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ABSTRACT
This paper introduces the VLSI design and
layout of a (1og2n) time n-bit binary parallel
multiplier for two unsigned operands. Proposed

design consists of partitioning the multiplier and
multiplicand bits into four groups of n/4 bits
each and then reducing the matrix of sixteen pro-

duct terms using three to two parallel courters
and Brent-Kung (log n) time parallel adder. Area-
time performance of the present scheme has been

compared with
multipliers.
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shown to be suitable for VLSI imple-
an improved table look up multiplier
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I. INTRODUCTION
Multiplication of two binary numbers consists

of generating partial products and adding partial
products to the shifted sum of all previous re—

sults. This shift and add of partial products to
perform a multiplication of two binary numbers
takes a ‘long time. In order to speed up the

multiplication operation an elegant sequential al-
gorithm was invented by Booth [3] which generates
the partial products that are +1, 0 and -1 times
the multiplicand. Here the speed up (which is a
factor of two on the average) is achieved in terms
of generation of fewer partial product terms.
Booth's algorithm was further modified for quater-
nary scheme [1l4] to improve the multiplication
speed. The sequential multipliers [3,1%] offer
simplicity of logic and lower cost as compared to
parallel multipliers but their speed of computa-

tion is lower than the parallel multipliers. So,
when it comes to the applications such as real-
time signal processing, where the speed of compu-

tation is the crucial factor, the use
multipliers becomes essential.

of parallel

Several schemes for parallel multipliers
[1,8,9,10,11,13,15] have been proposed by sevaral
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authors and these schemes can be classified in to
two categories -— iterative arrays [1,9] and re-
duction type [8,13,17] in which a matrix of par-

tial product terms 1s subjected to reduction by
means of parallel counters. In this paper we pre-
sent the design of a n-bit parallel multiplier to
multiply two unsigned operands based on the reduc-
tion principle. This proposed recursive scheme
for multiplication modifies Luk's [11] parallel
multiplier to incorporate larger partitions
(greater than two) of the multiplier and multipli-
cand bits, uses Breat's [4] adder and Stenzel's
[15] parallel counter for reducing the partial
product matrix. It takes (logzn) time to perform
n-bit multiplication. VLSI optimality [7] i.e.
(the area x time) complexity of the multiplier has
been compared with the existing parallel multi-
pliers and a VLSI layout of the proposed multi~
plier has been presented. An improved table look-
up technique has been suggested to form the basis
(lowest level multiplier) of our n~-bit multiplier.

II. n-~BIT MULTIPLIER
Luk's [1l1]) multiplier 1is based on the fact
that the multiplication of two n-bit numbers can

be accomplished by four n/2 bit multiplications,
one n-bit addition and a single 2n-bit addition.
Consider X,Y be two n-bit binary numbers (assuming
that n 1s a power of 2) and say a,c, be the most
significant n/2 bits and b,d be the least signifi-

cant n/2 bits of x and y, respectively. Then pro-
duct XY can be expressed as:

Xy = (zn/12.3+b)(2n/2.c_,d)
or

XY = 2Rac+20/2 (ad+bc) + bd (1)

In this equation ac, ad, bc and bd consist of

four n/2 bit multiplications and each of them re-
sult in a n bit long number. 2%ac and bd form a
2n~bit number and it is added to the sum (n-bit

addition) of ad and bc, with appropriate shifts, by
a 2n-bit adder. This n-bit multiplication could be
recursively reduced to 2x2 bit or 4x4 bit multipli-
cation level where it could be realized by PLA or
ROM multiplier.

In our scheme as opposed to Luk's [11] scheme
we partition the multiplier and multiplicand bit




into four groups. This gives sixteen partial pro-
duct terms. Section IV discusses the gain in the
speed (as compared to Luk's scheme) achieved by
the method of grouping the matrix of sixteen terms
and using Brent-Kung's [4] O(log n) parallel adder
and three to two parallel counters (these counters
have been shown to be optimum by Reusens et. al
[13].). Aho et. al. [2] also suggest a possible
method of designing an asymptotically faster (se-
quential) algorithm if one is able to express the
binary multiplication (in the case of four parti-
tions) in terms of eight or fewer multiplications
as compared to sixteen in the normal procedure.
Theorem 1 proves that it is not possible to devise
such an algorithm.

Theorem 1: Multiplication of two n-bit numbers
cannot be expressed in terms of eight
or less smaller multiplications of
size 0(n/4).

Proof: Consider two n-bit binary numbers X and Y

where x=4K and & is an integer greater
than 0. Let X1,Xp,%3,X, and Y1:Y2:Y3>Y4
be the four partitions of X and Y, respec-
tively, such rhat

X = X4.23n/4 + X3-2n/2 + x2.2n/4 + x7
and
Y = y4.23n/4 + 373-21"/2 + y2.2“/4 + bal

Partial product term matrix of product XY
consists of sixteen terms as shown in Fig. la. It
is clear that terms X1.y1 and x4°y; have to be
achieved through normal n/4 bit multipliers. This
enables us to achieve the sums of second and sixth
column by (n/4+1) bit multiplications, {i.e.
(x9+x1)(yp+y1) and (X4+X3)(y4+y3) and followed by
subtractions of (Xl'ylﬂiz‘yz) and (X3'y3)+(X4'yA)
respectively, and preceded by n/4 bit addition
ounly if we have partial products Xp'yp and x3°y3.
So we need product terms X2°yp and x3-y3. Now we
can also achieve the terms of third and fifth
column by multiplications (x4+x3)(y4+y2) and
(x3+xy)(y3ty)) followed by two subtractions of
X2°¥72, X4y'y4 and X3°y3, X1,yY] respectively. Pro-
duct terms of the fourth column are yet to be
achieved and would involve one more multiplica-
tion, but this would amount to a total of nine
multiplications. This means that an n-bit multi-
plication cannot be performed by eight or less
multiplications of order n/4.

In our scheme 16 product terms are generated
in parallel. We divided the parallelogram of pro-
duct terms into two symmetrical groups as shown in
Fig. 2. In this figure each aj, 1=1 to 16 repre-
sents one partial product term of Fig. la and is
n/2 bits long. The bit positions of the ay's are
shown in Fig. 1b. Each group 1s separately added
to produce (5n/4+l) bit long number. Adding the
result of these two groups by a 2n-bit adder we
get the product XY. In group 1 (group 2) product
terms of third column (fifth column) are fed to a
three to two counter. One of the outputs of three
to two counter is appended with product term of
first "column (seventh column) to form n/2 bit

long number and then added to other output of the
three to two counter by mtl bit adder (n bit adder
in group 2).

The difference between our scheme and Luk's
scheme lies in the way partial product terms are
reduced. In Luk's scheme (when n-bit multiplica-
tion is expressed in terms of n/4 bit) the matrix
of partial product terms is divided into four
groups as shown in Fig. 3 and each group is added
separately. Whereas in our scheme the matrix is
divided diagonally into two equal size groups as
shown in Fig. 2. Section IV shows as to how the
use of counters enables fo increase the speed of
multiplication.

ITII. LAYOUT OF AN N-BIT MULTIPLIER

Fig. 4 presents the detailed layout of an n-
bit multiplier. This n bit multiplier is suitable
for VLSI implementation as it 1s a simple recur-
sive structure. The multiplier has 2n number of
input lines where n is the number of bits in each
operand. These input 1lines are fed into sixteen
a/4 bit multipliers through a shuffle network
which is not shown in Fig. 4. Outputs of the six-
teen multipliers are divided into two groups in
accordance to Fig. 2. Each group consists of
eight product terms. In group 1, ap and a; form a
n bit number and so do as and ay. These two num-
bers are added in a n-bit CLA. Partial product
terms aj, ag and ag are fed to a n/2 bit three to
two counter. Sum output of the counter is appended
with partial product term a) and carry output of
the counter is padded with zeros in the least sig-
nificant n/2 positions and thus formed these two
numbers are added by a (n+l) bit CLA. The outputs

of both the CLAs are added togather through
(50/4+1) bit CLA. Similarly group 2 output is
achieved through adders and counters. Outputs of

both groups are fed to a 2n bit carry look ahead
adder to produce 2n bit output of the multiplier.
In the layout all the adders are Brent-Kung type
[4]. The layout is recursively drawn to the low-
est level where multipliers are formed by a table
look up technique and it has been discussed in
Section V. Each adder 1is preceded by a shuffle
network to position the inputs appropriately. It
is easy to see that two layers of metalization
[12] can replace aforesaid shuffle networks.

IV. PERFORMANCE OF THE MULTIPLIER

This section presents the performance evalu-
ation of the proposed multiplier. We compare our
scheme with that of Luk's and present a comparison
table with various other existing schemes. Evalu-
ation criteria are based wupon 1) computation
speed, and 2) area time complexity for VLSI imple-
mentation.

Let

Tp(n) be n-bit multiplication time
Ta(n) be n-bit addition time

Ap(n) area taken by n-bit multiplier
A (n) area taken by n-bit adder.
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The computation speed of our scheme can be
derived from Fig. 2 and is given by:

Tp(n) = Tp(n/4) + Ta(n) + T,(1) + T,(5n/4+1)
+ T,(2n) (2)

In this equation T,(1) is the time taken by
three to two counter of n/2 size which 1is simply
equal to one addition time.

In the Luk's scheme the n-bit multiplication
time when expressed in terms of n/4 multiplication,
would be

Tp(n) = Tp(n/4) + T,(n/2) + Ta(n) + T (n)
+ T,(2n) (3)

Equation (2) and (3) gives the time taken by
our scheme and Luk's scheme respectively. Since
(T,(1) + Ta(Sn/h+l))<(Ta(n) + T,(n/2)) our scheme
will have higher computation speed (for larger
value of n).

Simplifying equation (2) we get

Tp(n) = Ty (n/4) + 2T4(n) + T, (2n) (4)

Using Brent-Kung's parallel adders of 0(logn) time
and O(nlogn) area we get

Tp(n) = 0(log2n) (5)

Area requirement of our scheme can be derived
from Fig. 4 and is given by

An(n) = 2A,(n) + 2 Ay(n/2) + Ay(n+l) + Ay(n)
+ 28,(5n/4+1) + A (20) + 16 A (n/4)  (6)

In the Luk's scheme

Ay (n)

16 Ap(n/4) + 4 A (n/2) + 4 A,(n)
+ Ag(n) + A(2p) €D
Since 2 A (n/2) = A (n+l) there is no signi-
ficant real estate value (area complexity) differ-
ence in Luk's and our scheme.
Further applying Brent-Kung's [4] parallel

adder area requirement we get the area for our
multiplier as

Ap(n) = 0(n2logn) (8)

Table 1 shows the performance comparison table of
various other schemes with our scheme.
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V. TABLE LOOK UP BASIS

So far we have not discussed the 1level at
which the recursion would stop in our scheme and
the type of multiplier at that level. Table look
up or ROM multiplier is the simplest choice. But
it requires a very large area. Conventional table
look up n bit multiplier consists of a memory of
2?0 yords with each word of length 2n. Concaten-
ated bits of multiplicand and multiplier numbers
form the address of the memory which maintains the
multiplier output of these two numbers. The fol-
lowing technique which would reduce memory size to
2" for an n-bit multiplier has been used to form
the basis of our multiplier.

Consider X and Y be two n-bit number and we
know that

XY = 1/4 ((X+Y)2-(X-Y)?) (9)

This implies that multiplication can be ex-
pressed in terms of addition/subtraction and
squaring operations. X+Y and X-Y are ntl bit and
n-bit long, respectively. Division by four is
shifting by two positions toward the right. We
need a squaring table for (n+l) long number and
n-bit long number. Since multiple read type mem-
ories [6] do exist so we can have a squaring table
for o+l bit having two read port for parallel ac-
cess. Shifting is avoided by having the memory
word of size 2n instead of (2n+2) for (n+l) bit
squaring table.

So the multiplication has been changed to two
parallel addition/sub followed by two square table
access and followed by a subtraction.

This technique although requires two addi-
tion/sub time more than conventional table look up
but saves a considerable area (of size 20). Also
we have lower memory access time because of small-
er memory size. The level at which such table
look up multiplier will be placed can be found by
optimizing various delays, computation time and
area requirement of computing elements.

VI. DISCUSSION

In this paper we have presented a design and
performance evaluation of an n-bit binary parallel
multiplier of O(logzn) time. As the time perfor-
mance of any circuit largely depends upon geometry
rather than the topology [7], we have employed
parallel counters to provide an alternative way of
reducing the partial product terms in Luk's
scheme. We have used a table look up technique
which requires 0(2") size chip area as opposed to
the conventional table look up of size 0(22%) for
n-bit binary multiplication. We have used a par-
tition of size four and higher order partitions
may improve the multiplier speed.
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Table I Performance comparison of various schemes for parallel multiplier

Multiplier type Time Area-Time Product
Brent-Kung's O(nlleog n) 0(n? log3 n)
Reusens' 0(n) 0(n3)
Proposed scheme O(log2 n) 0(n? log 6n)
Aho et. al's. 0(log? n) 0(n? log" n)
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