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ABSTRACT — For effective application of on-line arithmetic to’

practical numerical problems, floating-point algorithms for on-line
addition/subtraction and multiplication have been implemented by
introducing the notion of quasi-normalization. Those proposed are
normalized fixed-precision FLPOL (floating-point on-line) algo-
rithms.

1. INTRODUCTION

In designing a high-speed parallel processor it is important
to consider features such as system modularity, reconfigurability,
LSI realizability, intermodule interconnection bandwidth etc.
[AELS77]. For this reason we may consider using on-line arith-
metic algorithms [Erce75, Ercel7, Erce78, Irwi77, TrEf77,
TrRu78], because on-line methods are advantageous f{rom the
standpoints of (1)} high concurrency, (2) low interconnection
bandwidth [Erce78], (3) modularity and (4) VLSI realizability
[GrEr80].

The on-line arithmetic algorithms are those algorithms that
have the following properties [Erce77]: (1) the computation is per-
formed digit by digit starting with the most significant digit (msd);
(2) the j-th digit of the result can be computed as soon as j+8 di-
gits of the operands are available, where & is a small integer called
on-line delay.

The totally paraliel addition proposed by Avizienis [Aviz61,
62} yields an on-line addition algorithm. Irwin [Irwi77} formulated
an on-line addition algorithm with on-line delay §=1. On-line algo-
rithms for multiplication and division were developed by Trivedi
and Ercegovac [TrEr77). The on-line multiplication requires =1
and division =3 to 5. An on-line square-rooting algorithm with
8=1 was proposed in [Erce78]. The on-line approach can be ap-
plied for implementing more complex operations.

Although a variety of on-line algorithms has been pro-
posed, several problems must be solved in order to apply the on-
line arithmetic effectively in practical numerical computations.
First of all, floating-point algorithms for on-line operations have not
been implemented. Furthermore, the properties of redundant
mantissa have not been studied and the treatment of normalization
problem which results from using a redundant digit set has not
been established. Introducing the notion of quasi-normalization,
we present floating-point algorithms for on-line addition/subtraction
and multiplication in this paper.

2. FLOATING-POINT ON-LINE ARITHMETIC
ALGORITHMS

In floating-point on-line (FLPOL) arithmetic algorithms,
fixed-point on-line algorithms for addition [Irwi77] and multiplica-
tion [TrEr77} are modified and used to compute the result mantissa
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for arithmetic operations. The exponent processing is similar to the
method used in the conventional floating-point algorithms {Coon80,
Hwan79, Kuck78, Yohe73]. However, special care must be taken
with timing so that operand alignment, treatment of mantissa
overflow and post-normalization are performed in an on-line
fashion. The proposed normalized fixed-precision FLPOL algo-
rithms can be easily modified into variable precision algorithms.
The derivation of the FLPOL algorithm for division is a direct ex-
tension.

In order to represent the mantissa of redundant floating-
point numbers, signed -digits [Aviz61, 62] are used, while the ex-
porient is represented in the conventional form.

Definition 2.1: The k-digit redundant floating-point number x is
represented as

X, k {
x=r*Yxr,
=1

Q.1

where t is the radix, x, is the exponent represented in the conven-
tional form, and the signed-digits of mantissa x; ¢ {-p,..., -1, 0,
1,..., p} where p=r/2 for minimal redundancy and p=r—1 for maxi-
mal redundancy.

In applying the signed digit sets to on-line operations, max-
imally redundant representation is preferable to minimally redun-
dant representation, because the operands represented using a con-
ventional number system can be directly input to on-line opera-
tions. Furthermore, the on-line arithmetic algorithms with maxi-
mally redundant digit sets usually require smaller on-line delays,
and a faster execution is expected.

However, if a maximally redundant representation is used,
it may happen that a redundant mantissa x, has only one significant
digit even though all the digit positions of the mantissa are filled
with nonzero digits. We provide the following definitions for
the redundant floating-point number system.

Definition 2.2 A non-zero redundant floating-point number

x==x/rx" with k digits of mantissa represented by a maximally

redundant digit set is said to be
(1) normalized if r'<x, 1<
(2) quasi-normalized if i x, 1< 1

(3) pseudo-normalized if o x <L
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Example: For r=10, p=9 and m=4,

(1) normalized 0.1183=0.1023

(2) quasi-normalized 0.1923=0.0123
(3) pseudo-normalized 0.1996=0.0004

As discussed in [WaEr81], the developed FLPOL arithmet-
ic algorithms yield quasi-normalized results, provided that radices
higher than two are used. In order to avoid loss of significance due
to quasi-normalization, m+1 digits of redundant mantissa must be
retained if m significant digits are required. Pseudo-normalized
numbers can be only artificially generated, and would not appear in
the intermediate results of on-line operations.

Hereafter we shall use the term "normalized" to refer to
quasi-normalized redundant floating-point numbers.

Floating-Point On-Line Addition

m+l

Given the augend x=r™3¥ x;r/ and the addend
j=1
y, m+1 . 2 m+1 . , X
y=reY y;r/, the result z=r *Y. zr7' is given by the algorithm

=1 i=1
below.j The mantissa digits are represented in the redundant form,
while the conventional representation is used for the exponent.
The exponent and the most significant digit {msd) of the mantissa
of the result are obtained in the same time step. In the algorithm,
iz represents the difference of the exponents, i is the result digit in-
dex, j is the recursion index, and the flag /, ==1 indicates that the
algorithm has already output nonzero digits of the result. The vec-
tor of signed-digits s= (s, s, ..., sy+;) contains the shifted mantis-
sa digits of the operand with the smaller exponent. Overflow or
underflow of the exponent occurs if the final result of e is not in
the range of z,. The treatment of the éxceptions follows [Coon80]
except for underflow, for which processing follows the algorithm of
[Yohe73] in the case of rounding toward zero. In the following al-
gorithms, we use the delimiter || to separate simultaneous assign-
ments.

Algorithm FLPOLA

inputs x,, y, type integer; X;5 y; type signed-digit; 8, m, r type in-
teger constant

/* x; & y; become available at step j */

outputs z, type integer; z; type signed-digit

local objects iy, e type integer;, d; type signed-digit; s type vector of

signed-digits, w{j) type redundant real

global objects i, j, iy, X,, X}, Ye, ¥), 2, 2;
begin FLPOLA
/* initialization */

begin INIT
call EXCEPTA,;
i=0 1l j=1 1t w(0)=0 Il dg—0 Il
in=0 Il ig*=x,~y, Il s+ 0

end INIT;

/* negative exponent difference */

if id<0 then
begin NEGEXP
if iy>—(m+1) then
begin
e~y +8;
while i< m+1 do

begin
S
WD) =rlw G=D—d;i 1+ r3(s+y));
d—SEL[w ()}
call NORM(e, 4];
s—SHL [s1 1l j—j+1
end
end
else
begin
Ze= Ve |l zy—yy;
for i=2 step 1 until m+1 do
iy
end
end NEGEXP

/* zero exponent difference */

else if i;=0 then

begin ZEREXP

e+—-x,+8;

while i<m+1 do
begin
w(j)e—rlw (j—l)—dj_ll-f-r‘a(xj-hvj);
d;—SEL [w(j)1;
call NORMle, d1;
Jeit+l
end

end ZEREXP

/* positive exponent difference */

else if /;>0 then
begin POSEXP
if i;<m+1 then
hegin
e—x,+6;
while /< m+1 do
begin
Spai =y !
w(j)e—rlw U=D—d,_ 1+ 8 x,+sy);
d~SEL [w()];
call NORMle, 4,1;
s—-SHL [s] Il j—j+1
end
end
else
begin
Ze™X, Il Zp—xq;
for i==2 step 1 until m+1 do
2/-X; :
end
end POSEXP
end FLPOLA

In the algorithm, SHL is the left shift of one digit position.

The digit selection function SEL[w] is defined as

SEL[w] = sign(w)llw| + 0.5] 2.2)

The function SEL is the same as the one used in the E-method
{Erce7s, 77).

The on-line delay for fixed-point addition is given as




1, (=n0+a)

5= ’—/og, > . (2.3)

In the case of addition, the partial remainder w(j) has a small
number of digits and the full precision comparison is efficient. Thus
A =0 for on-line addition.

In the algorithm, the procedure EXCEPTA generates the
results when at least one of the operands is zero or special operand.
EXCEPTA is defined as below. We assume zero or NaN ("Not-a-
Number" generated as a result of invalid operations [Coon80]) can
be detected by checking the exponent and the msd of the mantissa.

procedure EXCEPTA

begin EXCEPTA
if (d<<co and jl=oo)
or (x=NaN and y=NaN) then
begin YERR
Ze Ve Il zy—py;
for i=2 step 1 until m+1 do
2=y
error exit
end YERR

else if (x=cc and lyl< o) or
(x=NaN and y=NaN) then
begin XERR
Ze—X, Il zy—x1;
for i=2 step | until m+1 do
it X
error exit
end XERR

else if (X=cc and lyl=cc) then
begin INF
output +oo or -oo or NaN,
depending on the operands
and the mode;
error exit
end INF

else if (x=NaN and y=NaN) then
begin NAN
output NaN depending on
the operands;
error exit
end NAN

else if (x=0 and 0<ll<oo) then
begin XZERO
Yo Il 2=y,
for i=2 step 1 until m+1 do
o=y
exit

end XZERO

else if (0<xl<co and y=0) then
begin YZERO
Zpx, I zp—x;
for i=2 step | until m+1 do
27X
exit
end YZERO

else if (x=0 and y=0) then
begin ZERO

2e+=0 1l z2,~0;
for i=2 step 1 until m+1 do
20,
exit
end ZERO

¢lse return
end EXCEPTA
The normalization procedure NORM is defined as follows:
procedure NORM e, 4;]
begin NORM

if i,=1 then
begm
Zipr—d; Il i—i+1
éend;

else if ;=0 then
begin
if j < m+8+] then e—e—1
else
begin
2e+0 It z2;—0;
for i=2 step | until m+1 do
Z[.—O;
exit
end
end;

else
begin
=10 i—1,
call CHECK [e];
z—d;
end;
return

end NORM
CHECK is a procedure to check Overflow or Underflow of
the exponent, defined by

procedure CHECK [e]
begin CHECK

if e overflows z, then
begin
output +oo or -0 depending on
the operands and the mode:
error exit
end;

else if e underflows z, then
begin
z+0 It 2;—0;
for i=2 step 1 until m+1 do
2;+—0,
error exit
end;

else z,~¢;
return

end CHECK
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This algorithm is also valid in case the signs of the
operands are different. If FLPOL subtraction is needed, the algo-
rithm is trivially realized by changing the sign of the addend y.

Floating-Point On-Line Muitiplication

m+l
Given the multiplicand x=r" }E x;r™/ and the multiplier
, k] ] L el =1
y=r*Y y;r~, the product z=r *Y z,r7' is produced by the algo-
=1 i=]
rithm shown below. Again we use a signed-digit number represen-
tation for the mantissa and the conventional representation for the
exponent. In the algorithm, i is the result digit index, j is the re-
cursion index, /, is the normalization indicator.

Algorithm FLPOLM

inputs x,, y, type integer; x;, y; type signed-digit; 3, m, r type in-
teger constant

/* x; & y; become available at step j */

outputs z, type integer; z type signed-digit

local objects iy, € type integer; d; type signed-digit; s type vector of
signed-digits; w(j) type redundant real

global objects i, j, /y, Xe, Xju Yes Vs Zes Zi

begin FLPOLM
/* initialization */

begin INIT
call EXCEPTM;
j—0 1t j—T1 11 w(0y—0 1l dy—01l i,~—0 1l
X_1=0 1l Yg—0

end INIT

/* recursion */

begin REC
while i <m+1 do
begin
if j=1 then e«—x,+y,+5 else skip;
Y, — CATLY,_y, y;] 1l
Xy — CATIX, ) x_ s
w (i )—=rw(—1=d 0+ r 80, Yy, X)),
di—SELIw(P],
call NORMle, 4,1;
=i+l
end
end REC

end FLPOLM

In the algorithm, 8, SEL and NORM are the same as
defined 1 in the floating-point on-line addition algorithm.
— /
X,_1=t xer k. and ¥,=Y yor~%, which are formed by the con-
k=1 k1
catenation CAT.
The procedure EXCEPTM is defined as below. We again

assume special operands can be detected by merely checking the
exponent and the msd of the mantissa.

procedure EXCEPTM
begin EXCEPTM
if (x=0 and l=oc0)

or (x|=co and y=0)
or (x=NaN and y=NaN) then
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begin NAN

output NaN depending on
the operands;
error exit

end NAN

else if (5>0 and lyl=o0)
or (=00 and {i>0)
then
begin [NF
output +oo or -co depending on
the operands and the mode;
error exit
end INF

else if (x=NaN and y= NaN) then
begin XERR
o X, |l zp—x1,
for i=2 step ! until m+1 do
X
error exit
end XERR

else if (x# NaN and y=NaN) then
begin YERR
T Ve Il VI
for i=2 step | until m+1 do
iV
error exit
end YERR

else if (x=0 or y=0) then
begin ZERO

=01l -1—0;
for i=2 step | until m+1 do
-0,
exit
end ZERO

end EXCEPTM
Time Requirement

From the above algorithms, we obtain the foliowing on-tine
delays for a maximally redundant number system and a higher ra-
dix assuming the exponenl processing time is ecqual 1o the digil
computation time. In the following discussions. we use the nota-
tion &, for the on-line delay of floating-point addition and 8., for
multiplication.

08, € m+3, (2.4

where 8,=0 if at least one of the operands is zero, §,= 1 or 2 for
addition of the operands with similar signs. and &,=2 to m=+3 for
subtraction.

Using the above results, the total number of time steps 10
yield a result of m+1 digits can be given. [l at lcast one of the
operands is zero, the total number of sieps 's m+1. For on-line
addition of operands with similar signs, the m+!-digit result 15 ob-
tained in m+2 to m+3 steps, and for on-line subtraction m+3 10
2m-+4 steps. If we assume that alignment shift or normalization
shift of one digit position in conventional floating-point arithmetic
takes one time step. then conventional floating-point addition and
subtraction takes m-+1 10 2m+2 sieps including one time step for
exponent processing. The excessive delay which occurs in subtruc-
tion can be improved by using unnormalized arithmetic or
significance arithmetic [BiMe77. MeAsS8].




Since the absolute value of quasi-normalized operands are
in the interval [r~21), the absolute value of the product should lie
in the range {/=*1). That is, the number of leading zeros is at most
three. Thus the total delay of FLPOL multiplication is bounded by
the following inequality:

0<5, <4, (2.5)

where §,,=0 if at least one of the operands are zero.

Thus the total number of steps to yield m+1-digit product
becomes m+2 to m+5. In particular, if at least one of the
operands is zero, the result is obtained in m+ ! steps.

3. COMPUTATION USING ON-LINE ARITHMETIC

As stated previously, the exponent and the msd of the
result mantissa are obtained at the same time in on-line arithmetic,
and the subsequent operations can be initiated as soon as both of
the msd’s of the operands are available. We shall illustrate this
process using an example. Consider the expression

z=a+ (bx + o), (3.1)

where a, b and ¢ are constants represented in the conventional
form, and x and y are variables represented in the redundant form.
The msd’s of bx and cy are produced after a small number of de-
lays. Then addition bx-cy can be initiated as soon as the msd’s of
both bx and ¢y become available. Thus the computation is carried
out in a digit-serial fashion, starting with the msd of the mantissa.

A numerical example is shown below.

Numerical Example: r=10, p=9, m=8,

z=a+ (bx + ¢y), where

a=0.32751613£+00, b=0.14752103E +00,
¢=0.71253192E-01, o
x=0.604115215£-01, y=0.133301253£-+01

time 123456789012345

be 0

b 147521030

X, 1

x; 6041152153

bx | S

112141530

c, 1

¢ 712531920

e 1_ _

/i 143301253

cy 1 o
451042131

bx-+cy o_ _ ___
154102254

a, 0

a; 327516130

2, 0 .

z; 421414124

The computing time of expression (3.1} using on-line arith-
metic becomes 14 digit steps using 4 FLPOL arithmetic Processors.
In conventional normalized floating-point operations, the exponent
must be adjusted after the msd of the mantissa is obtained. There-
fore, floating-point addition can not be initiated until the whole pro-
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cedure of the preceding operations is completed. Assuming that
the exponent processing time and the digit computation time of
conventional arithmetic are equal to the digit computation time of
on-line arithmetic, it takes 27 time steps to vield the same result
using two conventional floating-point processors. In this example,
the computing time using on-line arithmetic is approximately 52%
of that of conventional arithmetic. It should be also noted that the
computing time of on-line arithmetic is less dependent on the pre-
cision.

4. CONCLUSION

Introducing the notion of quasi-normalization, floating-
point algorithms for on-line addition and multiplication have been
presented. Those developed are normalized, fixed precision algo-
rithms. Because of quasi-normalization, m+1 digits must be com-
puted to retain m significant digits. The exponent is represented us-
ing the conventional representation, while the redundant represen-
tation is used for the mantissa. One of the advantages of on-line
arithmetic is that on-line addition need not wait for the completion
of alignment shift, because this can be done in parallel with the re-
cursion for computing the mantissa digits.

Since the exponent and the msd of the mantissa of the
result are obtained at the same time in FLPOL operations, the sub-
sequent operations can be initiated as soon as the msd’s of the both
operands become available. Therefore, a highly overlapped digit-
serial computation can be performed using FLPOL arithmetic.
Furthermore, its computation time is less dependent on the preci-
sion.
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