment could substantially
reduce the amount of unpacking logic.

KCS recommends that the order of components in a
floating-point number be sign, exponent, fraction (SEF)
from left to right. This would have worked against our
intention to align fractions left and exponents right, so
we store numbers as SFE, with the fraction before the
exponent. The packing and unpacking logic is reduced
by 40 ICs. Although the SFE format is not conforming for
data interchange, it causes no complications within the
machine since floating-point compare instructions
remove the need to take advantage of the lexicographic
ordering of numbers by value in SEF.

Exception checking and handling has its primary
impact on microcode. We allocated twice as much
microcode space (1024 words) as the DEC FPA, but have
not yet completed microcoding of special cases for all
floating-point instructions.

Three of the five exceptions defined by KCS are
dealt with in most systems: underflow, overflow, and divi-
sion by zero. The inexact result exception is detected
with a small piece of lcgic in the rounding unit. The
invalid operation exception covers all other cases.

KCS allows users to write their own exception han-
dling programs. The hardware is thus designed so that
the original operands of an instruction can be recovered
by a user’'s trap handler. This involves either preventing
an overwrite when an exception is detected or saving the
operands in hardware so that they can be passed to the
trap handler. We chose to prevent overwrites. XCS does
not require that exceptions be handled by hardware.
Only the inexact exception occurs frequently enough
(with the trap masked off) to merit a hardwired default
response. The other exceptions permit a slow response.
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KCS rounding modes require new hardware. The
three modes other than round toward zero rely on the
Sticky bit, which is equal to zero only when the result is
exact, i.e., just when the infinite precision result would
contain only zeros beyond the guard bit. Means to form
the Sticky bit on each board were discussed above. The
total hardware cost is 45 ICs (5%).°

Normalizing mode also has a significant impact on
processor design. It determines whether Denormalized
operands are treated as if they first had been normal-
ized. As mentioned above, this costs an extra bit of
exponent processor width. It also requires the capability
to update each of the exponent operand registers.

Normalizing mode can be ignored in
addition/subtraction, but it requires actual pre-
normalization of the operands in multiplication and divi-
sion. We use the regular normalization unit for this pur-
pose. Since the system has a common data bus, only one
operand can be pre-processed at a time. There is no new
cost in the fraction hardware.

Denormalized numbers must be created by a KCS
machine whether or not the Normalizing mode is in
effect. Denormalization amounts to shifting right the
fraction of a preliminary result. We use the alignment
shifter on the ADD board for this purpose. The exponent
unit is made slightly more powerful so that it can calcu-
late the shift distance.

Denormalized numbers are relatively simple to deal
with in single and double precision. They account for a
small part of the unpacking logic. After unpacking, they
are usuelly treated as ordinary numbers. Exceptions are
that they cannot be divisors or arguments to the square
root instruction, and single Denormalized numbers can-

.not be converted to double. So that single and double

Denormalized numbers can be converted to extended, its
fraction has an explicit leading bit. This implies that
unnormalized numbers can exist throughout the range.
These unnormalized numbers are responsible for many
of the non-standard cases that must be handled by
microcode.

Extended precision serves to backup double preci-
sion in a chain of computations by allowing intermediate
values to have greater range and precision. The KCS FPA
has 12% more ICs with extended than it would have if just
single and double precision were supported. As Table 2
demonstrates, extended precision operations take only a
little longer than their double precision counterparts.
One reason is that the extended fraction stops at the
next natural boundary after the double fraction; in our
case 64-bits. 84 bit ALUs and multiplier slices are as fast
as 53 bit ones would be.

80 bits is not a natural size for the 32-bit registers
and busses in the VAX architecture. We allocate three
registers or storage words to hold an extended number.,
The potentially greater memory access time is not a
problem if the number of extendeds is small enough for
them to be held in registers. Extended precision adds a
burden to the microcode primarily because its explicit
leading fraction bit introduces unnormalized numbers.

* The Sticky bit has one use besides rounding. It simplifies subtru(ftion
because it catches nonzero bits shifted out the subtrahend. There isno
need to take an extra cycle to complement the subtrahend before shift-

ing it.




KCS square root and remainder operations are sup-
ported with a 4% marginal increment to the hardware.
Correctly rounded square root could be implemented in
software, but we support it in hardware using 25 addi-
tional ICs on the division board. The remainder opera-
tion is exactly like division except for initialization and
fix-up steps. These require about 10 additional microin-
structions. Remainder is defined so that its potential for
long latency (while generating and discarding to 32,000
leading quotient bits) is handled with a software loop.
The microcode stops the instruction every 84 bits by
overwriting the dividend with the current remainder and
restoring the program counter. Thus interrupts can
occur normally.

The symbols for infinity and Not-a-Number have no
hardware impact other than detection of an exponent
value equal to all ones. The microcode handles infinity
and NaN operands as special cases in each instruction.
The normal fraction and exponent hardware is not used
for these symbols.

CONCLUSIONS

None of unusual features of the KCS dominated the
cost or complexity of the Berkeley FPA. The greatest
problem we encountered was in unpacking operands to a
precision-independent internal form. High speed mixed
precision operations are expensive with the KCS formats.

Rounding logic increased from 4% in the DEC FPA to
8% in ours, primarily due to the Sticky bit. Gradual
underflow and Normalizing mode cost little because the
single bus architecture allows us to reuse shifters.
Extended precision adds only 12% to the hardware but
executes at the the speed of double precision. If
extended is an adequate backup for double, it will be far
more cost eflective than quadruple precision,

We find that KCS floating-point is feasible for main-
frames and minicomputers, that it is about the same
speed for about the same hardware, but that it has
inherently greater design time due to the greater com-
plexity.

STATUS

The processor boards have been fabricated and
populated with chips. They are now being debugged. We
have written the basic microcode szquences and simu-
lated them using the ISPS system [5].
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