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ABSTRACT -- The properties of redundant number system in
mantissa representation are studied and the range of the redundant
mantissa is derived. From the range of the mantissa and the abso-
lute error of on-line operations, the MRRE (maximum relative
representation error) is defined and analyzed for redundant
floating-point numbers.

1. INTRODUCTION

Introducing the notion of quasi-normalization, FLPOL
(floating-point on-line) arithmetic algorithms are presented in the
associated paper [WaEr81]. In this paper we study the properties of
the redundant number system in mantissa [Aviz61] and the error
characteristics of FLPOL arithmetic operations.

A number of measures have been proposed to evaluate the
performance of computer arithmetic. Wilkinson [Wilk63] used the
maximum relative representation error (MRRE) which can be used
for worst case error analyses. McKeeman [McKe67} proposed the
average relative representation error (ARRE) and compared
floating-point number systems with different radices. Brent
{Bren73] suggested to use the root mean square (RMS) error cri-
terion to discuss the choice of a radix for floating-point numbers of
fixed length.

The roundoff methods used in conventional arithmetic are
not required in the on-line algorithms, since simple truncation pro-
duces no bias [Aviz62]. We study in this paper the errors resulted
from the FLPOL algorithms for addition/subtraction and multiplica-
tion in terms of the absolute error and the MRRE. The logarithmic
distribution [Hamm?70] is normally used as an approximation to the
distribution of mantissa for conventional floating-point arithmetic.
However, the statistical properties of redundant floating-point
numbers have not been established, and therefore the ARRE or the
RMS criterion can not be discussed at this moment.

2. RANGE OF REDUNDANT MANTISSA

Due 1o the nature of the digit selection function used in the
on-line algorithms, the result digits are always chosen so that the
computed result of an FLPOL operation is within a certain error
range from the true result. This property is briefly stated in the fol-
lowing theorem:

Theorem 2.1: The absolute error incurred by terminating the
FLPOL algorithms for addition, subtraction and multiplication at
the k48 th recursive step satisfies the inequality

el
|ek] < [BA +2p I—I

—k+z,
3 . Ir @.n

where €, is the absolute error due to truncating the computed
result at the (k+8)-th step, r is the radix, p is the maximum digit
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that could appear in the operand mantissa and z, is the exponent of
the result.

Y,
Proof: Let two redundant operands be x=x,~rx‘ and y=y,r°.

(i) Addition/Subtraction

Without loss of generality, we may assume x,2>y,. Then
the operand y is rewritten in the aligned form
m+1 s
y=reS e, 2.2)
J=1
where i, is the difference of the exponents, e,

0K iy=x,~ye <m+1.
The absolute error committed at the (k+8)-th step is given
by

|€ki = |2 e Zk‘ (23)

where ? is the true sum and Z, denotes the computed result at the
(k+8)-th recursive step. We must note that in on-line fixed-point
addition the algorithm outputs & zeros in the beginning if there is
no overflow. The true sum is written in the form

X Iq m+1 .
=R+ R (X./+yj—’d)r_l

J=1 jrighl

m+1+i,

+ B !

J=m+2

mA1+iy

= rxg 2 (Xj +yj_/d),—l
Jj=1

(2.4)

where x;=0 for j>m+1 and y,=0 for j<0.

If we stop the recursion at the (k+8)-th step, then we have
obtained the partial remainder w(k+3) and the result digit dy4s,
but the operand digits xy+s+1 and yx+s+1-,, have not been included
in the recursion. Then from the recursion of the FLPOL addition
we obtain the following relation:

wk+5+1) = riw(k+8) — dysg) + r 30+ 0)

k+s A
) (X/+yj-,d)’—j B at) Y o

J=1 Je=1




That is,
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where y;=0 for j<0. Multiplying both sides of (2.5) by, we ob-
tain

Ak RS oy
Zy=r 'Zz,r f= (r’z dir)re
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— G (k+5+1)) (2.6)

where z,=x,~L if no overflow takes place, and z,=x,+1 and z;=1

otherwise. From (2.3), (2.4) and (2.6),
. m+l+/d
legl =r") 3 G+ yymi )
J=k+8+1
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Since 1w (k+3+1)] < r—HiAw and in the worst case ;=0 and

x;=y;=p, we obtain (2.1). The righthand side of inequality (2.1)
is derived if an infinite precision of the operand representation is al-
lowed. In practice, the precision of the operands is limited and the
error would not exceed that value. For subtraction the same con-
clusion is derived by changing the sign of the addend y. Hence the
theorem is correct for addition and subtraction.

(ii) Multiplication

In case of multiplication, the problem is simpler than in ad-
dition, because the mantissa alignment is not needed. Let us as-
sume that the mantissa of the product has L leading zeros before
normalization. Then the FLPOL multiplication algorithm discards
8+L initial zeros and adjusts the exponent of the result to
X ty,—L.

For FLPOL multiplication, we have for tre true product

m+1 i+l

3o et - =/
F=7 PIETED I,
=1 i=1

Xty m+1
=reey (x, Y, +p X, )t
j=1

(2.8)

—
where X,_]=t x,r ", and Y,=iy,, r~". Let us denote x,+y,, the
1

=} ne=

exponent before normalization, as z,.
FLPOL algorithm, it follows that

From the recursion of
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Hence, the absolute error becomes
lex| = relr %05 (K 4+541)
m+1
+ ¥ YAy X (2.10)
j=k+8+1
Since [X,\], 1¥,1 < —g—/__l and [w(k+8+1)| < /‘I;A , we obtain

1+A r8 —k+z,
J < |—== + 202~ T
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Since z,=x,+y, is the exponent value before post-normalization.
(2.1) is valid for FLPOL muttiplication also. Hence. Theorem 2.1
is proved. I

This theorem is of basic importance, because it leads (o the
derivation of the redundant mantissa wilth the smallest magnitude
and provides the proof that the results of the FLPOL operations are
quasi-normalized for higher radices.

With regard to the mantissa of FLPOL operations. the fol-
lowing theorem is provided.

Theorem 2.2: The absolute value of the redundant mantissa is no
_ —5
less than —1—2A - Z&IT r~Vif the mantissa is produccd by the
o
FLPOL algorithms. In other words.

rl Q2.1

Proof: Suppose the result has L leading zeros and the most
significant nonzero digit of the result is one. The overflow is con-
sidered 1o be the case in which L=-1. Obviously ihe leading zeros
are removed by the FLPOL algorithms, and we have a digit *1” or
17 at the (8+L +1)-st recursive step. From Theorem 2.1, this par-
tially computed result has an absolute error of magnitude

le, vl <

AHA L dprod ) e
2 r=—1

Then the minimum bound 0f the result is given by the mequalin

—L A1)+
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Hence (2.11) follows. =




The RHS of (2.11) s
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For multiplication we obtain the range of the mantissa in a similar
manner

1-a _ M p1 2
]Z/| > [ 3 (r-‘l)z]" . (2.13)

> Zfmin

Zrmin 1S the smallest absolute value of the redundant mantissa of the
result if the operands are represented with an infinite precision.
For instance, in case r=p—1, 8=1 and A=0, (2.12) yields

-’m,,=7r'l—2r‘2. This value can be derived also by an inductive

method.
Consider the recursion for on-line addition:

begin OLADD
w{(0)—0; zy~—0;
for j=1 step 1 until m+5+1 do
begin
w(i) — rlw(-D-z,_] + g +y,)
z; «— SEL[w()i
end
end OLADD

Let us assume z;=0 for 1<, <k—1 and z;=1. Therefore, we must
have

05< wk) <15

Then for j=k+1 we have
wlk+1) = rlw(k)=1] + r3 (1 yeay)

To find the smallest absolute value of redundant mantissa, we find
the minimum value of w(k+1). The minimum value i obtained
when w(k)—z=—(14+A)/2 and the digit inputs xpp1=y=—p.
That is,

min w(k+1) = —(1+A)r/2 — 2pr78

Since for addition full precision comparison is possible, we have
A=0. For =1 and p=r-1, we have

2

min wik+1) = —L—24+=
2 r

For r>4,
Zg| = "(?r +2).
Then it follows that
2

min w(k+2) = ',-_, and Zk+‘2=0-

It can be proved by induction that 24=0 for all j>k+2. Since the
leading zeros are removed by the FLPOL algorithms, the smallest
redundant mantissa with the msd 1 becomes

min {z,| = 0.140000....,

where d=-(r/2+2) for p=r—1, 8=1 and A=0. Therefore, min
lz/l= rt=(r/242), 2= %r‘l-—Zr'2== Zymin- Thus the ranges of
redundant mantissa obtained by the both methods agree.

Corollary: The FLPOL arithmetic operations can always yield a
result with quasi-normatized mantissa for any radix higher than 2 if
there is no restriction on the number of defays and the number of
comparison digits.

Proof: It is sufficient to show that {2 [>r=2 From (2.12) it fol-
lows that

r g 1_—2-/;_ - %_LI (2.14)

Let A=2r1"8 where 8 is the number of comparison digits used in
the digit selection function. If there is no restriction on the values
of 3 and B, it is possible to satisfy (2.14) for any radix r>2. Hence
Zpmin 2172 for 1>2. O

For radices higher than 6. z,,,>r"? with 8=1. For lower
radices except 2, it is possible to produce guasi-normalized rgsults
by using larger value of 8. For radix 2, Zfmiy 18 NO less than 777,

3. REPRESENTATION ERRORS
(a) The Absolute Error

The maximum bound of the absolute error is easily derived
from Theorem 2.1 by setting k=m+1 in equation (2.1). However,
the maximum error bound can be improved if we study the FLPOL
arithmetic operations carefully. For static error analysis, we study
the effect of truncating the result at (m-+1)-st digit assuming the
operands are free of errors.

A. Addition
(1) overflow in the sum
(1) I‘d<5_1

After m+38 steps all the digits of the operands are included
in the recursion , and (2.7) leads to

e, ] = [~ tmtDy (m+s+1) |7

< I;A r*-(m+l)+:(, (31)

where z,=x,+1.
(i) iy>5—1

Similarly from (2.7),

'Eml = rxe,ym+6~/d+lr‘(m+8+D+~-<
—(m+ ) - -
+ Voarr et (’"“)w(m+8+1)’
-] o
< I;A + %f‘jr], (m Fl+z, (32)
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where z,=x,+1
(2) No overflow in the sum

G i, <8

After m+8+1 recursive steps all the operand digits are in-
cluded in the recursion, and (2.7) leads to

€ mat] S [Fm D5 (m+542) |77

1+A ~(m+1)

- mt +”, (3.3)
where z,=x,
Gi) i;>8

Similarly from (2.7),
'5m+1| < "x‘[J’m+a+2—.;,"_(m+5+m+~-
+ Ymart VLD (15 12) |
-3]
< Hz-A + ;L:_l_ , (m+1)+z,, G.4)

where z,=x,.

Summarizing the above cases and considering A=0 for ad-
dition, the absolute error e, of FLPOL addition is bounded by the
following inequality:

r8 —m 2,
lea] < (3 + BL) (.5)

B. Multiplication

After m+L+8+] recursive steps, all the digits of the
operands are included in the recursion, since 821 and L >—1.
From (2.10), the absolute error e, of FLPOL muitiplication
satisfies the inequality

1+A r—(L+m+l)+x£+yL,

le,] >

<

1+A —(m+1)+z,
=y

2 3 (3.6)

where z,=x,+y,—L.

We see from (3.5) that the absolute error of FLPOL addi-
tion is nearly rounded for higher radices or a large value of on-line
delay. (3.6) also shows that the absolute error of FLPOL multipli-
cation is nearly rounded if the number of comparison digits is large
enough. These results are quite natural because the digit selection
function is a rounding procedure.

(b) The Maximum Relative Representation Error

The maximum relative representation error (MRRE) for
redundant floating-point numbers is defined as

90

MRRE = X% = 2 6.7

min|z,|
where ?=r%3, is the true result of an arithmetic operation and
z=r"z; is the computed value.

(i) Addition

From (2.12) and (3.5) we obtain the expression for the
MRRE of FLPOL addition as

1,

E,=-2 1=l n (3.8)
1 2pr”
2 r—1

(ii) Multiplication

Similarly from (2.13) and (3.6), it follows that

— 3.9)
1-A  2p°r
2 (r=1)?

The values of the MRRE for addition and multiplication are shown
in Table 3.1 for different combination of r, p and 8.

The MRRE of redundant floating-point numbers can be
used to compare the characteristics of different floating-point
number systems [McKe67], and also it may be used for worst case
error analyses [Wilk63} of the computations using on-line arithmet-
ic. As we see in the table, a larger radix with smaller p yields
better figures of the MRRE.

MRRE (xr~™)
addition multiplication
r p & | (A=0) a=2,9
8 4 2 | 1.0555556 | 1.0874243
5 1 | 1.8333333 | 1.4450402
6 1] 2125 1.7147402
7 1]25 2.2
10 5 2 | 1.0340909 | 1.0540954
6 1 | 1.5454545 | 1.2714681
7 1| 1.6774193 | 1.3820676
9 1720 1.7586207
16 8 2 | 1.0126050 | 1.0203185
9 1 | 1.2647059 | 1.1170765
10 1113 1.1438424
15 115 1.3578947
32 16 2 | 1.0030303 | 1.0049617
17 1 | 1.1103896 | 1.0432058
18 1 1.1173913 | 1.0481742
31 1 | 1.2142857 | 1.1476510

Table 3.1: The Maximum Relative Representation Error

4. ERROR GROWTH IN ADDITION

A result of simulation is shown in Fig. 4.1. A constant is
added repeatedly, and the error growth is measured for both on-line




and conventional arithmetic. In conventional rounding arithmetic,
S 1 - . . . .
the MRRE is given by 7/" . For instance, in radix-10 8-digit

number representation system the MRRE is 5.0x107%. In FLPOL
arithmetic, one additional digit is computed to prevent loss of
significant  digit in the result mantissa because of quasi-
normalization. As a result, the MRRE of FLPOL arithmetic is
maintained smaller than that of conventional arithmetic. In the
radix-10 9-digit maximally redundant representation, the MRRE for
FLPOL uddition is 2.0x107% as shown in Table 3.1. As expected
from the comparison of the MRRE's, we observe in Fig. 4.1 that
the error growth of FLPOL addition is smaller than that of conven-
tional addition. The relative error of FLPOL addition grows rela-
tively rapidly near the points where the number of repetition is ap-*
proximately 130. This is due to quasi-normalization of the result
which causes loss of one significant digit.

The worst case absolute error of

YINY =Y (N=D) + Y] +E,)

a

(4.1)

is approximately given by %L},N(N—I)X neglecting higher order

terms. Since the true vaiue of Y{(N) is NX, the relative error is
(’,=%E{,(N~l). If we substitute the MRRE of FLPOL addition

£,=2.0x107% and the number of iterations N=201, we obtain
¢,=2x107% In Fig. 4.1, the relative error of on-line arithmetic at
N=200 is approximately one-seventh of the worst case error.

5. CONCLUSION

The static error characteristics of the FLPOL arithmetic
operations have been discussed in detail. General properties of the
redundant mantissa have been studied. By using a method of error
analysis, the range of the redundant mantissa has been derived for
general redundant representation. The range can be also derived by
an inductive method. As a result, the FLPOL operations are
proved to yield quasi-normalized results. The MRRE has been
defined tor redundant floating-point numbers using the absolute er-
ror and the range of the redundant mantissa. The MRRE is im-
proved if a higher radix with smaller p is used. The MRRE of
FLPOL operations can be used o compare the characteristics of
different floating-point number systems and can be used for the
WOrst case error analysis of computations using FLPOL arithmetic
also.
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ERROR CHARACTERISTICS; RADIX = 10
Y (N) = FL{Y (N-1) X}, Y {0) = 0.0, X = 0.49131432
0.25- +: ON-LINE ADDITION (M + 1 =8, TRUNCATION)
i {': CONVENTIONAL ADDITION (M = 8, ROUNDING WITH G = 1)
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Figure 4.1: Error Growth in Addition: A Comparison




