AN ALGOK1ThM FOKk MODULAK EXPONENTIATION

Robert willoner & 1-Ngo Chen

Intel Corporation, Santa Clara, California &
bepta of Computing Science, Univae ot Alberta, kdmonton, Canada

Abstrach least-signiticant-pit-first fasnion, and
the results are produced in the same
The bpest known algorithm for pgodular manner« The aavantages ot this mode of
&xponepntiation, M® mod t for arbitrary M, computation stem from the fact that a
e and t is ot 0(n%*) where n is the number sequence of operations can be performed in
©f bits in the largest of M, e and tae This an overlapped tashion, resulting in a
paper presents an 0(n®) algoritnm for the signiticant speeding up over traaitional
problem where n® mod t is required for sequential algorithmsa
many values of M and e with constant te
Some preprocessing is done on t, and the A linear on-line multiplier has been
results are applied repeatedly to dittfer- aesigned ana publisned[}]. The reader is
ent values of M and e« The main algorithm assumed to pe familiar with the notation
involves op-line arithmetic in a redundant, used and the results reported in tnat
number systems An immediate application is paperas.

in encouing/decoding of messages in an

h>h-based puplic-key eryptosvstema
.]) . .

" :
lntrodyction Tne provlem of moaular exponentiation
tor arpbitrary arguments has been studied
Tnere nhas pbeen considerable mention in extensively [4] . The procedure recommended
tne recent literature (] about "public-key in 1 is given as A4lgoritnm 1. This
¢ryptosystems"s. A necessary component of algoritnm is. of time complexity uin®)y,
such a PKCS is a "trap-door one-way where n is the maximum of the lengths ot
tunction"a kivest, Shamir and Adleman[ﬂ the three operandsa
nave suggested the use of modular
exponentiation as tne trap-door algorithm A more suitable algorithm for the FRCS
tor tne encoding/decoding of messages in a provlem is similarly based but also makes
PhCSe This involves repeated modular use ol the linear on-line concepis devel-
exponentiation ot blocks of different oped in [ﬂ « 1t 1is presented as Algoritnm
messages, using the same moduluse A 2a ks opposed to tne previous algoritnm,
guadratiec algorithm for this will e tnis one aoes not erticiently perform
presenteda in this papera modular exponentiation on three arbitrary
numbers of length na katner, it t is
Tne concept ot lipear, on-line arithme- constant, it rapidly computes M€ mod t for
tic must first be developed« An operation cnanging values ot I (e may be constant or
is said to vpertorm in linear time if its variable)s This is, ot course, exactly
execution time is bounaed from above (and what a FKUS requiresa
velow) by some constant multiple of the
length ot tne longest ot its operandss The An analysis of Algorithm ¢ will snow
on-line property is satistied it, in order that it pertorms in time U(n®*). The basic
to generate the ith bit of the result, it elements of Algoritnm 1 will also be found
is necessary and sufticient to have the in hlgoritnm 2. Lines Y-1¢0 pertorm the
operands availaple %o the ith pit only. initializationas Line 11 is the start of
IThe operands are assumea to "flow through® thé main loop for repeated squaring and
the operator in a bit-by-bit, multiplications Lines 1z-43 correspond tvo

. 135
CH1630-3/81/0000/0135$00.75 © 1981 IEEE

the squaring of u, ana lines 44-%1 corre-
spond to the multiplying of ¢ by M (it the
appropriate pit in e is 1})s The key idea

in the algorithm is the saving of approxi-

mately n divisions which are otherwise
reyuireda The technique for tnis is as
tollowsas

A tabple of residues modulo t of powers
of ¢ from 1 tnrough Zv, where v = 2{n +
flog n1), is construeteds Since t 1is
¢oenstant tor many values of M, it is

irrelevant how tnis table is computed, and
the results may later be retrieved from a
kume The two sets of multiplications are
pertormed on-line as deseribed in tﬂ‘. As
4 given bit of a particular product S =
[skkn)——-—sk1)] is proauced by the multi-
plier, rather than letting the result g

increase in size exponentially, the
corresponding residue is adaed to the
accumulated value of Gas« The use of recdun-
g¢ant notation allows this to be done in

one time stepa in this WQ{, ¢ never gets

longer than u = n + flog ni bits« In order
to keep W« in redundant notation, the
temporary storage locations 1 and Q¢ are
needed. The ©Dbits of (are gq{(1), ~ « -,
qlul}s The resiaue (it the corresponding
pit of > is 1) is stored in (Z, as speci-
tiega in lines 35-36& and T1-724 The

reduetion of « in one time step to redun-
aant notation is dome in lines 37-43 ang
T5-7Ty« Tnis entire sequence is performed n
tines ana tnere are n residues to be added
at most twicea. hence, the worst time for
tne bulk of tnis algorithm is 2n% = 0(n%).
Tnere is also a tinal division to be
performed in line 42. As this is done only
once, tne particular algorithm wused is of
no interest, as long as it takes no more
tnan uin?) timea

An example
rigure ta

of this procsdure is given

as

Lonclusions
A quadratic algorithm for modular
exponentiation with constant moaulus has

been aescribedas It is particularly suit-
able tor encoding/decoding messages in a
FL> based on the hSh algorithm« The need
1or such a system for such applications as
secure electronic mail, electronic funas
transter (erT), ana even rapid encoding
and daecoaing ot telepnone conversations,
is ©Dpecoming inereasingly obvious in our
tecnnological societyas

136

M= 111
e = 1011
t = 1101

Residue table

P 2% mod t
1 1
2 10
3 100
4 1000
5 11
b 110
7 1100
5 1011
9 1001
10 101
11 1010
12 111

Partial Powers

Q

1 111

10 1010

100 16110

101 11000

1010 10001

e = 1011 11100
M® = 10 (moa t)

rigure 14 wmxample of modular
exponentiationa
heferences
Liftie, we and Me ke hellman, "New

Direetions in Cryptography", PYANN
Iransactions on Infor i

vol. 11-22, ne. b6, ppa 64Y4-654, Novem-
ber 147b
hivest, Ka La, A Shamir, and La

hdleman, "A Method for Obtaining
vigital Signatures and Public-key
Cryptosystems", Lommunicakions of the

All, volae 21, noa 2, ppae 120-12b,
rebruary 1y7»
then, 1-N. and ka Wwilloner, "An O(n)

parallel multiplier with bit-Sequential
lnput and butput", d i

Lopouters, vol. c-2b,

: no. 10,
147y

Uctober

kputh, La ke, 1lhe Art of Computer
; = Y -

vola =, Addison-wesley, 1471

Algorithm 1

Modular exponentiation by repeated
squaring and multiplication

begin

comment This algorithm evaluates the
encryption function M® mod t where
M, e and t are arbitrary n bit
numbers, esge e = [e(n)----e(1)];

comment Initialize;

Ta G <-- 1;
comment kxamine the bits of e
from left to righta Square and
multiply ¢ by M (mod t)
according to the value of e(i);
Za for i <-- n step -1 until 1 do
Sa begin
b, ¢ <-- pemfury, tl;
S5a it e(i) = 1 then
¢ <-- reaferm, 4
ba end
enda

Algorithm 2a

Vuadratic modular exponentiation algorithm

begin
comment Given M = Lm(n)——m—m(1ﬂ
= le(n)--w-e(1)]and t =
&(n)—-——t(lﬂ (M is given on-line

with the least significant bit
first), this algorithm computes {
= [q(n)————q(1)], the ciphertext
corresponding to M (4 is also
produced on-line);

comment lnitialize;
u <--"n + [1log n];
v <-- zu;

comment Compute the u residues rt,
P2, = a a, ru of t;

p <-- 1
for i <-- 1 until u do,
begin
[Pi(n)---wri(1)] <-- remp, tl;
P <-- «p
end;
q(1) <-- 1;
for i <-- 2 until v do q(i) <-- 0;

137

11a
12.

135a

Tha
154
164
17
10w
19.

z0a

37a
50a
39

L‘qu

41.
42.
“Ja

by,
bo.

qb.

474
boa
by,
50a
51a
bza
H3a
XTI
55.

50

-

or k <-- n step -1 until 1 do
begin

comment Square G;

for 1 <-- %t until u do

E

begin
for j <-- 1 until u do
begin
A(3) <-- 03
b(j) <-- 0
b

f q(i) = 1 fhen

begin
for j <-- 1 until i do

A{i+j=-1) <== q(i);
if 1 > 1 then
for j <-- 1 uptil i-1 do
b(i+j-1) <=- q(j)
end;

for j <-- 2n-1 step -1 until 1 do
begin
t(1) <-- s23[a(j), by,
Cit3-1), c2(3-2), s(i;
t(a) <-- sustA(J) 55,
(3-1), ca2(j-2), s(j];
t(;) <-- 5135[A(J) b(j),
C1(j-1), c2(3-2), s(jN;
C1(j3) <-- t(1h
C2(j) <«-= t(2);
s(3) <=-- t(3);

J <--"1 until n do
C2()) <-- ri(j);

for) <-- n-1 step -1 until 1 do

begin
t(1) <-- s13fletoy), w2og-1,
q(i)];
t(2) <-- sz3[el(y), we(j-1),
g(j)];
CE(G) <=-= t(1);
q(J) <-- t(2);
end
if e(k) = 1 then
vegin
comment Multiply « by M;
for i <-- 1 until u do
begin
for j <-- 1 until u go
begin
A(J) <-- 0}
b(j) <~-- 0
end;
it q(i) = 1 then
begin
tor j <-- 1 until i go

A(i+j-1) <== m(j)
eng;

57« if m(i) = 1 then

50 begin
594 it i > 1 then
00 for j <-- 1 until i-1 do
B(i+j-1) <=- q(3Jj)
61 end,;
b tor j <-- 2n-1 step -1 unti] 1 do
63 begin .
bb. t(1) <-- s23{acy), B(J),
C1(J-1), C2(j-2), s(i)];
65 t(2) <-- s450a¢3), bB(J),
C1(3-1), C2(j-2), s(J)];
bba ti3) <-- s135(a(j), B(I),
C1(j-1), C2(j-2), s{i)];
67 C1(J) <=- t(1);
6ba Ca(j) <-- t(z2);
bYa s(3) <-- t(3);
70 end;
Tla tor j <-- 1 until n do
w2(3) <=- 0;
Tza if s(i) = 1 then
for j <-- 1 until n do

Qz(3) <=- ri(j);

T3a for j <-- n-1 step -1 until 1 do

Tda begin

754 t(1) <-- s150Q1(3), w2(j-1),
q();

T6a t(2) <-- sz3(e1(3), wa(j-1),
q(J)];

TTa Q1(3) <== t(1);

Toa q(3) <-- t(z2)

T9a end

00 end

o1« end; .

°za [a(n)----q(1)] <-- remfq, t]

enda

138

