Extension of the MC68000 Architecture to Include
Standard Floating-point Arithmetic

Gregory Walker

Motorola, Inc., Microprocessor Design, Mail drop M2880

3501 Ed Bluestein Blvd., Austin, TX

78712

(512) 928-6212

ABSTRACT

The synthetic aspect of designing a com=
puter architecture is particularly evident when
the design is highly constrained from two
independent directions. Floating=point exten=
sions of the MC68000 architecture incorporate
the IEEE Proposed Floating~point Standard into
the existing MC68000 architecture.

The creation of a computer architecture is
a synthetic process. The various components of
the architecture, such as registers and opera~
tions, must be combined into a unified whole, A
properly designed computer architecture should
exhibit a certain esthetic appeal as well as
providing functionality and econony: simplicity
of conception and consistency of features can do
much to ease the use of a computer. Such is the
case for floating=point extensions to the
MC68000. On the one hand the design was
required to be in conformance with the IEEE Pro~
sed Standard for Binary Floating~point Arith-
metic [1]. At the same time we desired to maine
tain the integrity of the MC6800C architecture
{2] across the new extensions. Many persons
have contributed to the design and implementa=-
tion of floating=point for the MC68000.
Throughout this paper, the pronoun "we" will be
used to refer to the MC68000 design group in
whole or part.

1. IEEE Proposed Floating~Point Standard

The IEEE Proposed Standard is independent
of any particular implementation strateqy. It
describes three formats of floating~point
numbers: single precision, double precision, and
double~extended precision. A rather extensive
set of required operations on floating~point
numbers is specified, along with criteria for
rounding and detection of exceptional condi-
tions, Several modes of calculation, some
available at the implementor's option, may be
chosen by the floating-point user. An implemen=-
tation of IEEE floating~point may optionally
provide traps to user-supplied software in the
case of errors or exceptional conditions.

CH1€30-3/81/0000/0179%$00.75 © 1981 IEEE

179

Early in the design process, Motorola conr
mitted to support the IEEE Proposed Standard.
Consistent with the MC68000 philosophy of pro-
viding the highest-possible state-of~the-art
computing power, we chose to implement the
entirety of the Proposed Standard.

2. MC68000 Architecture

The MC68000 architecture provided the major
constraints to the design of the floating=point
architecture. We decided to provide floating=
point capability as a direct extension of the
MC68000 architecture. This decision was made to
maximize the overall system per formance and to
take advantage of expected advancements in sem=~
iconductor technology.

Data Address
31 0 31 0
| DO | | A0 |
! Dl | | Al |
// // // //
| D6 | | Ab 1
! D7 | | A7 (usp/ssp) |
15 0 31 0
e ey + +
| Status | | Program Counter |
Ftresronsrmrr e + "
Figure 1. MC68000 registers.

The ingredients offered by the existing
MC68000 architecture are shown in Figure 1.
There are two sets of eight registers, each set
offering slightly different functionality. The
program counter needs no comment, but the status
register combines functions of both control and
status, allowing the masking of lower priority

interrupts as well as reporting the results of
arithmetic comparisons. Examples of MC68000
instructions show that it is fundamentally a
one~and-a~half address architecture; each
instruction specifies a register as well as a
full effective address, which may address a
register as well as any memory location., One
major exception, which will prove significant
later, is the two~address MOVE instruction. It
allows data in any of the three formats to be
moved between any two effective addresses, i.e.,
between any register and memory, between any two
registers, or between any two memory locations,
The MC68000 provides a power ful interrupt struc-
ture which will play several roles in the final
architecture and its implementation.

3. The Floating-point Architecture

The implementation details not addressed by
the IEEE Proposed Standard were developed out of
the MC68000 architectural concepts.

3.1 Registers

We decided to provide floating-point for
the MC68000 as an additional set of floating~
point registers which can contain only double-
extended precision numbers, as shown in Figure
2. There are up to eight floating-point regis-
ters with a set of instructions that operate on
them, analogous to the data and address register
sets. A separate control register and status
register are provided for floating~point opera-
tions.

15 0
i STATUS [
31 i CONTROL T
79 i Instruétion address ?
i Floating—point accumulator 0 [FPO
i Floating;point accumulator 1 I FP1
/%) ;/ {up to 8)
i Floating-point accumulator n ? FpPn

Figure 2. MC68000 floating-point architecture.

One rejected choice would have been to make
floating~point accumulators out of cne or more
combined data registers; the choice of separate
floating-point registers offers several signifi-
cant advantages., The single interral format
simplifies design of the floating-point algo~
rithms., A hardware floating-point arithmetic
unit may be separate from the original MC68000

ALU and may even run concurrently with it,
Various partitionings of the MC68000 central
processor are now possible. In particular, the
floating-point operations may be implemented on
a separate piece of silicon and yet be more
tightly coupled to the CPU than is the usual
peripheral component. Such a tightly=-coupled
processor is known as a co-processor. -I will
examine the co=processor implementation stra-
tegies in greater detail later.

3.2 Arithmetic instructions

The floating~point arithmetic operations
fall easily into the model of MC68000 instruc-
tions, as shown by Figure 3, Here floating-point
instructions are compared with analogous MC6800C
instructions. Monadic operations use a single
floating=point register as both source and des-
tination. They correspond to MC68000 instruc—
tions such as EXT and CLR. The dyadic
floating~point arithmetic instructions take the
same form as the binary arithmetic instructions
on the MC68000. In both cases one data register
acts as one operand and as the result destina-
tion,

MC68000 Floating-point
Monadic
CLR DO FSQRT FPO
EXT D3 FNEG FpP3
Dyadic
ADD DO,D1 FADD FPO,FP1
ADD.B #120,D2 FADD.B #120,FP2
MUL.L CAT(A5),D4 FMUL., L DOG (AS) ,FP4
SUB.W D3,D4 SUB.W D3,FP4

Figure 3. Arithmetic instructions for the ori-
ginal MC68000 and for the floating-point exten-—
sions.

For floating-peint instructions, the effective
address field has been expanded to include the
ability to address another floating-point reqis-
ter as the second operand, as well as using any
of the existing MC68000 addressing modes. We
see that each operation has a format modifier
attached to it. The three binary formats in the
original MC68000, byte, word, and long, were
extended to include the three floating=point
formats mentioned earlier. However, the data
typing associated with the floating-point
instructions is interpreted sliqhtly differently
from the data typing in original MCH8000
instructions, as will be seen as we exanine the
floating~point analogue of the MOVE instruction.

3.3 FMOVE instruction and data formats

Figure 4 shows examples of the
instruction. In the

FMOVE
first example, data is

moved between two floating-point registers,
Since all numbers in floating=point registers
are in double~extended (internal) format, there
is no format conversion on this move and no data
type is specified.

FMOVE
FMOVE

FPO,FP1
FP3,FpP2

FP register =->
FP register

FMOVE.B CAT(AQ) ,FPO
FMOVE.L DO,FP1
FMOVE.W (A4)+,FP3

Memory integer ->
FP register

FMOVE.S D2,FP3
FMOVE.D ~(A7),FP4
FMOVE.X BIGNUM(AOQ) ,FP2

Memory FP ==>
FP register

FMOVE.P (Al),FPO Memory decimal-->

FP register
Figure 4. FMOVE's into floating~point regis-
ters,

The second set of examples show data moved
from MC68000 memory or MC68000 registers into a
floating-point register. Here a data type is
specified for the instruction and is required,
Unlike the MC68000 MOVE instruction, the FMOVE
performs an implicit conversion to or from the
internal floating~point register format. This
difference in interpretation between MC68000
instructions and the analogous floating-point
instructiors is anroying at first, but as it
develops, the difference leads to an extremely
power ful floating-point instruction set.

For the formats of "B", "W", or "L", a
binary byte, word, cr long word is converted to
internal floating~point format. These formats
are native to the MC68000 and so any memory
location or MC68000 register may be the source
of the data. The next three formats, "s", "D",
and "X", are the three IEEE specified floating~

point formats: single precision, double preci-
sion, and double-extended precision. The
double~extended precision format contains

exactly the same range and precision as the
internal floating~point registers. Note that a
single precision floating=point number, being
the same length as a long word ({32 bits), may be
stored in any MC68000 register that can accept
LONG format data. The double and double-
extended precision numbers can cnly be stored in
memory, being 64 bits and 80 bits long, respec—~
tively. There is no provision in the MC68000
architecture for combining registers to hold
results longer than 32 bits, and the floating-
point extensions maintain that philosophy.,

The final example shows an FMOVE of a data
type "P" into a floating~point register. The
"P" format is that of a BCD floating=point

number consisting of a signed mantissa and a

signed exponent to the base 10. This FMOVE
instruction per forms a decimal-to-binary
floating-point conversion! Obviously, in this

case there 1is a lot of processing involved and
the result may contain rounding errors, but the
utility of this instruction is truly astounding.
The complex operation of conversion between
binary and decimal representations has becomne,
to the programmer, a simple move between two
different formats for representing the same
numeric value.

Figure 5 shows some examples of FMOVE
instructions that move data out of floating=
point registers into mewory or MC68000 regis-
ters. Once again, an implicit conversion is
per formed from the internal format to the desti-
nation format, as specified by the data type on
the FMOVE instruction.

FMOVE.L FPO,DO
FMOVE.W FP1,=-(A5)
FMOVE.B FP2,CAT(Al)

FP register -->
Memory integer

FMOVE.S FPO,DO
FMOVE.D FPO, (A5)
FMOVE.X FPQ,-(A7)

FP register =->
Memory FP

FP register ~~> Decimal with formatting

FMOVE.P #5,FP0O,DECNUM(Al) Static format

FMOVE.P DI1,FP0,DECNUM(Al) Dynamic format

Figure 5.
ters,

FMOVE's out of floating-point regis=

FMOVE's out exhibit more complications than
FMOVE's in to floating-point registers. Only in
the case of a move to an "X" format is it
guaranteed that the result can be exactly
represented in the destination format. Two
error conditions are possible: the number is too
large in magnitude for the destination, or some
bits of precision will be lost in the destina=-
tion format. 1In the first case, an OVERFLOW or
UNDERFLOW, error will be signalled. In the
second case, an INEXACT error will be signalled
to indicate that rounding occurred during format
conversion. The final example of FMOVE.P shows
a conversion to BCD representation of the
number. This instruction is complicated by the
IEEE requirement that a format specification be
included for decimal output. The MC68000 archi-
tecture does not contain a three~parameter
instruction, but an analogy was found with the
MC68000 "shift" instructions. The decimal for=
matting parameter, which I will call "K",
appears in the FMOVE instruction as the first
argument, much like the shift count of the
MC68000 LSL instruction. Like the shift count,
"K" may be either static or dynamic, i.e. it may

be included as immediate data in the instruc—
tion, or it may be specified by the contents of
a MC68000 data register.

3.4 Compare and branch

Properly speaking, the FCMP instruction is
a dyadic arithmetic operation with two source
operands that remain unchanged. The result of
an PCMP is to set the floating condition code
bits to reflect the numeric relationship between
the two operands.

Another class of instructions allow numbers
to be tested for the special symbols provided by
the IEEE Proposed Standard. Figure 6 shows
these ."ISXX" instructions. They test for values
of +/~infinity, +/-zero, or Not-a~Number, by
setting the "“equal" flag in the floating~point
condition codes if the number is the same as the
special value tested for.

FCMP.L DO,FPO
FCMP FPO,FP1

Compare with integer
Compare with FP req.

ISNAN FP1 Test for special
ISZERO.D NUMBER (A2) values

ISINF.S D1

FBEQ ARE _EQUAL Branch on

FBUN ARE_UNORDERED condition

FSLT - (A7) Set byte on

FSORD ORDERED FLAG condition
Figure 6. 1Instructions involving the floating-

point condition code bits.

Two classes of instructions make use of the
floating=point condition codes. ‘The "FBcc"
instructions branch to their effective address
if the condition specified in the instruction is
true, otherwise, execution continues with the
next sequential instruction. This class is
entirely analogous with the MC68000 “Bec"
instructions, the conditinns tested have been
expanded to include the “unordered" condition
required by the IEEE Proposed Standard.

The class of "FScc" instructions per form
analogously to the MC68000 "Scc" instructions,
A byte of all one's is stored at the effective
address if the specified condition is true, else
a byte of all zeroes is stored.

3.5 Exception handling

Several times I have mentioned errors or
exceptions that may arise during the course of a
floating~point operation. The IEEE Proposed
Standard requires a set of exception flags that
are set whenever the associated exception

occurs. These flags can only be reset by the
user prograin and are therefore called "sticky"
flags. These are provided in the 16-bit Status
register in the floating-point processor. The
Proposed Standard also requires that the user be
able to set bits to mask any or all of the
exception traps. These bits are provided in the
Control register of the floating-point proces~
sor. If an exception is masked, then a default
result specified by the Standard is returned to
the destination and execution of the user pro-
gram continues. If an exception occurs and is
not masked, then a trap must be taken to user-
supplied software to handle the exception,
These traps are easily incorporated into the
M68000 architecture. One or more of the
MC68000's "unassigned, reserved" interrupt vec-
tors will be assigned to floating-point excep~
tions.

4.0 LmElementggyzg

The MC68000 was designed to allow easy
extension of its instruction set by providing
two classes, or "lines", of unimplemented
instructions. These are called the A-~line and
F-~line enulator instructions. On the current
MC68000 CPU there are two trap vectors de fined
for each of these emulator lines. An instruc-
tion with a hexadecimal "A" or "F" in its 4
most-significant bits will cause the appropriate
Supervisor trap to be taken. The door is
immediately open to implement the MCG800O
floating~point extensions by way of software
emulation. This software project is, in fact,
under way. The F-line emulator trap has been
reserved for floating-point and other extensions
to the MC68000 instruction set.

A software emulation may provide a suitable
cost-benefit ratio for many applications, but
the real excitement these days centers on the
promise of high-speed floating-point arithmetic
on a chip. Conceptually, a co-processor is an
extension to an existing microprocessor archij-
tecture which is implemented on a separate sili-
con chip. With advances in semiconductor tech-
nology, a co-processor could be incorporated
onto the same chip as the original CPU. I have
already shown how the original instruction set
must be extended systematically and rationally
without doing violence to the “philosophy" of
the original architecture. Care must be taken
with implementation if overall system per for-
mance is to be maximized. First and foremost,
the co-processor's arithmetic unit must be
optimized for floating-point arithmetic. The
speed of execution of a floating-point instruc—
tion will set the limit on system throughput.

Equal care must be given to the inter face
to the CPU and the system bus. In particular,
the bus inter face functions must be partitioned
between the CPU and the Co-processor so as to
provide the highest overall per formance while
minimizing the duplication of expensive circui-
try. It is a great advantage if the co-
processor can execute concurrently with the CPU.

Once the co-processor has begun concurrent exe-
cution of its instruction, the CPU may cont.inue
executing non-co-processor instructions and may
respond to interrupts. Of course, this approach
raises the problems of CPU and co~processor
synchronization,

A co-processor should use the same instruc—
tions as its software emulation. It is a com
monplace of operating systenm design that protec-
tion mechanisms provide a boundary that hides
the operating system from the user, giving it
the appearance of hardware. These same mechan~
isms can be used with the floating=point emula-
tion to give the user object-code compatibility
between hardware and software floating-point.
The advantages of compatibility need some
emphasis: user programs need not be recompiled
or relinked when moving from emulation to
floating~point. hardware. For many micro~
processor applications, this means that a large
investment in mask-programmed ROM's need not be
thrown away. Additionally, a vendor can sell
two versions of his product offering different
cost/speed trade-offs. The software emulation
will be slower, but relatively less expensive
than the faster hardware.

183

5.0 Conclusion

The design of MC68000 floating~point
started from two independent constraints: the
IEEE Proposed Standard for Binary Floating-point
Arithmetic and the existing MC68000 architece
ture. These architectural constraints were
sucessfully merged to produce a uniform and use~
ful unity. Two different paths of implementa~
tion for the floating-point extensions were
identified: software emulation and co-processor
hardware, Both paths are being actively
explored, with the software emulation near ing
fruition in the MC68341 Floating-Point ROM.

Re ferences

1. IEEE Task P754, "Proposed Standard for

Binary Floating-Point Arithmetic," Com=
puter, Vol. 14, No. 3, March, 1981, PP.

51~62.

2, Motorola, Inc., MC68000 16-Bit Microproces-
sor User's Manual.
Available from: Motorola Literature Distri-
bution Center, Box 20924, Phoenix, AZ
85036.

